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Abstract: Sorghum crop is grown under tropical and temperate latitudes for several purposes including
production of health promoting food from the kernel and forage and biofuels from aboveground
biomass. One of the concerns of policy-makers and sorghum growers is to cost-effectively predict
biomass yields early during the cropping season to improve biomass and biofuel management.
The objective of this study was to investigate if Sentinel-2 satellite images could be used to predict
within-season biomass sorghum yields in the Mediterranean region. Thirteen machine learning
algorithms were tested on fortnightly Sentinel-2A and Sentinel-2B estimates of the fraction of Absorbed
Photosynthetically Active Radiation (fAPAR) in combination with in situ aboveground biomass
yields from demonstrative fields in Italy. A gradient boosting algorithm implementing the xgbtree
method was the best predictive model as it was satisfactorily implemented anywhere from May to July.
The best prediction time was the month of May followed by May–June and May–July. To the best
of our knowledge, this work represents the first time Sentinel-2-derived fAPAR is used in sorghum
biomass predictive modeling. The results from this study will help farmers improve their sorghum
biomass business operations and policy-makers and extension services improve energy planning and
avoid energy-related crises.

Keywords: sorghum biomass; prediction modeling; machine learning; fAPAR; Sentinel-2 satellite
imagery; big data technology; remote sensing

1. Introduction

Sorghum (Sorghum bicolor (L.) Moench) is a cereal with a C4 carbon fixation (the Hatch—Slack
pathway) cultivated mainly for food, feed, forage, and fuel [1]. Sorghum grain was historically used
for human consumption in developing countries but, because it is gluten-free, with low glycemic index
and high contents of macronutrients and antioxidants, its utilization as food extended worldwide.

There are several types of sorghum. Grain sorghums are generally shorter (usually having
recessive alleles at three of the four Dw genes) than biomass sorghums (having recessive alleles at two
Dw genes at most), and have been selected to have the grain as the primary sink for photosynthates.
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Biomass sorghum of biofuel production interest was used in this work and includes dual purpose
(showing high grain and biomass yields), forage, sweet, and biomass sorghum types [2–5]. The sweet
sorghum type translocates photosynthates to the seeds and stem; their stems are juicy (d recessive
to D) instead of dry and sweet (x recessive to X) instead of nonsweet [6]. Sweet sorghums are high
biomass and sugar yielding crops, and were traditionally bred for syrup or molasses production.
Forage sorghum’s main characteristics include digestible fiber and low lignin content, while biomass
and dual purpose sorghums include high biomass yielding genotypes with high contents of structural
carbohydrates, which are being developed for feedstock production [5]. Sorghum can therefore supply
several products including starch, soluble sugars, structural carbohydrates, and organic matter for
energy production purposes. Several countries worldwide, including in higher latitudes [7], are
increasingly developing dedicated biomass sorghums in response to the pressing issue for nations to
get independent of foreign energy sources and to cut carbon emissions into the atmosphere [7,8]. As a
biofuel-dedicated biomass business, growing sorghum will have to meet critical requirements of high
and cost-effective productivity of biobased commodities.

Crop yield forecasting is one of the most important strategies in agriculture, which enables
sustainable development and helps avoid famines and shortages in several commodities [9–12].
In industrialized countries, crop yield forecasting provides data to governmental structures, companies,
and farmers, which results in strategic advantages such as the rationalization of policy adjustments,
price predictions and stabilization, efficient agricultural trade, and simplification of business operations
particularly through planning harvest and delivery of the produce, better deployments of machineries
and logistics, and a better management at the end user level (e.g., bioreactor owner).

Conventionally, and particularly in developed countries, the information on crop production
is collected and disseminated through field surveys and censuses, but this system is rather costly
and associated with significant uncertainties [13]. Using satellite imagery resulted in a superior
solution [14–16]. Remote sensing data has been used for many years to build operational crop yield
forecasting systems like the FAO’s Global Information and Early Warning System (GIEWS). The use
of remote sensing satellite data for crop yield forecasting is further motivated by wide coverage,
near-real time delivery of data and products, and the ability to provide vegetation indicators at low cost.
Many studies have shown that forecasting models based on remote sensing data can give similar or
better performance comparing to the more sophisticated physiological crop growth models [13,17–19].

The use of remote sensing parameters as proxies for biomass yields was documented in previous
works. Normalized difference vegetation index (NDVI), leaf area index (LAI), and fAPAR (fraction of
absorbed photosynthetically active radiation) are among the most frequently used parameters [14,16,20].
Recently, the use of biophysical parameters, such as fAPAR, gained more attention relative to using
vegetation indices [21,22]. Biophysical parameters reflect the state of the crops more adequately and
thus could be better suited for predicting crop yield and production [15,23,24]. fAPAR is defined as the
fraction of radiation absorbed by the green vegetation elements in the 400 to 700 nm spectral domain
under specified illumination conditions [25]. It is directly linked to photosynthesis, and therefore
expresses a canopy’s energy absorption capacity [26]. fAPAR values range from 0 to 1, indicating,
respectively, bare soil and fully crop covered soil.

Most of the aforementioned studies were focused on common field crops like corn, wheat, barley
or soybeans [16,20,27–30]. A few studies dealt with remote sensing-based yield monitoring and
prediction [16] in sorghum. For instance, Shafian et al. [31] described the use of unmanned aerial
vehicle-based remote sensing to investigate sorghum crop physiological properties. Yang et al. [32]
combined airborne digital videography with ground sampling, regression analysis, and image
processing to map spatial sorghum grain yield variability within fields and across the cropping season.
Johnson [16] presented a comprehensive assessment of the correlations between commonly used
Moderate Resolution Imaging Spectroradiometer (MODIS) products and field crop yields, including
sorghum, and used these correlations for biomass yield estimation and prediction.
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In most studies, however, remote sensing-based biomass yield estimation or prediction makes use
of low- or medium-resolution satellite images from sensors such as SPOT-VEGETATION [14,15,23,24]
or MODIS [16]. These satellite products have a coarser spatial resolution (250 to 1000 m) compared to
the data collected from the two Sentinel-2 satellites in this work (10-m spatial resolution). With the
launch of the Sentinel-2 constellation of satellites the overpass frequency (five days and locally even
two to three days) the temporal resolution is nearly as good as for SPOT-VEGETATION and MODIS
satellites (one to two days). The high spatial resolution of the Sentinel-2 images is an important asset
when monitoring crops in agricultural regions characterized by many small fields. To our knowledge no
previous studies assessed the efficiency of high resolution Sentinel-2-derived fAPAR data in predicting
within-season biomass sorghum yields, and this paper is therefore aimed at addressing this gap.

Deriving yield information from satellite imagery has shown promising results but this technology
is not extensively applied across farmers and crop species worldwide [27–29]. In this work, we
developed models for within-season prediction of annual and perennial sorghum biomass yields in
Emilia-Romagna, Italy, based on fAPAR measurements from Sentinel 2A and Sentinel 2B satellite
images on 42 mostly full-fledged commercial sorghum fields. We used machine learning algorithms to
create yield prediction equations. These equations can be implemented in decision support systems to
allow farmers and/or farming stakeholders to predict biomass yields from sorghum fields of interest
early on in the cropping season. This information is very helpful to efficiently schedule fleets of
harvesting machinery, transport vehicles, and storage facilities. The fAPAR-derived predictive models
for biomass yields can also be implemented by extension services and policy-makers for several
purposes, including the possibility to anticipate potential biomass availability and plan ahead, to avoid
specific crises such as fuel shortage.

2. Materials and Methods

2.1. Trial Set-Up

Forty-two demonstration trials were run in this work, 23 and 19 of which were evaluated in 2017
and 2018, respectively. In 2017, the experimental sites were located in Conselice, Nonantola, Mirandola,
and Anzola dell’Emilia, in the Italian region of Emilia Romagna (Table 1, Figure 1), while in 2018
the sites were established in Anzola, Mirandola, and Conselice (Figure 1, Table 1). The experimental
sites were strategically selected to maximize extension impact by conducting most of the trials in
the farmers’ fields. The experimental fields in Mirandola and Conselice belonged to respective two
big farming cooperatives with more than 2000 members each. In Nonantola, the fields belonged to
individual farmers, while in Anzola the fields were established in the experimental station of the
Council for Agricultural Research and Economics (CREA). The fields were generally of big size relative
to plot sizes commonly used under standard experimental settings [1] in order to serve the purpose of
demonstrative pilots with the objective of transferring into the production environment the technology
of sorghum crop monitoring using satellite imagery. The fields areas ranged from 0.06 ha to 50.00 ha,
with a mean and median of 5.70 ha and 1.10 ha, respectively. All the fields were planted with biomass
sorghums including biomass per se (high tonnage), sweet, forage, and dual purpose types. One-grain
sorghum trials were established in Anzola in 2017, but it was not included in this work in virtue
of a different kind of experiment management and a diverse market of the grain sorghum produce
relative to biomass sorghum. Thirty-five out of the 42 trials were sown with a single genotype of
Sorghum bicolor (annual), while the 17IT_mat was sown with a diversity panel of 228 biomass Sorghum
bicolor genotypes, and six (15R17, 16R17, 16R18, 15R18, 17R18, and 17US_mat) of the trials installed in
Anzola were made up of a diversity panel consisting of advanced perennial interploid biomass hybrids
deriving from S. bicolor × S. halepense (SB × SH) crosses. The original SB × SH materials originated from
The Land Institute (Salina, KS, United States of America). S. bicolor × S. halepense breeding strategy
was amply detailed in Piper and Kulakow [33] and in Habyarimana et al. [1]. The 15R, 16R, 17R,
and 17US_mat trials were sown in 2015, 2016, and 2017, respectively, meaning that regrowth-derived
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biomass was evaluated for the 15R, 16R, and 17R trials, while for the 17US_mat trial, the biomass
evaluated in this study was produced from direct sowing.

Table 1. Pilots descriptors: name, location, variety, season, and productivity.

Serial
Number

Field/Pilot
Name

Variety
Name

Variety
Type Area (ha) Dry Biomass

Yield (t ha−1)
Cropping

Season
Location

Name

1 Botte 1 Harmattan Dual purpose 9.00 14.13 2018 Conselice
2 Saracca 5 Harmattan Dual purpose 6.50 10.52 2018 Conselice
3 V. serrata Harmattan Dual purpose 44.87 9.69 2018 Conselice
4 Magnana P845F Forage 32.05 11.43 2018 Conselice
5 Cà bianca P845F Forage 3.72 11.11 2018 Conselice
6 Gamberina 3 Aralba Dual purpose 7.86 9.67 2018 Conselice
7 Sagrate Harmattan Dual purpose 50.00 8.90 2017 Conselice
8 Prato_Mensa Harmattan Dual purpose 3.29 19.10 2017 Conselice
9 Comuna P845F Forage 27.86 24.50 2017 Conselice

10 Gamberina_1 Aralba Dual purpose 7.60 12.80 2017 Conselice
11 Botte Harmattan Dual purpose 5.33 23.50 2017 Conselice
12 Carafolo_G Bulldozer Biomass 2.00 17.10 2017 Nonantola
13 Cavriani_S Merlin Biomass 2.00 19.50 2017 Nonantola
14 Ferrari_R Bulldozer Biomass 1.00 3.40 2017 Nonantola
15 Mattioli_R Bulldozer Biomass 1.00 4.90 2017 Nonantola
16 Serafini_G Bulldozer Biomass 2.00 15.30 2017 Nonantola
17 Zavatti_E Bulldozer Biomass 0.89 7.60 2017 Mirandola
18 Grandi_Magonza Bulldozer Biomass 0.80 12.80 2017 Mirandola
19 Grandi_Ponte Bulldozer Biomass 1.20 9.50 2017 Mirandola
20 Zini_L Palo Alto Biomass 2.50 8.00 2017 Mirandola
21 Villa_verdetta Bulldozer Biomass 1.00 6.25 2018 Mirandola
22 Cama_grande Bulldozer Biomass 4.40 14.94 2018 Mirandola
23 Cama_piccolo Bulldozer Biomass 4.00 15.35 2018 Mirandola
24 Golinelli_RaimondoBulldozer Biomass 2.02 10.48 2018 Mirandola
25 Barozzi_Lidia Bulldozer Biomass 3.00 7.19 2018 Mirandola
26 Molon_A Palo Alto Biomass 5.00 8.30 2017 Mirandola
27 T1_Anzola Sole Biomass 0.74 13.00 2017 Anzola
28 T2_Anzola Trudan Forage 0.71 19.00 2017 Anzola
29 T3_Anzola Hannibal Sweet 0.71 17.00 2017 Anzola
30 T4_Anzola Harmattan Dual purpose 0.70 14.00 2017 Anzola
31 T1_Anzola Bulldozer Biomass 0.74 17.00 2018 Anzola
32 T2_Anzola Hannibal Sweet 0.71 19.00 2018 Anzola
33 T3_Anzola Tarzan Biomass 0.71 21.00 2018 Anzola
34 T4_Anzola Trudan Forage 0.70 13.00 2018 Anzola
35 T5_Anzola Harmattan Dual purpose 0.70 15.00 2018 Anzola
36 15R17 Perennial Biomass 0.06 2.39 2017 Anzola
37 16R17 Perennial Biomass 0.15 8.27 2017 Anzola
38 17IT_mat Bicolor Biomass 0.17 18.30 2017 Anzola
39 17US_mat Bicolor Biomass 0.15 21.00 2017 Anzola
40 16R18 Perennial Biomass 0.15 14.35 2018 Anzola
41 15R18 Perennial Biomass 0.06 10.73 2018 Anzola
42 17R18 Perennial Biomass 0.15 17.47 2018 Anzola

Crop management followed local extension services guidelines and was well described in
Habyarimana et al. [1]. Planting density was 26 (0.75 m spacing between rows; 0.052 m spacing of hills
within row) plants per square meter for most (35) trials, and 13 (0.75 m spacing between rows; 0.10 m
spacing of hills within row) plants per square meter for 15R, 16R, 17R, 17IT_mat, and 17US_mat trials.
In terms of weather (Figures S1–S4), summer was generally dry across years and locations as expected.
In 2017, all sites had relatively wet spring except in Anzola, while in 2018 spring was relatively wet in
Anzola and Conselice, but dry in Mirandola.
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2.2. Biomass Data Collection

Trials in Nonantola, Mirandola, and Conselice were harvested at industrial scale from end of
August to late November, while all trials in Anzola were harvested end of November using a single-row
chopper harvester. Our experience showed that postponing harvest to later times may increase the
likelihood for lodging, which may lead to the crop touching the ground, adding grit to the biomass
material and possibly reducing biomass quality; delayed harvest also leads to kernel loss and kernel
quality deterioration particularly due to molds, insect, and bird damages. The trials were harvested
according to two machinery options: forage chopper or swathing the material into windrows and then
baling it in large square bales or large round bales. Chopped biomass was weighed immediately at
harvest, while baled biomass was weighed when bales were transported to the bioreactor. Chopped and
baled biomasses were supplied to private biogas and combustion bioreactors. From each field, a
1kg-composite sample was taken from the sold biomass at the time of shipment to the end user in
order to determine the dry mass content in the commercialized produce and calculate the dry biomass
yield for each entire field that will be used in modeling. For the diversity panels, samples were taken
from each genotype. Fresh samples were weighed and dried at 80 ◦C to constant weight in a forced air
oven. The fresh and dry weights of the samples, and the fresh weight of the entire field’s harvest, were
used to derive dry mass fraction of the fresh material and dry biomass yield of the entire field. For the
diversity panel fields, the final yields integrated the contributions of the component genotypes.

2.3. Satellite Data Acquisition

For this study we used Sentinel-2 optical satellite imagery. The Sentinel-2 mission is based on
a constellation of two satellites—Sentinel-2A and Sentinel-2B—both orbiting Earth at an altitude of
786 km, but 180 ◦ apart to optimize coverage and global revisit times. Swath width, i.e., the image
width across the satellite path when scanning the Earth, is 290 km. As a constellation, the revisit
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time is 5 days. This means that the same spot over the equator is revisited every five days, and even
faster at higher latitudes. Sentinel-2 data are acquired on 13 spectral bands in the VNIR (visible and
near-infrared) and SWIR (short-wave infrared) range, of which four bands with a spatial resolution of
10 meters (blue, green, red, and near-infrared (NIR)), six bands at 20 meters (three red edge bands, a
narrow NIR, and two SWIR bands), and three bands at 60 meters (a coastal aerosol, water vapor, and
cirrus band). Spatial resolution refers to the surface area measured on the ground and represented by an
individual pixel. Once the Sentinel data are acquired on-board, they are sent to ground and processed
by a network of Processing and Archiving Centers. Next, all data products are united, archived, and
disseminated online to the users by ESA’s Copernicus Space Component (CSC) Ground Segment via
the CSC Data Access Coordinated System. To facilitate image transfer and use, the projected Sentinel-2
images are converted to tiles with a fixed size of 100 square kilometers, each of which is approximately
500 MB.

For this study, Sentinel-2A and Sentinel-2B images from tile 32TQQ (including pilots from
Conselice) and 32TPQ (including pilots from Anzola, Mirandola, and Nonantola) were downloaded
from ESA and processed by Vlaamse Instelling voor Technologisch Onderzoek N.V. (VITO). Processing
included atmospheric correction with iCOR [34] and cloud and shadow detection using Sen2COR v2.5.5
(ESA-STEP, ESA, Paris, France). Biophysical parameters fAPAR, fCover, and leaf area index (LAI) were
calculated from the top of canopy normalized reflectances following the BV-NET (tool for mapping
surface and vegetation variables) method described by Weiss and Baret [35]. The BV-NET methodology
is based on neural networks which are trained on a synthetic dataset of ~50,000 simulations using the
PROSAIL (PROSPECT and SAIL radiative transfer models) model [36]. The BV-NET version used in
this study was calibrated with green, red and near infrared bands, all having a spatial resolution of
10 meters. Sen2Cor and BV-NET are publicly available through ESA’s SNAP (Sentinel Application
Platform, ESA, Paris, France) toolbox.

Previous studies such as Duveiller et al. [15], López-Lozano et al. [24], and Johnson et al. [16]
illustrated the good performance of satellite derived fAPAR for estimating and predicting biomass
yields of large field crops, including corn and sugarcane, which, together with sorghum, make-up the
world’s three economically important C4 crops of the Poaceae family with similar growth habits [37].
We therefore decided to use fAPAR for this study as well. The fAPAR estimates generated with BV-NET
from Sentinel-2A and 2B top of canopy reflectances over selected tiles in Emilia-Romagna had a spatial
resolution of 10 meters and a temporal resolution of 5 days up to 2–3 days in those areas where the
different satellite overpasses overlapped.

For monitoring the sorghum fields in this study “WatchITgrow” (Vlaamse Instelling voor
Technologisch Onderzoek N.V., MOL, Belgium) was used. WatchITgrow is a web-based application for
crop monitoring developed by VITO. It provides information on crop growth and development as well
as possible anomalies derived from Sentinel-2 satellite images and weather data, and it allows the user
to store all kinds of collected field data, such as planting and harvest dates and development stages, but
also information on crop treatments such as fertilization, spraying, or irrigation. Prior to monitoring,
the fields used in this study were geolocalized (Figure 1) using Field GPS (global positioning syatem)
application for iPhone with a final field boundary correction using Google Earth. The field polygons
were saved as kml files and then imported into WatchITgrow for monitoring. For each field, fAPAR or
“greenness” maps were created (see example in Figure 2), and a growth curve was built, showing the
evolution of the fAPAR values throughout the cropping season (see example in Figure 3). To build
the growth curve the fAPAR values of all pixels within the field were averaged, thereby accounting
for an inside buffer of ten meters (one pixel) in order to avoid capturing signals from neighboring
fields or other objects. To correct for artifacts in the resulting fAPAR curve such as abnormally low
fAPAR values due to undetected clouds, shadows or haze and to interpolate fAPAR values between
subsequent acquisition dates, a Whittaker smoothing filter was applied on the curve [38,39].
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Figure 3. Greenness (fAPAR) graphs derived from Sentinel-2 satellite imagery from 2017 for six sorghum
fields in Anzola (T4-dual purpose sorghum, T3-sweet sorghum, T2-forage sorghum, T1-biomass
sorghum, and 16R17-perennial, 17US_mat perennial), available via WatchITgrow.

2.4. Modeling Total Aboveground Biomass Yields

Thirteen models were assessed in this study to predict sorghum biomass yields. The models
included partial least square discriminant analysis (PLS-DA), principal component analysis discriminant
analysis (PCA-DA), neural network (NN), random forest (RF), support vector machine (SVM) with
linear classifier (SVML), nonlinear kernel (SVML_G), radial basis kernel (SVM_R), radial basis
kernel with polynomial basis kernel (SVM_P), neural network (NNET), eXtreme Gradient Boosting-
xgbtree method (GBT), eXtreme Gradient Boosting- xgbDART method (GBD), eXtreme Gradient
Boosting-xgbLinear method (GBL), simple linear model (LM), and Neural Network-neuralnet method
(NLNET). The simple linear model was used as a benchmark to gauge the performance of the models
implemented. The models evaluated in this work were selected based on their robustness as reported
in previous studies [40].

The field-based daily interpolated fAPAR estimates extracted from WatchITgrow were converted
to fortnightly fAPAR averages. In this study, preference was given to the use of fortnightly fAPAR
data as major morphophysiological changes in crops also occur fortnightly [41]. In addition pilots
established in experimental stations and in farmers’ fields were fortnightly visited at or close to the
times the fAPAR images used in this work were acquired. This time management was also favorable
and accommodated the busy schedules of farmers and scientists.

Six fortnightly fAPAR values registered from May to July—here referred to as six “days of year”
(DOY), that is, DOY 135 and 150 in May, 165 and 180 in June, and 195 and 210 in July—were used
as regressor variables in successive predictive modeling of sorghum biomass yields. May, June, and
July are important months concerning the predictive modeling, mimicking the 1 to 2 months required
to release yield predictions before harvest [42]; taking into account that biomass sorghum in the
Mediterranean region is harvested from August to November.

The research questions addressed in this work are (1) how accurately can we predict the yield of a
biomass sorghum field based of Sentinel-2-derived fAPAR profile early in the cropping season? (2)
Which months and/or days-of-year best contribute useful information for predicting biomass yields in
commercial sorghum fields? The solutions to the above problems were evaluated by solving the below
linear model for n trials or experimental locations (i = 1, . . . , n) and p prediction times or days of year
( j = 1, . . . , p). This model is represented by

yi = µ+

p∑
j=1

xi jβ j + ei (1)

where µ is the overall mean, yi is the phenotypic observation (biomass yields) from field i, ei is the
residual comprising all other nongenetic and environmental factors, xi j is the days of year covariates,
and β j is the effect of the jth day of year covariate on yi [43]. Note that it is beyond the scope being
presented here to identify and/or predict within-field yield variability for any potential applications.
In addition, different sorghum types were combined in this study as they qualified for commercial
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aboveground biomass production and to mimic farming practices in the region of the study. We also
assumed that the test region was homogeneous with respect to climatic conditions.

All statistical analyses were carried out using R software [44]. The predictive models were fitted
using the caret R package. In this work, the “one standard error” rule of Breiman et al. [45] was
implemented to avoid overfitting, and the caret built-in features were invoked to automatically choose
the tuning parameters associated with the best performance of the regression routines. During data
preparation, zero-variance regressors were removed and those remaining were centered and scaled in
order to avoid regressors with zero or near-zero variance, which often constitute a problem as they
behave as second intercepts in predictive models [40]. The dataset was randomly partitioned into
training (80% of the entire dataset; 34 observations) and testing set (20% of the entire dataset; eight
observations). The training set was used to run a cross-validation experiment to train and assess the
models using a 10× repeated 5-random fold cross-validation (CV) iterations, rendering a total of 50
estimates of accuracy and prediction error; a large number of repetitions is expected to compensate for
the high variance stemming from a reduced number of folds. Models were validated on the testing
set which was an external test (validation) sample set needed so that the model performance can be
characterized on data that were not used in the model training. The models were evaluated based
on the prediction accuracy, the mean absolute error (MAE), and the mean absolute percentage error
(MAPE). The MAE built within the repeated cross validation procedure (model calibration) was used to
assess the variability (dependability) of the model performance. On the other hand, the MAE, MAPE,
and accuracy obtained on the testing set were used to assess the model predictive ability. The MAPE
allows us to compare the prediction of different dependent variables in different scales. The MAE
measured the average magnitude of the errors in the set of predictions of biophysical variable values
produced in this work, without considering their direction. It represented the average over the test
sample of the absolute differences between prediction and actual observation where all individual
differences had equal weight. The MAE was chosen for the model verification because it provides an
unambiguous measure of the magnitude of the average error and is therefore more appropriate than the
Root Mean Square Error (RMSE) for dimensioned evaluations of average model performance error [46].
The distribution of the 50 MAE estimates from the optimal cross-validated models was characterized
using boxplot, while the comparison of mean accuracies across models and across prediction times was
performed using Duncan’s test [47]. The importance of the regressor variables (useful prediction times)
was determined using a 0 to 100 index, with 0 corresponding to no effect and 100 corresponding to the
highest magnitude of the regressor’s importance. The accuracy was defined as the Pearson correlation
coefficient between the predicted and the observed biomass yield values in the testing set [5]. From the
computed accuracy, r-squared values can be derived in order to better compare, for each model, the
proportion of the variance in the dependent variable that is predictable from the regressors.

3. Results

3.1. fAPAR Index Pattern Across Sorghum Types

Three fAPAR curve and map patterns were consistently observed as illustrated in the above
Figures 2 and 3 using data from the 2017 cropping season. In dual purpose and biomass sorghums, a
major peak was observed earlier in July followed by a drop and then a weak increase at the beginning
of the second half of September. For the sweet, forage, and the perennial sorghum (SB × SH) grown
from seeds, the fAPAR increased significantly in early July to reach a plateau from then up to late
September/early October, whereas, in October, the curve decreases sharply to reach the minimum value
in early November. On the other hand, in perennial sorghum regrown from rhizomes, two fAPAR
peaks (smaller peak in mid-May, bigger peak in late September/early October) were observed that were
separated by a deep drop extending from June to August.
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3.2. Assessment and Validation of the Predictive Models, and Importance of Regressors in Total Biomass
Prediction

Thirteen models implemented in this work were assessed using the prediction accuracy (Table 2)
in the validation set, the mean absolute error (MAE) and mean absolute percentage error (MAPE)
metrics (Table 2, Figure 4) produced during the repeated cross-validation, and during the validation
stage in the independent sample set. A repeated cross-validation iteration was run for each model,
resulting in MAE resample vectors, each containing 50 elements. Over the months evaluated, the
range and mean accuracy (Table 2) for NNET, RF, SVM-R, PCA-DA, PLS-DA, SVM-P, SVML, SVML-G,
GBT, GBD, GBL, LM, and NLNET, were 0.16–0.78 and 0.56, 0.39–0.82 and 0.63, −0.36–0.88 and 0.16,
−0.13–0.76 and 0.43, −0.02–0.77 and 0.47, 0.09–0.81 and 0.50, 0.49–0.80 and 0.64, 0.46–0.80 and 0.64,
0.56–0.81 and 0.66, −0.01–0.84 and 0.49, 0.03–0.93 and 0.47, 0.46–0.78 and 0.61, and 0.01–0.79 and
0.47, respectively.

Table 2. Predictive models × prediction time accuracies and May MAE for the training and
validation sets.

(1)

Model

(2) Accuracy (3) May_MAE.T
t ha−1

May_MAE.V

May June July May–June June–July May–July Mean t ha−1 %

PLS-DA 0.77 0.49 −0.02 0.69 0.32 0.56 0.47 ab 5.01 bcd 3.62 26.81
PCA-DA 0.76 0.49 −0.13 0.67 0.29 0.52 0.43 ab 5.00 bcd 2.91 21.56

RF 0.82 0.39 0.64 0.68 0.53 0.74 0.63 a 5.05 bcd 2.27 16.81
SVML 0.80 0.49 0.58 0.67 0.59 0.70 0.64 a 4.82 cd 3.74 27.70
SVML-G 0.80 0.49 0.58 0.66 0.61 0.72 0.64 a 4.84 cd 3.74 27.70
SVM-R 0.88 −0.36 0.51 0.02 −0.15 0.08 0.16 b 4.95 bcd 1.87 13.85
SVM-P 0.81 0.49 0.09 0.63 0.42 0.53 0.50 a 4.64 d 6.22 46.07
NNET 0.78 0.56 0.16 0.75 0.38 0.70 0.56 a 11.99 a 12.50 92.59
GBT 0.78 0.56 0.69 0.58 0.81 0.57 0.66 a 5.29 bc 2.68 19.85
GBD 0.84 0.37 −0.01 0.76 0.48 0.51 0.49 a 4.80 d 2.18 16.15
GBL 0.45 0.11 0.89 0.93 0.03 0.43 0.47 ab 5.43 b 3.40 25.19
LM 0.78 0.50 0.56 0.73 0.46 0.65 0.61 ab 4.88 cd 4.53 33.56

NLNET 0.79 0.09 0.33 0.79 0.01 0.79 0.47 ab 5.36 b 2.34 17.33
MEAN 0.77a 0.36b 0.37b 0.66a 0.37b 0.58ab 0.52 5.54 4.00 29.63

(1) PLS-DA, PCA-DA, RF, SVML, SVML-G, SVM-R, SVM-P, NNET, GBT, GBD, GBL, LM, and NLNET, respectively,
partial least squares discriminant analysis, principal component analysis discriminant analysis, random forest,
Support Vector Machines with Linear Kernel, Support Vector Machines with Linear Kernel grid search, Support Vector
Machines with Radial Basis Function Kernel, Support Vector Machines with Polynomial Kernel, neural network,
eXtreme Gradient Boosting- xgbtree method, eXtreme Gradient Boosting- xgbDART method, eXtreme Gradient
Boosting-xgbLinear method, Linear model, and Neural Network neuralnet method. (2) Accuracy represents the
Pearson correlation coefficient between the predicted and the observed values in the validation set. (3) May_MAE.T
mean absolute error relative to the optimal prediction model in the month of May using repeated cross-validation
in the training set; May MAE.V (MAE and MAPE) magnitude of the error relative to the predicted values in the
validation (testing) set; means with the same letter in a same column or row, are not significantly different at the 5%
probability level using Duncan’s multiple range test.

The mean comparison showed that SVM-R was the least accurate model. The other models
showed comparable accuracies, but RF, SVML, SVML-G, SVM-P, NNET, GBT, and GBD showed
prediction ability greater than SVM-R. GBT’s prediction ability was consistently greater than 0.5 across
the prediction times. Apart from GBL, the prediction ability of all models was high (prediction accuracy
greater than or equal to 0.76) and/or better in the month of May (Table 2). The mean accuracy across
models was high and not significantly different in May, May–June, and May–July. The across-model
average accuracy computed in May was significantly superior to the mean accuracy obtained in June,
June–July, and July. June, June–July, and July were statistically equally worst times for predicting
biomass yields in sorghum under the Mediterranean region.

The range and mean MAE values (in t ha−1) produced for each model during the calibration
experiments at one (May) of the best prediction times were 9.3–14.4 and 12.0, 2.4–7.4 and 5.0, 3.1–7.0
and 4.9, 2.8–7.3 and 5.0, 2.7–7.2 and 5.0, 3.1–6.7 and 4.6, 3.1–7.1 and 4.8, 3.1–7.1 and 4.8, 3.19–7.95 and
5.29, 2.64–7.34 and 4.80, 2.77–10.21 and 5.43, 2.82–7.09 and 4.88, and 2.18–7.63 and 5.36, for NNET, RF,
SVM-R, PCA-DA, PLS-DA, SVM-P, SVML, SVM-G, GBT, GBD, GBL, LM, and NLNET, respectively
(Figure 4, Table 2). The average MAE values during the training process were statistically higher in
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NNET followed by NLNET and GBL. Prediction error (MAE) was lower in SVM-P and GBD, while
it was not statistically different in PLS-DA, PCA-DA, RF, SVML, SVML-G, SVM-R, GBT, and LM
(Figure 4, Table 2). The MAE values (in t ha−1) calculated using the validation (testing) set and the
best prediction time (May) were, in increasing order, 1.87 (13.85%), 2.18 (16.15%), 2.27 (16.81%), 2.34
(17.33%), 2.68 (19.85%), 2.91 (21.56%), 3.40 (25.19%), 3.62 (26.81%), 3.74 (27.70%), 3.74 (27.7%), 4.53
(33.56%), 6.22 (46.07%), and 12.5 (92.59%), for SVM-R, GBD, RF, NLNET, GBT, PCA-DA, GBL, PLS-DA,
SVML, SVML-G, LM, SVM-P, and NNET algorithms, respectively.Agronomy 2019, 9, x FOR PEER REVIEW 11 of 18 

 

 

Figure 4. Visualization of models MAE (t ha−1) dispersion using boxplot approach and fAPAR 

acquired in May. PLS-DA, PCA-DA, RF, SVML, SVML-G, SVM-R, SVM-P, NNET,GBT, GBD, GBL, 

LM, and NLNET, respectively, partial least squares discriminant analysis, principal component 

analysis discriminant analysis, random forest, Support Vector Machines with Linear Kernel, Support 

Vector Machines with Linear Kernel grid search, Support Vector Machines with Radial Basis 

Function Kernel, Support Vector Machines with Polynomial Kernel, neural network, eXtreme 

Gradient Boosting xgbtree method, eXtreme Gradient Boosting xgbDART method, eXtreme Gradient 

Boosting xgbLinear method, Linear model, and Neural Network neuralnet method. 

The mean comparison showed that SVM-R was the least accurate model. The other models 

showed comparable accuracies, but RF, SVML, SVML-G, SVM-P, NNET, GBT, and GBD showed 

prediction ability greater than SVM-R. GBT’s prediction ability was consistently greater than 0.5 

across the prediction times. Apart from GBL, the prediction ability of all models was high 

(prediction accuracy greater than or equal to 0.76) and/or better in the month of May (Table 2). The 

mean accuracy across models was high and not significantly different in May, May–June, and May–

July. The across-model average accuracy computed in May was significantly superior to the mean 

accuracy obtained in June, June–July, and July. June, June–July, and July were statistically equally 

worst times for predicting biomass yields in sorghum under the Mediterranean region. 

The range and mean MAE values (in t ha−1) produced for each model during the calibration 

experiments at one (May) of the best prediction times were 9.3–14.4 and 12.0, 2.4–7.4 and 5.0, 3.1–7.0 

and 4.9, 2.8–7.3 and 5.0, 2.7–7.2 and 5.0, 3.1–6.7 and 4.6, 3.1–7.1 and 4.8, 3.1–7.1 and 4.8, 3.19–7.95 and 

5.29, 2.64–7.34 and 4.80, 2.77–10.21 and 5.43, 2.82–7.09 and 4.88, and 2.18–7.63 and 5.36, for NNET, 

RF, SVM-R, PCA-DA, PLS-DA, SVM-P, SVML, SVM-G, GBT, GBD, GBL, LM, and NLNET, 

respectively (Figure 4, Table 2). The average MAE values during the training process were 

statistically higher in NNET followed by NLNET and GBL. Prediction error (MAE) was lower in 

SVM-P and GBD, while it was not statistically different in PLS-DA, PCA-DA, RF, SVML, SVML-G, 

SVM-R, GBT, and LM (Figure 4, Table 2). The MAE values (in t ha−1) calculated using the validation 

(testing) set and the best prediction time (May) were, in increasing order, 1.87 (13.85%), 2.18 

(16.15%), 2.27 (16.81%), 2.34 (17.33%), 2.68 (19.85%), 2.91 (21.56%), 3.40 (25.19%), 3.62 (26.81%), 3.74 

(27.70%), 3.74 (27.7%), 4.53 (33.56%), 6.22 (46.07%), and 12.5 (92.59%), for SVM-R, GBD, RF, NLNET, 

GBT, PCA-DA, GBL, PLS-DA, SVML, SVML-G, LM, SVM-P, and NNET algorithms, respectively.  

Spearman’s rank correlation coefficient (Spearman’s rho) between model accuracy and MAE 

values (t ha−1 and %) corresponding to the testing set was −0.40. The Spearman’s rho method assesses 

how well the relationship between two variables can be described using a monotonic function 

between ordered sets that preserves or reverses the given order [48]. The Spearman’s rho approach 

Figure 4. Visualization of models MAE (t ha−1) dispersion using boxplot approach and fAPAR
acquired in May. PLS-DA, PCA-DA, RF, SVML, SVML-G, SVM-R, SVM-P, NNET, GBT, GBD, GBL, LM,
and NLNET, respectively, partial least squares discriminant analysis, principal component analysis
discriminant analysis, random forest, Support Vector Machines with Linear Kernel, Support Vector
Machines with Linear Kernel grid search, Support Vector Machines with Radial Basis Function Kernel,
Support Vector Machines with Polynomial Kernel, neural network, eXtreme Gradient Boosting xgbtree
method, eXtreme Gradient Boosting xgbDART method, eXtreme Gradient Boosting xgbLinear method,
Linear model, and Neural Network neuralnet method.

Spearman’s rank correlation coefficient (Spearman’s rho) between model accuracy and MAE
values (t ha−1 and %) corresponding to the testing set was −0.40. The Spearman’s rho method assesses
how well the relationship between two variables can be described using a monotonic function between
ordered sets that preserves or reverses the given order [48]. The Spearman’s rho approach was selected
to account for the small size of the samples whose pairwise statistical dependences could not be
correctly assessed with parametric approaches that have to be implemented on normally distributed
data. Indeed the Shapiro–Wilk test of normality for the vectors of model accuracies and MAE values,
was very highly significant (p < 0.001), meaning that we couldn’t assume the normality.

Over the May to July prediction time interval, six days of year corresponding to fortnightly fAPAR
indices, were used as regressors in this work. Among these regressors, the most important times to
predict the aboveground sorghum biomass yields were investigated using the GBT algorithm as this
model showed high and dependable performance that was insensitive to the prediction times across
the cropping season. The model showed that the day of year 150 was the most important (index = 100)
followed by DoY 165 (index = 80), DoY 135 (index = 30), DoY 195 (index = 20), and DoY 210 (index
= 10) (Figure 5). The day of year 180 was associated with no importance in terms of fAPAR-based
prediction of the aboveground biomass yields in sorghum under the Mediterranean environment.



Agronomy 2019, 9, 203 12 of 17

Agronomy 2019, 9, x FOR PEER REVIEW 12 of 18 

 

was selected to account for the small size of the samples whose pairwise statistical dependences 

could not be correctly assessed with parametric approaches that have to be implemented on 

normally distributed data. Indeed the Shapiro–Wilk test of normality for the vectors of model 

accuracies and MAE values, was very highly significant (p < 0.001), meaning that we couldn’t 

assume the normality.  

Over the May to July prediction time interval, six days of year corresponding to fortnightly 

fAPAR indices, were used as regressors in this work. Among these regressors, the most important 

times to predict the aboveground sorghum biomass yields were investigated using the GBT 

algorithm as this model showed high and dependable performance that was insensitive to the 

prediction times across the cropping season. The model showed that the day of year 150 was the 

most important (index = 100) followed by DoY 165 (index = 80), DoY 135 (index = 30), DoY 195 (index 

= 20), and DoY 210 (index = 10) (Figure 5). The day of year 180 was associated with no importance in 

terms of fAPAR-based prediction of the aboveground biomass yields in sorghum under the 

Mediterranean environment. 

 

Figure 5. Relative importance of regressors (day of year, D) on sorghum biomass yields in 2017 and 

2018, using eXtreme Gradient Boosting xgbtree (GBT) method. 

4. Discussion 

The fAPAR biophysical variable used in this work was derived from satellite imagery, which is 

part of Earth Observation’s big data. Big data technology (BDT) is a new technological paradigm that 

is driving entire economies, including low-tech industries such as agriculture where it is 

implemented under the banner of precision farming (PF) [49]. In this work, BDT was built on 

geocoded maps of agricultural experiment fields and the real-time monitoring of sorghum crops on 

commercial farms in order to assess the possibility to monitor sorghum growth and development, 

with the ultimate aim of predicting the aboveground biomass yields. Early prediction of biomass 

production has positive implications including increased efficiency in biomass, biofuel, and farming 

resource management [50], and avoidance of energy crises. Forty-two sorghum pilot trials were 

evaluated in this work using fAPAR and different sorghum varieties belonging to four biomass 

producing sorghum types of dual purpose, sweet, forage, and biomass per se. Combining different 

types of biomass producing sorghums in this study was motivated by the need to mimic farming 

practice in the Mediterranean region. In this region, farmers, farming cooperatives, and third-party 

biomass harvesting and biodigesting companies manage the above-mentioned sorghum types 

Figure 5. Relative importance of regressors (day of year, D) on sorghum biomass yields in 2017 and
2018, using eXtreme Gradient Boosting xgbtree (GBT) method.

4. Discussion

The fAPAR biophysical variable used in this work was derived from satellite imagery, which is
part of Earth Observation’s big data. Big data technology (BDT) is a new technological paradigm that
is driving entire economies, including low-tech industries such as agriculture where it is implemented
under the banner of precision farming (PF) [49]. In this work, BDT was built on geocoded maps of
agricultural experiment fields and the real-time monitoring of sorghum crops on commercial farms in
order to assess the possibility to monitor sorghum growth and development, with the ultimate aim
of predicting the aboveground biomass yields. Early prediction of biomass production has positive
implications including increased efficiency in biomass, biofuel, and farming resource management [50],
and avoidance of energy crises. Forty-two sorghum pilot trials were evaluated in this work using
fAPAR and different sorghum varieties belonging to four biomass producing sorghum types of dual
purpose, sweet, forage, and biomass per se. Combining different types of biomass producing sorghums
in this study was motivated by the need to mimic farming practice in the Mediterranean region.
In this region, farmers, farming cooperatives, and third-party biomass harvesting and biodigesting
companies manage the above-mentioned sorghum types indiscriminately on a regular basis. It made
therefore sense not to discriminate the biomass producing sorghum types as sources of variation in the
models implemented in this work. Similar investigations were reported in previous studies working
on different crop species [16,51]. Important regressors of interest were identified and used in the
predictive algorithms as suggested in literature [14,51].

The fAPAR index produced unique curves and maps that discriminated between the types of
sorghums evaluated in this work. The fAPAR profile paralleled the evolution of leaf senescence across
sorghum types [52] under the Mediterranean environment. The fAPAR curves presented in this work
were purposely derived from sorghum fields established side by side in the same location in Anzola
dell’Emilia. These pilots were sown and harvested on the same dates and managed identically, which
allows a coherent comparison. The above-described shapes of the curves were generally similar also
across locations in this study, though with slight discrepancies for some sorghum types. All sorghum
trials reported in this work were conducted under a rainfed regime. Given that Mediterranean region is
characterized by a semiarid climate wherein summer crops rely heavily on winter soil-stored moisture
and experience postanthesis drought stress, it can be inferred that the fAPAR in dual purpose and
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biomass sorghum types did not rise during the reproduction growth stage probably due to a combined
effect of sink demand and soil water scarcity in dual purpose, and mostly soil water scarcity in
biomass sorghum. Postanthesis drought stress in sorghum under the Mediterranean environment was
amply described by Habyarimana et al. [52–55]. The fAPAR profile in the sweet, forage, and SB ×
SH grown from seed reflects the reduced importance of the sink and the delayed leaf senescence in
these types. In these sorghum types, a slow fAPAR increase toward the harvest can be explained by
the precipitations registered in early fall in most locations (Figures S1 and S2), which stimulated the
growth of axillary tillers in annual Sorghum bicolor [54,55] and the growth of axillary tillers and ramets
in perennial SB × SH sorghum [54–57]. The above explanation holds also in the case of the SB × SH
regrown from rhizomes. In these plants, the deep fAPAR drop from mid-June (anthesis) to early fall
corresponds to the observed dry summers (Figures S1 and S2) and testifies to the increased susceptibility
to drought stress in these plants. The conclusions drawn on fAPAR profile held particularly for fields
established in the same location. Therefore, further investigations with replications in time and space
are in order before any generalization is made.

In this work, high levels of model prediction accuracy (r ≥ 0.70 or r2
≥ 0.50) were obtained for 12 out

of the 13 models deployed at the best prediction time (May). The models were therefore able to explain
50% of the variability that existed in the sorghum biomass yield data, while the remaining variance
can be related to other factors non accounted for in this study such as the heterogeneity of external
environmental and anthropogenic factors including rainfall distribution, soil types, and planting/tilling
practices that could lead to different yield responses across the farms. The modeling performance
metrics achieved in this work are nonetheless comparable to previous findings. For instance, Battude
et al. [58], Shafian et al. [31], and Panda et al. [30] came across similar accuracy in their work on maize
biomass and grain yields, and sorghum yields, respectively. On the other hand, the accuracy realized
in this work was greater or equal to the values reported in Gao et al. [51], Diouf et al. [14], and the
optimal values in sorghum as presented in Johnson [16]. Linear and nonlinear models performed
comparably in terms of accuracy and mean absolute error implying that the relationship between
fAPAR and biomass yield was mainly linear, which was expected and also supported by previous
findings [14]. At the best prediction time (month of May), the correlation between the model accuracies
and the MAE values was negative, denoting the expected inverse relationship between the two metrics
of model prediction performance.

The simple linear model was implemented in this work to serve as a benchmark with respect to
the most complex models requiring parameters optimization. Since thirteen models were implemented
in this study, it is interesting to select the best algorithms. As biomass sorghum in the Mediterranean
region is harvested from end of August to late November, it can be interesting to be able to predict
the biomass production from May to July, allowing the farmer to know the amount to be produced
one to six months ahead of harvest [42,51]. SVML, SVML-G, GBT, and LM showed good prediction
accuracy (r ≥ 0.50) across the evaluated prediction times, with MAE values (%) of 27.70, 27.70, 19.85,
and 33.56, respectively. The GBT model was therefore the best algorithm as it performed consistently
well (r ≥ 0.60) across the prediction times, and was associated with low prediction error. The GBT
model can therefore be recommended for sorghum biomass yield prediction using Sentinel-2-derived
fAPAR as biophysical variable under the Mediterranean region. This model can be deployed anywhere
from May to July without significant loss function.

In terms of biomass yields prediction times, June, July, and June–July were the worst times. May,
May–June, and May–July showed comparable average accuracies, but accuracy in May was generally
high (r ≥ 0.70) across models except GBL. The month of May can therefore be recommended as the
best time to predict sorghum biomass yields in the Mediterranean region. In this work, several types
of sorghum were used, including high tonnage, sweet, forage, and dual purpose types. The suitability
of the month of May for sorghum biomass yields prediction can be partly explained by the fact that
in early sorghum growth stages, particularly in the period of time around the fast growth stage,
the four sorghum types exhibit similar levels of growth and development. Furthermore, sorghum
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crop as currently grown in the Mediterranean region, reaches the fast growth stage generally in the
month of May, meaning that predictions run in May are carried out on populations of sorghum types
that are mostly at the same stage of growth and development. Overall, the days of year 150 and
165 were the most important regressors followed by days of year 135, 195, and 210 in decreasing
order. The two regressors acquired in May (DoY 150 and 135) had important direct effects on the
sorghum biomass, which justifies the good prediction accuracies obtained in this month. On the other
hand, the two regressors corresponding to the month of July showed poor importance on biomass
yields, while one of the two regressors corresponding to the month of June had meaningless effect
on biomass yields, all of which explains the poor prediction accuracies obtained in June, July, and
June–July (Table 2). In the Mediterranean region, sorghum is sown mid-to-late April. Therefore,
being able to perform accurate sorghum biomass yields prediction in May, i.e., up to six months
ahead of harvesting is a remarkable opportunity for the farmer and farming cooperatives that can
use this information for several business-related purposes. They can efficiently organize the biomass
business operations including the rational mobilization of the fleets of harvesting machinery, transport
vehicles, and storage facilities. The predictive models developed in this work can also be used by
extension services and policy-makers for strategic purposes. Obtaining the information on potential
within-season biomass availability early on before actual harvest will help assess alternative means
for energy supply internally, import or export, which is expected to help avoid specific crises such
as fuel shortage. The findings in this work are limited in scope to one province in Italy, within the
Mediterranean region. The prediction equations produced in this work can therefore be safely used
in analogous modeling experiments in other Mediterranean areas. However, for these equations to
be extended to modeling activity at a global level, the training populations of farms would require
updates with inclusion of data accounting for sampling additional latitudes and longitudes relevant
for sorghum cultivation.

5. Conclusions

The importance of sorghum as food, feed, and biofuel crop was amply described in several
scientific literatures. Biomass sorghum demonstrated higher yields with better energy balance
relative to major crops of agroindustrial interest. As dedicated biomass sorghum crops are steadily
increasing and precision farming is driving agricultural economies worldwide, the harnessing satellite
technology is well-poised to bring about agricultural advantages including cutting farming operational
costs. Sentinel-2-derived fraction of absorbed photosynthetically active radiation was found to
satisfactorily explain primary productivity and was used in this study as biophysical variable in the
predictive modeling of aboveground biomass yields in annual and perennial sorghums. Across month
combinations from May to July and the thirteen machine learning prediction algorithms used in
this work, the gradient boosting machine learning algorithm implementing xgbtree was identified
as the best predictive model. The best prediction time for sorghum biomass was particularly the
month of May, followed by May–June and May–July using fortnightly fAPAR indices. To the best
of our knowledge, the present work represents the first time Sentinel-2-derived fAPAR is used in
predictive modeling of sorghum biomass yields. The outcome from this study is important and can
serve several purposes including farmers being able to improve their sorghum biomass business
operations. Policy-makers and extension services will also benefit from the findings in this work
allowing them early on within season information on potential biomass availability, which is critical to
wider energy planning and avoiding energy-related crises.
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