Soil Amendment with Biochar Affects Water Drainage and Nutrient Losses by Leaching: Experimental Evidence under Field-Grown Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Set-Up
2.2. Crop Rotation and Agronomic Conditions
2.3. Experimental Treatments and Physico-Chemical Analyses on Biochar, Soil, and Water Samples
2.4. Statistical Analysis
3. Results
3.1. Water Inflows, Outflows, and Solutes Leaching
3.2. The Drainage Model
3.3. The Leaching Model
3.4. Soil Salinity and pH
4. Discussion
4.1. Seasonal Effect on Water Loss by Drainage
4.2. Biochar Effect on Water Loss by Drainage
4.3. Seasonal Effect on Solute Losses by Leaching
4.4. Biochar Effect on Solute Losses by Leaching
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Experimental Set-Up
Appendix B. Biochar Analyses and Characterization
Biochar Property | Value |
---|---|
pH | 9.4 |
Electrical conductivity (dS m−1) | 0.3 |
Fixed Carbon (%) | 88.0 |
Volatile Solid (%) | 8.7 |
Ash (%) | 3.3 |
C (%) | 83.2 |
H (%) | 1.7 |
N (%) | 0.4 |
S (%) | 0.05 |
O (%) | 11.4 |
H/C ratio (−) | 0.25 |
O/C ratio (−) | 0.10 |
K (g kg−1) | 25.24 |
Ca (g kg−1) | 4.39 |
Mg (g kg−1) | 1.04 |
Fe (g kg−1) | 1.02 |
Cd (g kg−1) | nd |
Co (g kg−1) | nd |
Pb (g kg−1) | nd |
Mn (g kg−1) | 0.29 |
Bulk density (kg m−3) | 130 |
Total porosity (%) | 47.4 |
Water Holding Capacity (%) | 275.9 |
Appendix C. Biochar Application to Soil
Appendix D. Soil Classification and Soil Physico-Chemical Characterization
Soil Property | Mean ± Standard Error |
---|---|
Clay (%) | 19.87 ± 0.81 |
Silt (%) | 34.28 ± 0.74 |
Sand (%) | 45.85 ± 0.74 |
Field capacity: Gravimetric soil moisture at field capacity (% dw) | 29.86 ± 0.31 |
Wilting point: Gravimetric soil moisture at wilting point (% dw) | 17.41 ± 0.19 |
Bulk density (mg m−3) | 1.31 ± 0.21 |
pH | 7.58 ± 0.06 |
EC (dS m−1) | 2.45 ± 0.17 |
Total nitrogen (‰) | 1.08 ± 0.05 |
Olsen P2O5 (mg kg−1) | 62.35 ± 0.74 |
Organic matter (%) | 1.61 ± 0.07 |
Na+ (mg kg−1) | 200.19 ± 8.38 |
Ca2+ (mg kg−1) | 178.02 ± 17.38 |
Mg2+ (mg kg−1) | 25.88 ± 3.16 |
NO3−-N (mg kg−1) | 10.78 ± 0.36 |
Appendix E. Chemical Analysis of Irrigation Water
Main Chemical Properties of Irrigation Water. Water Parameter | Mean ± Standard Error |
---|---|
pH | 7.69 ± 0.06 |
EC (dS m−1) | 5.25 ± 0.17 |
Na+ (mg L−1) | 609.88 ± 5.25 |
K+ (mg L−1) | 38.16 ± 0.36 |
Mg2+ (mg L−1) | 121.57 ± 0.96 |
Ca2+ (mg L−1) | 159.24 ± 1.51 |
NO3− (mg L−1) | 185.88 ± 8.25 |
Cl− (mg L−1) | 1312.43 ± 64.28 |
SO4− (mg L−1) | 198.64 ± 5.78 |
References
- Libutti, A.; Monteleone, M. Soil vs. groundwater: The quality dilemma. Managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions Agric. Water Manag. 2017, 186, 40–50. [Google Scholar] [CrossRef]
- Sorrenti, G.; Toselli, M. Soil leaching as affected by the amendment with biochar and compost. Agric. Ecosyst. Environ. 2016, 226, 56–64. [Google Scholar] [CrossRef]
- Motevalli, A.; Naghibi, S.A.; Hashemi, H.; Berndtsson, R.; Pradhan, B.; Gholami, V. Inverse method using boosted regression tree and k-nearest neighborto quantify effects of point and non-point source nitrate pollution ingroundwater. J. Clean. Prod. 2019, 228, 1248–1263. [Google Scholar] [CrossRef]
- Dupas, R.; Delmas, M.; Dorioz, M.; Garnier, J.; Moatar, F.; Gascuel-Odoux, C. Assessing the impact of agricultural pressures on N and P loads andeutrophication risk. Ecol. Indic. 2015, 48, 396–407. [Google Scholar] [CrossRef]
- Ward, M.H.; Rena, R.J.; Brender, J.D.; de Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, M.; van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Ren, L.; Zhang, X.C. Effect of biochar on the soil nutrients about different grasslands in the Loess Plateau. Catena 2016, 137, 554–562. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Hazbavi, Z.; Harchegani, M.K. Controllability of runoff and soilloss from small plots treated by vinasse-produced biochar. Sci. Total Environ. 2016, 541, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Libutti, A.; Monteleone, M. Boosting circular economy and closing the loop in agriculture: Case study of a small-scale pyrolysis-biochar based system integrated in an olive farm in simbiosi with an olive mill. Environ. Dev. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- Monlau, F.; Francavilla, M.; Sambusiti, C.; Antoniou, N.; Solhy, A.; Libutti, A.; Zabaniotou, A.; Barakat, A.; Monteleone, M. Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Appl. Energ. 2016, 169, 652–662. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Delivand, M.K.; Francavilla, M.; Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Conceptual vision of bioenergy sector development in Mediterranean regions based on decentralized thermochemical systems. Sustain. Energy Technol. Assess. 2017, 23, 33–47. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science and Technology; Earthscan: London, UK, 2009. [Google Scholar]
- Lone, A.H.; Najar, G.R.; Ganie, M.A.; So fi, J.A.; Tahir Ali, T. Biochar for sustainable soil health: a review of prospects and concerns. Pedosphere 2015, 25, 639–653. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Zimmerman, A.R.; Li, Y.; Ma, L.; Harris, W.G.; Migliaccio, K.W. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere 2015, 134, 257–262. [Google Scholar] [CrossRef]
- Jaafar, N.M.; Clode, P.L.; Abbott, L.K. Biochar-soil interactions in four agricultural soils. Pedosphere 2015, 25, 729–736. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till. Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Lim, T.J.; Spokas, K.A.; Feyereisen, G.; Novak, J.M. Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 2016, 142, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Haider, G.; Steffens, D.; Moser, G.; Müller, C.; Kammannd, C.I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agric. Ecosyst. Environ. 2017, 237, 80–94. [Google Scholar] [CrossRef]
- Buecker, J.; Kloss, S.; Wimmer, B.; Rempt, F.; Zehetner, F.; Soja, G. Leachate Composition of Temperate Agricultural Soils in Response to Biochar Application. Water Air Soil Poll. 2016, 227, 1–13. [Google Scholar] [CrossRef]
- Demiraj, E.; Libutti, A.; Malltezi, J.; Rroço, E.; Brahushi, F.; Monteleone, M.; Sulçe, S. Effect of organic amendments on nitrate leaching mitigation in a sandy loam soil of Shkodra district, Albania. Ital. J. Agron. 2018, 13, 1136. [Google Scholar] [CrossRef]
- Bradley, A.; Larson, R.A.; Runge, T. Effect of Wood Biochar in Manure-Applied Sand Columns on Leachate Quality. J. Environ. Qual. 2015, 44, 1720–1728. [Google Scholar] [CrossRef]
- Kanthle, A.K.; Lenka, N.K.; Lenka, S.; Tedia, K. Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of central India. Soil Till. Res. 2016, 157, 65–72. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Wang, Y.; Chen, Y.; Lei, T. Sewage sludge biochar: Nutrient composition and its effect on the leaching of soil nutrients. Geoderma 2016, 267, 17–23. [Google Scholar] [CrossRef]
- Libutti, A.; Mucci, M.; Francavilla, M.; Monteleone, M. Effect of biochar amendment on nitrate retention in a silty clay loam soil. Ital. J. Agron. 2016, 11, 273–276. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bird, M.I.; Nelson, P.N.; Bass, A.M. The ameliorating effects of biochar and compost on soil quality and plant growth on a Ferralsol. Soil Res. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- Hardie, M.A.; Oliver, G.; Clothier, B.E.; Bound, S.A.; Green, S.A.; Close, D.C. Effect of Biochar on Nutrient Leaching in a Young Apple Orchard. J. Environ. Qual. 2015, 4484, 1273–1282. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of biochar amendment on fertility of a Southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient leaching in a Colombian savanna oxisol amended with biochar. J. Environ. Qual. 2012, 41, 1076–1086. [Google Scholar] [CrossRef]
- Libutti, A.; Monteleone, M. Irrigation management in Mediterranean salt affected agriculture: how leaching operates. Ital. J. Agron. 2012, 7, e5. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: guidelines for computing crop water requirements. In Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Monteleone, M.; Libutti, A. Salt leaching due to rain in Mediterranean climate: is it enough? Ital. J. Agron. 2012, 7, e6. [Google Scholar] [CrossRef]
- Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Risk assessment of soil salinization due to tomato cultivation in Mediterranean climate conditions. Water 2018, 10, 1503. [Google Scholar] [CrossRef]
- Spokas, K.A. Review of the stability of biochar in soils: predictability of O/C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef] [Green Version]
- Karhu, K.; Mattila, T.; Bergstrom, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: An alfisol and an andisol. Geoderma 2013, 209–210, 188–197. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Wang, H.; Tang, X.; Guan, Z.; Reid, B.J.; Rajapaksha, A.U.; Ok, Y.S.; Sun, H. Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China. Environ. Sci. Pollut. Res. 2016, 23, 995–1006. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil. Sci. Soc. Am. J. 2017, 84, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Jeffery, S.; Meinders, M.B.; Stoof, C.R.; Bezemer, T.M.; van de Voorde, T.F.; Mommer, L.; van Groenigen, J.W. Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma 2015, 251, 47–54. [Google Scholar] [CrossRef]
- Mollinedo, J.; Schumacher, T.E.; Chintala, R. Influence of feedstocks and pyrolysis on biochar’s capacity to modify soil water retention characteristics. J. Anal. Appl. Pyrolysis 2015, 114, 100–108. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Yukiyoshi, I.; Shiono, T. Effects of biochar produced from sugarcane bagasse at different pyrolysis temperatures on water retention of a calcaric dark red soil. Soil Sci. 2016, 181, 20–28. [Google Scholar] [CrossRef]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013, 3, 313–339. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.T.M.; Madari, B.E.; Bastiaans, L.; van Oort, P.A.J.; Leal, W.G.O.; Heinemann, A.B.; da Silva, M.A.S.; Maia, A.H.N.; Parsons, D.; Meinke, H. Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield. Geoderma 2016, 276, 7–18. [Google Scholar] [CrossRef]
- Gamage, D.N.; Mapa, R.B.; Dharmakeerthi, R.S.; Biswas, A. Effect of rice husk biochar on selected soil properties in tropical alfisols. Soil Res. 2016, 54, 302–310. [Google Scholar] [CrossRef]
- Hansen, V.; Hauggaard-Nielsen, H.; Petersen, C.T.; Mikkelsen, T.N.; Müller-Stöver, D. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Till. Res. 2016, 161, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Chen, X.; Qi, X.; Li, Z.; Nan, J.; Deng, J. The effects of biochar and hoggery biogas slurry on fluvo-aquic soil physical and hydraulic properties: A field study of four consecutive wheat-maize rotations. J. Soils Sediments 2016, 16, 2050–2058. [Google Scholar] [CrossRef]
- Borchard, N.; Siemens, J.; Ladd, B.; Möller, A.; Amelung, W. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Till. Res. 2014, 144, 184–194. [Google Scholar] [CrossRef]
- Brockhoff, S.R.; Christians, N.E.; Killorn, R.J.; Horton, R.; Davis, D.D. Physical and mineral nutrition properties of sand-based turfgrass root zones amended with biochar. Agron. J. 2010, 102, 1627–1631. [Google Scholar] [CrossRef]
- Githinji, L. Effect of biochar application rate on soil physical and hydraulic properties of a sandy loam. Arch. Agron. Soil Sci. 2014, 60, 457–470. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Shiono, T.; Shinogi, Y. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in Calcaric dark red soil. J. Environ. Qual. 2012, 41, 1131–1137. [Google Scholar] [CrossRef]
- Barnes, R.T.; Gallagher, M.E.; Masiello, C.A.; Liu, Z.; Dugan, B. Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE 2014, 9, e108340. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Y.; Yan, W.; Shangguan, Z. Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil Till. Res. 2018, 183, 100–108. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Barnes, R.T.; Gallagher, M.E.; Gonnermann, H. Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar-sand mixtures. J. Hydrol. 2016, 533, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, Q.; You, C. Biochar effect on water evaporation and hydraulic conductivity in sandy soil. Pedosphere 2016, 26, 265–272. [Google Scholar] [CrossRef]
- Libutti, A.; Gatta, G.; Gagliardi, A.; Vergine, P.; Pollice, A.; Beneduce, L.; Disciglio, G.; Tarantino, E. Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions. Agric. Water Manag. 2018, 196, 1–14. [Google Scholar] [CrossRef]
- Arregui, L.M.; Quemada, M. Drainage and nitrate leaching in a crop rotation under different N-fertilizer strategies: Application of capacitance probes. Plant Soil 2006, 288, 57–69. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Papiernik, S.K.; Clay, D.E.; Kumar, S.; Gulbrandson, D.W. Nitrate sorption and desorption by biochars produced from fast pyrolysis. Micropor. Mesopor. Mat. 2013, 179, 250–257. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Mizuta, K.; Matsumoto, T.; Hatate, Y.; Nishihara, K.; Nakanishi, T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol. 2004, 95, 255–257. [Google Scholar]
- Liang, X.; Ji, Y.J.; He, M.M.; Su, M.M.; Liu, C.L.; Tian, G.M. Simple N balance assessment for optimizing the biochar amendment level in paddy soils. Commun. Soil Sci. Plan. 2014, 45, 1247–1258. [Google Scholar] [CrossRef]
- Fidel, R.B.; Laird, D.A.; Spokas, K.A. Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Sci. Rep. 2018, 8, 17627. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.; de Arruda, M.R.; Teixeira, W.G.; Zech, W. Soil respiration curves as soil fertility indicators in perennial central Amazonian plantations treated with charcoal, and mineral or organic fertilisers. Trop. Sci. 2008, 47, 218–230. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.H.; Lehmann, J.; Engelhard, M.H. Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim. Cosmochim. Acta 2008, 72, 1598–1610. [Google Scholar] [CrossRef]
- Schimmelpfennig, S.; Glaser, B. One step forward toward characterization: some important material properties to distinguish biochars. J. Environ. Qual. 2012, 41, 1001–1013. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.Y.; Luan, Y.N.; Wang, H.; Guo, C.; Li, S.Y. Growth Media for Ornamental Plants; DB11/T 770-2010; Beijing Municipal Administration of Quality and Technology Supervision: Beijing, China, 2010. [Google Scholar]
- Bremner, J.M. Nitrogen-total. In Methods of Soil Analysis Part 3—Chemical Methods. SSSA Book Ser. No. 5; Sparks, D.L., Page, A.L., Johnston, C.T., Summ, M.E., Eds.; SSSA: Madison, WI, USA, 1996; pp. 1058–1121. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soil by Extraction with Sodium Bicarbonate; USDA Circular 939; USDA: Washington, DC, USA, 1954; pp. 1–19. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method fordetermining soil organic matter and a proposed modification of the chromicacid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen Inorganic Forms. In Methods of Soil Analysis. Part 2, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agron. Monogr. 9; American Society of Agronomy and Soil Science Society of America Publisher: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
Variable | Units | GS1 | Std Err | GS2 | Std Err | Total | Std Err |
---|---|---|---|---|---|---|---|
WP | m3 ha−1 | 1574.1 | - | 663.3 | - | 2237.4 | - |
WI | “ | 404.4 | - | 3678.7 | - | 4083.0 | - |
Win | “ | 1978.5 | - | 4342.0 | - | 6320.4 | - |
GCWout | “ | 693.2 | 56.4 | 369.5 | 51.78 | 1062.7 | 63.4 |
Wout/Win | (%) | 35.0 | - | 8.5 | - | 16.8 | - |
NO3− | kg ha−1 | 305.8 | 22.7 | 104.0 | 12.5 | 409.8 | 26.4 |
Cl− | “ | 262.8 | 26.4 | 402.5 | 81.3 | 665.3 | 84.2 |
Na2+ | “ | 252.1 | 19.2 | 133.4 | 20.4 | 385.5 | 25.6 |
Ca2+ | “ | 104.5 | 10.0 | 53.2 | 8.8 | 157.750 | 13.5 |
SO4− | “ | 44.0 | 2.5 | 56.8 | 10.6 | 100.750 | 10.0 |
K+ | “ | 30.4 | 3.150 | 16.1 | 2.7 | 46.553 | 4.7 |
Mg2+ | “ | 24.2 | 1.852 | 12.5 | 1.7 | 36.7 | 2.7 |
PO43− | “ | n.d. | - | n.d. | - | - | - |
NH4+ | “ | n.d. | - | n.d. | - | - | - |
WOUT = α + (γ ± Δi) × WIN | ||||
---|---|---|---|---|
Term | Estimate | Variation (%) | Standard Error | p |
α = intercept (m3 ha−1) | 0.0000 | = | = | = |
γ = average slope (−) | 0.2167 | 100.00 | 0.0064 | ** |
ΔGS (effects of Growing Season on γ) | ||||
GS1 | 0.1297 | 59.85 | 0.0064 | ** |
GS2 | −0.1297 | −59.85 | 0.0064 | ** |
ΔB (effects of Biochar on γ) | ||||
B0 | 0.0105 | 4.85 | 0.0091 | n.s. |
B1 | −0.0270 | −12.46 | 0.0091 | ** |
B2 | 0.0165 | 7.61 | 0.0091 | n.s. |
R2 = 0.9433; RMSE = 75.75 m3 ha−1; CV = 34.24% |
SOUT = α + (ε ± Δi) × WOUT | ||||
---|---|---|---|---|
Term | Estimate | Variation (%) | Standard Error | p |
α = intercept (m3 ha−1) | 0.0000 | = | = | = |
ε = average slope (kg m−3) | 0.2406 | 100.00 | 0.0034 | ** |
ΔI (effects of Ions on ε) | ||||
Mg2+ | −0.2068 | −85.95 | 0.0083 | ** |
K+ | −0.1977 | −82.17 | “ | ** |
SO42− | −0.1410 | −58.60 | “ | ** |
Ca2+ | −0.0984 | −40.90 | “ | ** |
Na+ | 0.1175 | 48.84 | “ | ** |
NO3− | 0.1362 | 56.61 | “ | ** |
Cl− | 0.3902 | 162.18 | “ | ** |
ΔGS (effects of Growing Season on ε) | ||||
GS1 | −0.0337 | −14.01 | 0.0034 | ** |
GS2 | 0.0337 | 14.01 | “ | ** |
ΔGS*I (interaction effects on ε) | ||||
GS1 * Cl− | −0.2259 | −93.89 | 0.0084 | ** |
GS2 * Cl− | 0.2259 | 93.89 | “ | ** |
GS1 * NO3− | 0.0932 | 38.74 | 0.0084 | ** |
GS2 * NO3− | −0.0932 | −38.74 | “ | ** |
ΔB (effects of Biochar on ε) | ||||
B0 | 0.0149 | 6.19 | 0.0036 | ** |
B1 | −0.0129 | −5.36 | 0.0039 | ** |
B2 | −0.0021 | −0.87 | 0.0036 | n.s. |
ΔB*I (interaction effects on ε) | ||||
B0 * NO3− | −0.0188 | −7.81 | 0.0089 | n.s. |
B1 * NO3− | −0.0193 | −8.02 | 0.0087 | * |
B2 * NO3− | 0.0382 | 15.84 | 0.0088 | ** |
B0 * Cl− | 0.0705 | 29.30 | 0.0089 | ** |
B1 * Cl− | −0.0258 | −10.72 | 0.0097 | ** |
B2 * Cl− | −0.0447 | −18.58 | 0.0088 | ** |
R2 = 0.9660; RMSE = 18.85 m3 ha−1; CV = 36.46% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libutti, A.; Cammerino, A.R.B.; Francavilla, M.; Monteleone, M. Soil Amendment with Biochar Affects Water Drainage and Nutrient Losses by Leaching: Experimental Evidence under Field-Grown Conditions. Agronomy 2019, 9, 758. https://doi.org/10.3390/agronomy9110758
Libutti A, Cammerino ARB, Francavilla M, Monteleone M. Soil Amendment with Biochar Affects Water Drainage and Nutrient Losses by Leaching: Experimental Evidence under Field-Grown Conditions. Agronomy. 2019; 9(11):758. https://doi.org/10.3390/agronomy9110758
Chicago/Turabian StyleLibutti, Angela, Anna Rita Bernadette Cammerino, Matteo Francavilla, and Massimo Monteleone. 2019. "Soil Amendment with Biochar Affects Water Drainage and Nutrient Losses by Leaching: Experimental Evidence under Field-Grown Conditions" Agronomy 9, no. 11: 758. https://doi.org/10.3390/agronomy9110758
APA StyleLibutti, A., Cammerino, A. R. B., Francavilla, M., & Monteleone, M. (2019). Soil Amendment with Biochar Affects Water Drainage and Nutrient Losses by Leaching: Experimental Evidence under Field-Grown Conditions. Agronomy, 9(11), 758. https://doi.org/10.3390/agronomy9110758