Nutrients’ and Antinutrients’ Seed Content in Common Bean (Phaseolus vulgaris L.) Lines Carrying Mutations Affecting Seed Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Term Definitions
2.2. Plant Material
2.3. Chemical Analyses of the Seeds
2.3.1. Dry Matter (DM), Fiber Components (Hemicellulose, Cellulose and Lignin), Ash, Total Phenolics and Condensed Tannins
2.3.2. Sapogenols
2.3.3. Trypsin Inhibitor Activity
2.3.4. Total Iron (Fe) and Total Zinc (Zn) Content Evaluation
2.3.5. Crude Protein, Total Starch, Cystine and Methionine
2.3.6. Protein Digestibility
2.3.7. In Vitro Starch Digestion
2.3.8. Spermidine
2.4. Statistical Analysis of the Data
2.4.1. Assessment of Preliminary Conditions for the Applicability of the Analysis of Variance
2.4.2. Analysis of Variance (ANOVA)
2.4.3. Non-Parametric Test
2.4.4. Correlation Analyses
3. Results
3.1. Assessment of Preliminary Conditions for the Applicability of the Analysis of Variance
3.2. Table 3, Table 4 and Table 5 Content
3.3. Analyses of Seeds: Nutrient and Antinutrient Compounds
3.4. Results from the “First Group of Correlation Analyses”
3.5. Results from the “Second Group of Correlation Analyses”
4. Discussion
4.1. Nutrients and Antinutrients (a General View)
4.2. All Correlations Analyses (First and Second Group)
4.3. Interrelations vs the “Absence of Phaseolin” and vs the “Presence of the α-AI”
4.4. “Phaseolin Absence + lpa Mutation”, an Inedited Genetic Combination
4.5. “Phaseolin Absence + α-AI Presence”, a Possible Tool to Increase Iron and Zinc in the Bean Seed?
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Schematic pathway showing the origin of the lines 720/18 and 720/20 1st step: (♀Taylor’s Horticultural × Pinto UI 111♂) → Lady Joy [(Pinto bean lectin + α-AI) borlotto line] (Roberto Bollini and Bruno Campion, unpublished); 2nd step: [♀BAT 881 × Lady Joy♂] → lines 720/18 and 720/20. |
Schematic pathway showing the origin of the lines 041/1, 042/5 and 720/12 (Bruno Campion and Roberto Bollini, unpublished) 1st step: [♀Lady Joy x selected phaseolin-free plants of Venere♂] → biochemical and agronomic selection → P22 (F2 plant); 2nd step: (♀938 × P22 F2 plant♂ → biochemical and agronomic selection → intercrosses between breeding lines → lines 041/1, 042/5, and 720/12. –Venere = white seeded P. coccineus L. cultivar exhibiting determinate growth habit [79]. –938 genetic background = ♀BAT881 × (♀A55 × G6388♂)♂. The origin of the line 938 is described in Campion et al. (2009 and 2013) [37,40]. |
Schematic pathway showing the origin of the lines 730/1 (Bruno Campion and Roberto Bollini, unpublished), WH4/84 and HP5/1 1st step: [♀Lady Joy x selected phaseolin-free plants of Venere♂] → biochemical and agronomic selection → P22 (F2 plant); 2nd step/b: P22 (F2 plant) → P22 (F4 plants) → [♀938 × P22 (F4 plants)♂] → biochemical / agronomic selection → line 730 → agronomic selection → line 730/1. 3rd step/a: (♀lpa line 586/8X87-white x 730♂) → biochemical and agronomic selection → line WH4/84. 3rd step/b: (♀lpa line 586/8X87-brown x 730♂) → biochemical and agronomic selection → line HP5/1. –586/8X87-brown and 586/8X87-white = lpa lines developed at CREA-GB [40]. |
Schematic pathway showing the origin of the lines WH1/28, WH3/76 and BR2/11 1st step/a: lpa line 586/8X87-white → biochemical and agronomic selection → lines WH1/28 and WH3/76. 1st step/b: lpa line 586/8X87-brown → biochemical and agronomic selection → line BR2/11. |
The development of the lines 730/1, 720/18, 720/20, 042/5, 041/1 and 720/12, was performed at CREA-GB Research Centre of Montanaso Lombardo–Italy (Bruno Campion, unpublished) in two steps: 1st step) crosses and selection analyses, made in the years 2001–2005 in collaboration with Dr. Roberto Bollini at IBBA-CNR of Milan (Istituto di Biologia e Biotecnologia Agraria–IBBA-CNR, Via Bassini 15–20133 Milano, Italy); 2nd step) additional agronomic selection and evaluation, made in the years 2006–2015. The lines WH4/84 and HP5/1 were both developed in the years 2009–2015 at CREA-GB Research Centre. The cv BAT 881, used as the control, is a CIAT accession kindly provided by Prof. Shree Singh (CIAT = Centro Internacional de Agricultura Tropical, Cali, Colombia, see also CGIAR (www.cgiar.org). |
References
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Riechel, T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Mittal, G.; Jiang, Y. Saponins from edible legumes: Chemistry, processing, and health benefits. J. Med. Food 2004, 7, 67–78. [Google Scholar]
- Singh, R.P.; Agarwal, R. Prostate cancer and inositol hexaphosphate: Efficacy and mechanisms. Anticancer Res. 2005, 25, 2891–2904. [Google Scholar] [PubMed]
- Park, J.S.; Ho, S.R.; Duck, H.K.; Ih, S.C. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J. Agric. Food Chem. 2006, 54, 2951–2956. [Google Scholar] [CrossRef] [PubMed]
- Vucenik, I.; Shamsuddin, A.M. Protection against cancer by dietary IP6 and inositol. Nutr. Cancer 2006, 55, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Isern, B.; Sanchis, P.; Perello, J.; Torres, J.J.; Costa-Bauza, A. Phytate acts as an inhibitor in formation of renal calculi. Front. Biosci. 2007, 12, 2580–2587. [Google Scholar] [CrossRef] [PubMed]
- Murgia, I.; Arosio, P.; Tarantino, D.; Soave, C. Biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci. 2012, 17. [Google Scholar] [CrossRef]
- Elías, L.G.; De Fernández, D.G.; Bressani, R. Possible effects of seed coat polyphenolics on the nutritional quality of bean protein. J. Food Sci. 1979, 44, 524–527. [Google Scholar] [CrossRef]
- Griffiths, D.W.; Moseley, G. The effect of diets containing field beans of high or low polyphenolic content on the activity of digestive enzymes in the intestines of rats. J. Sci. Food Agric. 1980, 31, 255–259. [Google Scholar] [CrossRef]
- Bender, A.E.; Reaidi, G.B. Toxicity of Kidney beans (Phaseolus vulgaris) with particular reference to lectins. J. Plant Foods 1982, 4, 15–22. [Google Scholar] [CrossRef]
- Bressani, R.; Elìas, L.G.; Braham, J.E. Reduction of digestibility of legume proteins by tannins. J. Plant Foods 1982, 4, 43–55. [Google Scholar] [CrossRef]
- Aw, T.L.; Swanson, B.G. Influence of tannin on Phaseolus vulgaris protein digestibility and quality. J. Food Sci. 1985, 50, 67–71. [Google Scholar] [CrossRef]
- Reddy, N.R.; Pierson, M.D.; Sathe, S.K.; Salunkhe, D.K. Dry bean tannins: A review of nutritional implications. J. Am. Oil Chem. Soc. 1985, 62, 541–549. [Google Scholar] [CrossRef]
- Lynch, S.R. Why Nutritional iron deficiency persists as a worldwide problem. J. Nutr. 2011, 141, 763S–768S. [Google Scholar] [CrossRef] [PubMed]
- Stoltzfus, R.J. Iron Interventions for Women and Children in Low-Income Countries. J. Nutr. 2011, 141, 756S–762S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tako, E.; Glahn, R.P. White Beans Provide More Bioavailable Iron than Red Beans: Studies in Poultry (Gallus gallus) and an in vitro Digestion/Caco-2 Model. Int. J. Vitam. Nutr. Res. 2011, 81, 1–14. [Google Scholar] [CrossRef]
- Welch, R.M.; House, W.A. Factors affecting the bioavailability of mineral nutrients in plant foods. In Crops as Sources of Nutrients for Humans; Welch, R.M., Gabelman, W.H., Eds.; American Society of Agronomy: Madison, WI, USA, 1984; pp. 37–54. [Google Scholar]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef] [Green Version]
- The World Health Report, 2002: Quantifying Selected Major Risks to Health. Chapter 4. p. 4. Available online: http://www.who.int/whr/2002/chapter4/en/index3.html (accessed on 21 March 2019).
- Pusztai, A. Plantf Lectins; Cambridge University Press: Cambridge, UK, 1991; pp. 1–263. [Google Scholar]
- Pusztai, A.; Grant, G.; Spencer, R.J.; Duguid, T.J.; Brown, D.S.; Ewen, S.W.B.; Peumans, W.J.; Van Damme, E.J.M.; Bardocz, S. Kidney bean lectin-induced Escherichia coli overgrowth in the small intestine is blocked by GNA, a mannose-specific lectin. J. Appl. Bacteriol. 1993, 75, 360–368. [Google Scholar] [CrossRef]
- Palmer, R.M.; Pusztai, A.; Bain, P.; Grant, G. Changes in rates of tissue protein synthesis in rats induced in vivo by consumption of kidney bean lectins. Comp. Biochem. Physiol. 1987, 88C, 179–183. [Google Scholar] [CrossRef]
- Bardocz, S.; Brown, D.S.; Grant, G.; Pusztai, A.; Stewart, J.C.; Palmer, R.M. Effect of the padrenoreceptor agonist clenbuterol and phytohaemagglutinin on growth, protein synthesis and polyamine metabolism of tissues of the rat. Br. J. Pharmacol. 1992, 106, 476–482. [Google Scholar] [CrossRef]
- Gepts, P.; Bliss, F.A. Enhanced available methionine concentration associated with higher phaseolin levels in common bean seeds. Theor. Appl. Genet. 1984, 69, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Burow, M.D.; Ludden, P.W.; Bliss, F.A. Suppression of phaseolin and lectin in seeds of common bean, Phaseolus vulgaris L.: Increased accumulation of 54 kDa polypeptides is not associated with higher seed methionine concentrations. Mol. Genet. Genom. 1993, 241, 431–439. [Google Scholar] [CrossRef]
- Montoya, C.A.; Lalles, J.P.; Beebe, S.; Leterme, P. Phaseolin diversity as a possible strategy to improve the nutritional value of common beans (Phaseolus vulgaris). Food Res. Int. 2010, 43, 443–449. [Google Scholar] [CrossRef]
- Norton, G.; Bliston, F.A.; Bressani, R. Biochemical and nutritional attributes of grain legumes. In Grain Legume Crops; Summerfield, R.J., Roberts, E.H., Eds.; Collins: London, UK, 1985; pp. 73–114. [Google Scholar]
- HarvestPlus Challenge Program–CIAT Annual Report, 2006–2007, Biofortified Beans, 17–18. Available online: http://www.harvestplus.org (accessed on 15 April 2019).
- Petry, N.; Egli, I.; Zeder, C.; Walczyk, T.; Hurrel, R. Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J. Nutr. 2010, 140, 1977–1982. [Google Scholar] [CrossRef] [PubMed]
- Dahdouh, S.; Grande, F.; Nájera Espinosa, S.; Vincent, A.; Gibson, R.; Bailey, K.; King, J.; Rittenschober, D.; Charrondière, U.R. Development of the FAO/INFOODS/IZINCG Global Food Composition Database for Phytate. J. Food Compos. Anal. 2019, 78, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.; Boy, E.; Wirth, J.P.; Hurrell, R.F. Review: The Potential of the Common Bean (Phaseolus vulgaris) as a Vehicle for Iron Biofortification. Nutrients 2015, 7, 1144–1173. [Google Scholar] [CrossRef]
- Raboy, V. Seeds for a better future: “low phytate” grains help to overcome malnutrition and reduce pollution. Trends Plant Sci. 2001, 6, 458–462. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Sahrawat, K.L.; Rai, K.N.; Blair, M.W.; Andersson, M.; Pfieffer, W. Nutritionally enhanced staple food crops. Plant Breed. Rev. 2012, 34, 169–262. [Google Scholar]
- Mendoza, C.; Viteri, F.E.; Lonnerdal, B.; Young, K.A.; Raboy, V.; Brown, K.H. Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas. Am. J. Clin. Nutr. 1998, 68, 1123–1127. [Google Scholar] [CrossRef]
- Hambidge, K.M.; HuVer, J.W.; Raboy, V.; Grunwald, G.K.; Westcott, J.L.; Sian, L.; Miller, L.V.; Dorsch, J.A.; Krebs, N.F. Zinc absorption from low-phytate hybrids of maize and their wild-type isohybrids. Am. J. Clin. Nutr. 2004, 79, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Hambidge, K.M.; Krebs, N.F.; Westcott, J.L.; Sian, L.; Miller, L.V.; Peterson, K.L.; Raboy, V. Absorption of calcium from tortilla meals prepared from low phytate maize. Am. J. Clin. Nutr. 2005, 82, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Campion, B.; Perrone, D.; Galasso, I.; Bollini, R. Common bean (Phaseolus vulgaris L.) lines devoid of major lectin proteins. Plant Breed. 2009, 128, 199–204. [Google Scholar] [CrossRef]
- Campion, B.; Sparvoli, F.; Doria, E.; Tagliabue, G.; Galasso, I.; Fileppi, M.; Bollini, R.; Nielsen, E. Isolation and Characterisation of a lpa (low phytic acid) Mutant in Common Bean (Phaseolus vulgaris L.). Theoretical Appl. Genet. 2009, 118, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Perrone, D.; D’Onofrio, B.; Campion, B. Low phytate beans in the field: First results. Oral Communication. In Proceedings of the Phaseomics VI Meeting, Pontevedra, Spain, 21–23 May 2009; pp. 56–57. [Google Scholar]
- Campion, B.; Glahn, R.P.; Tava, A.; Perrone, D.; Doria, E.; Sparvoli, F.; Cecotti, R.; Dani, V.; Nielsen, E. Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomic traits. Field Crops Res. 2013, 141, 27–37. [Google Scholar] [CrossRef]
- Glahn, R.P.; Lee, O.A.; Yeung, A.; Goldman, M.I.; Miller, D.D. Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J. Nutr. 1998, 128, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.; Egli, I.; Campion, B.; Nielsen, E.; Hurrell, R. Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J. Nutr. 2013, 143, 1219–1224. [Google Scholar] [CrossRef] [PubMed]
- Petry, N.; Egli, I.; Gahutu, J.B.; Tugirimana, P.L.; Boy, E.; Hurrell, R. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. J. Nutr. 2014, 144, 1681–1687. [Google Scholar] [CrossRef]
- Singh, S.P. A key for identification of different growth habits of Phaseolus vulgaris L. Ann. Rep. Bean Improv. Coop. 1982, 25, 92–95. [Google Scholar]
- Goering, H.K.; van Soest, P.J. Forage fiber analyses. In U.S. Department of Agriculture Handbook; ARS-USDA: Washington, DC, USA, 1976; p. 379. [Google Scholar]
- Garcia, O.E.; Infante, R.B.; Rivera, C.J. Determination of total, soluble and insoluble dietary fibre in two new varieties of Phaseolus vulgaris L. using chemical and enzymatic gravimetric methods. Food Chem. 1997, 59, 171–174. [Google Scholar] [CrossRef]
- Claessens, A.; Michaud, R.; Bélanger, G.; Mather, D.E. Characteristics of timothy genotypes divergently selected for fiber traits. Crop Sci. 2004, 44, 81–88. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagent. Am. J. Enol. Vitic. 1965, 16, 144–153. [Google Scholar]
- Taga, M.S.; Miller, E.E.; Pratt, D.E. Chia seeds as a source of natural lipid antioxidants. J. Am. Oil Chem. Soc. 1984, 61, 928–931. [Google Scholar] [CrossRef]
- Porter, L.J.; Hristich, L.N.; Chan, B.G. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef]
- Tava, A.; Berardo, N.; Odoardi, M.; Oleszek, W.; Jurzysta, M. Alfalfa saponins and sapogenins: Isolation and quantification in two different cultivars. Phytochem. Anal. 1993, 4, 269–274. [Google Scholar] [CrossRef]
- Tava, A.; Biazzi, E.; Mella, M.; Quadrelli, P.; Avato, P. Artefact formation during acid hydrolysis of saponins from Medicago spp. Phytochemistry 2017, 238, 116–127. [Google Scholar] [CrossRef]
- AACC. International Approved Methods of Analysis, 11th ed.; Method 22-40.01. Measurement of Trypsin Inhibitor Activity of Soy Products-Spectrophotometric Method. Approved 10/27/1982; AACC International: St. Paul, MN, USA, 1982. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Masoero, F.; Gallo, A.; Zanfi, C.; Giuberti, G.; Spanghero, M. Chemical composition and rumen degradability of three corn hybrids treated with insecticides against the European corn borer (Ostrinia nubilalis). Anim. Feed Sci. Technol. 2010, 155, 25–32. [Google Scholar] [CrossRef]
- Njintang, N.Y.; Mbofung, M.F.; Waldron, K.W. In Vitro Protein Digestibility and Physicochemical Properties of Dry Red Bean (Phaseolus vulgaris) Flour: Effect of Processing and Incorporation of Soybean and Cowpea Flour. J. Agric. Food Chem. 2001, 49, 2465–2471. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A.; Cerioli, C.; Masoero, F. In Vitro starch digestion and predicted glycemic index of cereal grains commonly utilized in pig nutrition. Anim. Feed Sci. Technol. 2012, 174, 163–173. [Google Scholar] [CrossRef]
- Donatelli, M.; Annicchiarico, P. Nota sull’analisi di dati sperimentali in agricoltura tramite il sistema SAS; Istituti Sperimentali Agronomico e per le Colture Foraggere: Modena, Italy, 1990. [Google Scholar]
- Mohamed, A.A.; Poortvliet, E.; Stromberg, R.; Yngve, A. Polyamines in foods: Development of a food database. Food Nutr. Res. 2011, 55, 5572. [Google Scholar]
- Eisenberg, T.; Abdellatif, M.; Schroeder, S.; Primessnig, U.; Stekovic, S.; Pendl, T.; Harger, A.; Schipke, J.; Zimmermann, A.; Schmidt, A.; et al. Cardio-protection and lifespan extension by the natural polyamine spermidine. Nat. Med. 2016, 22, 1428–1438. [Google Scholar] [CrossRef]
- Gonzàlez de Mejía, E.; Martínez-Resendiz, V.; Castaño-Tostado, E.; Loarca-Piña, G. Effect of drought on polyamine metabolism, yield, protein content and in vitro protein digestibility in tepary (Phaseolus acutifolius) and common (Phaseolus vulgaris) bean seeds. J. Sci. Food Agric. 2003, 83, 1022–1030. [Google Scholar] [CrossRef]
- Soda, K.; Dobashi, Y.; Kano, Y.; Tsujinaka, S.; Konishi, F. Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp. Gerontol. 2009, 44, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.; Zhou, Y. In Vitro and In Vivo hydrolysis of legume starches by alpha-amylase and resistant starch formation in legumes: A review. Carbohydr. Polym. 2003, 54, 401–417. [Google Scholar] [CrossRef]
- Pandurangan, S.; Diapari, M.; Yin, F.; Munholland, S.; Perry, G.E.; Chapman, B.P.; Huang, S.; Sparvoli, F.; Bollini, R.; Crosby, W.L.; et al. Genomic analysis of storage protein deficiency in genetically related lines of common bean (Phaseolus vulgaris). Front. Plant Sci. 2016, 7, 389. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, W.H.; McClafferty, B. HarvestPlus: Breeding crops for better nutrition. Crop Sci. 2007, 47, S88–S105. [Google Scholar] [CrossRef]
- Genovese, M.I.; Lajolo, F.M. Influence of naturally acid-soluble proteins from beans (Phaseolus vulgaris L.) on in vitro digestibility determination. Food Chem. 1998, 62, 315–323. [Google Scholar] [CrossRef]
- Momma, M. A pepsin-resistant 20 kDa protein found in red kidney bean (Phaseolus vulgaris L.) identified as basic subunit of legumin. Biosci. Biotechnol. Biochem. 2006, 70, 3058–3061. [Google Scholar] [CrossRef]
- Petry, N.; Rohner, F.; Gahutu, J.B.; Campion, B.; Boy, E.; Tugirimana, P.L.; Zimmerman, M.B.; Zwahlen, C.; Wirth, J.P.; Moretti, D. In Rwandese Women with Low Iron Status, Iron Absorption from Low-Phytic Acid Beans and Biofortified Beans Is Comparable, but Low-Phytic Acid Beans Cause Adverse Gastrointestinal Symptoms. J. Nutr. 2016, 146, 970–975. [Google Scholar] [CrossRef] [Green Version]
- Petry, N.; Rohner, F.; Gahutu, J.B.; Campion, B.; Boy, E.; Sparvoli, F.; Tugirimana, P.L.; Zimmerman, M.; Zwahlen, C.; Wirth, J.P.; et al. In Rwandese women with low iron status, iron absorption from low phytic acid beans and biofortified beans is comparable, but low phytic acid beans cause adverse gastrointestinal symptoms. In Proceedings of the Micronutrient FORUM 2016, (Poster 0056), Global Conference, Cancun, Mexico, 24–28 October 2016. [Google Scholar]
- Bashir, K.; Nozoye, T.; Ishimaru, Y.; Nakanishi, H.; Nishizawa, N.K. Exploiting new tools for iron bio-fortification of rice. Biotechnol. Adv. 2013, 31, 1624–1633. [Google Scholar] [CrossRef]
- WHO. Iron Deficiency Anemia Assessment, Prevention and Control. A Guide for Program Managers 2001; WHO/NDH: Geneva, Switzerland, 2001; pp. 15–21. [Google Scholar]
- CDC Centers for Desease Control and Prevention > Nutrition > Micronutrient Malnutrition – Website. Available online: https://www.cdc.gov/nutrition/micronutrient-malnutrition/micronutrients/index.html (accessed on 3 June 2019).
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M.; Ma, G.; et al. Nutrition impact model study G: Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and nonpregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob. Health 2013, 1, e16–e25. [Google Scholar]
- Finkelstein, J.L.; Haas, J.D.; Mehta, S. Iron-biofortified staple food crops for improving iron status: A review of the current evidence. Curr. Opin. Biotechnol. 2017, 44, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.W.; Izquierdo, P. Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor. Appl. Genet. 2012, 125, 1015–1031. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.W. Mineral biofortification strategies for food staples: The example of common bean. J. Agric. Food Chem. 2013, 61, 8287–8294. [Google Scholar] [CrossRef] [PubMed]
- Sperotto, R.A.; Ricachenevsky, F.K. Common Bean Fe Biofortification Using Model Species’ Lessons. Front. Plant Sci. 2017. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.W.; Astudillo, C.; Grusak, M.A.; Graham, R.; Beebe, S.E. Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol. Breed. 2009, 23, 197–207. [Google Scholar] [CrossRef]
- Campion, B. “Venere” and “Alarico”, New Scarlet Runner Bean (Phaseolus coccineus L.) Cultivars with Determinate Growth Habit. HortScience 1995, 30, 1483–1484. [Google Scholar] [CrossRef]
No. | Genotype | Presence of the lpa Mutation | Phaseolin | Seed Lectins a | Phaseolin Absence + α-AI Presence | Seed Coat Color | Plant Growth Habit b | Genus of Origin | |||
---|---|---|---|---|---|---|---|---|---|---|---|
* | * | * | * | ||||||||
1 | HP5/1 | lpa | 1 | absent | 1 | PHA-L (lf) | 0 | 0 | brown | det. 1b | P.vulgaris + P. coccineus |
2 | 730/1 | wt | 0 | “ | 1 | “ | 0 | 0 | dark mottled | “ | “ |
3 | 042/5 | “ | 0 | “ | 1 | Pinto bean lectin + α-AI | 1 | 1 | red mottled | det. 1a | “ |
4 | 041/1 | “ | 0 | “ | 1 | “ | 1 | 1 | purple mottled | “ | “ |
5 | 720/12 | “ | 0 | “ | 1 | “ | 1 | 1 | “ “ | “ | “ |
6 | WH1/28 | lpa | 1 | wt | 0 | PHA-L (lf) | 0 | 0 | white | det. 1a | P.vulgaris |
7 | WH3/76 | “ | 1 | “ | 0 | “ | 0 | 0 | “ “ | det. 1b | “ |
8 | WH4/84 | “ | 1 | “ | 0 | “ | 0 | 0 | “ “ | “ | P.vulgaris + P. coccineus |
9 | BR2/11 | “ | 1 | “ | 0 | “ | 0 | 0 | brown | “ | P.vulgaris |
10 | 938 | wt | 0 | “ | 0 | “ | 0 | 0 | brown | det. 1a | P.vulgaris |
11 | 720/18 | “ | 0 | “ | 0 | Pinto bean lectin + α-AI | 1 | 0 | brown mottled | “ | P.vulgaris + P. coccineus |
12 | 720/20 | “ | 0 | “ | 0 | “ | 1 | 0 | red mottled | “ | “ |
13 | BAT 881 | “ | 0 | “ | 0 | PHA-E + PHA-L + α-AI | 1 | 0 | brown | det. 1b | CIAT cv |
Variable | Normality of Variable Data (Skewness and Kurtosis Test) a | Homogeneity of Variance (Bartlett’s Test) c | Normality of Residua (Shapiro-Wilk Test) d | ANOVA Results e | Evaluated Variation among Bean Lines (Kruskal-Wallis Test) f | |
---|---|---|---|---|---|---|
Raw Data = X | Data Transformation b | |||||
Crude proteins | yes | yes | yes | p < 0.001 | ||
Total starch | yes | yes | yes | p < 0.001 | ||
Cystine | no | (1000/X)^1.3. | yes | Raw data = no **; Transf. data = yes | (Only transf. data) p < 0.001 | |
Methionine | yes | yes | yes | p < 0.001 | ||
Total iron | yes | yes | yes | p < 0.001 | ||
Total zinc | yes | yes | yes | p < 0.001 | ||
Spermidine | no | (X^3.86)/(10^8) | no * | Both raw and transf. yes | – | 31.81 ** |
Raw protein digestibility | no | (X^6)/(10^9) | yes | Raw data = yes Transf. data = no *** | – | 22.87 * |
Native starch hydrolysis index (HI) | no | (10^10)/(X^4.5) | yes | Raw data = no ***; Transf. data = no ** | – | 20.80 * |
Cystine/crude prot. | no | (10^3)/X | yes | Both raw and transf. yes | p < 0.001 | |
Methion./crude prot. | yes | yes | yes | p < 0.001 | ||
Condensed tannins | no | no | no * | yes | – | 35.62 *** |
Total phenolics | no | X^1.163 | yes | Both raw and transf. yes | p < 0.001 | |
Oleanoic acid | no | (X^0.5) × 100 | yes | Both raw and transf. yes | p < 0.001 | |
Soya-sapogenol A | no | (X^0.5) × 100 | yes | Both raw and transf. yes | p < 0.01 | |
Soya-sapogenol B | yes | yes | no * | – | 15.08 ns | |
Hemicellulose | no | 1000/X | yes | Both raw and transf. yes | p < 0.001 | |
Cellulose | no | (10^5)/(X^1.75) | yes | Both raw and transf. yes | p < 0.001 | |
Lignin | yes | yes | yes | p < 0.001 |
Variable no. → | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Line/cv | Crude Proteins (% ± SD) | Total Starch (% ± SD) | Cystine (mg g–1 ± SD) | Methionine (mg g–1 ± SD) | Total Iron (µg g−1 ± SD) | Total Zinc (µg g−1 ± SD) | Spermidine (µg g–1 ± SD) * | ||||||
1 | HP5/1 | 26.48 ± 0.123 | C | 36.22 ± 0.788 | F | 7.80 ± 0.295 | C | 6.45 ± 0.243 | B | 74.74 ± 4.790 | D | 31.62 ± 2.026 | E | 764.8 ± 71.16 |
2 | 730/1 | 23.65 ± 0.124 | F | 37.16 ± 0.395 | EF | 8.55 ± 0.324 | B | 5.35 ± 0.204 | G | 75.01 ± 4.531 | D | 31.63 ± 1.911 | E | 878.3 ± 3.337 |
3 | 042/5 | 24.14 ± 0.239 | F | 38.05 ± 0.236 | DEFG | 7.30 ± 0.275 | D | 5.90 ± 0.223 | D | 91.37 ± 5.722 | A | 35.55 ± 2.226 | B | 770.4 ± 58.20 |
4 | 041/1 | 26.03 ± 0.036 | CD | 41.32 ± 0.630 | AB | 7.20 ± 0.271 | D | 5.75 ± 0.219 | E | 84.77 ± 4.991 | B | 37.94 ± 2.234 | A | 873.0 ± 42.94 |
5 | 720/12 | 23.63 ± 0.058 | F | 40.60 ± 1.027 | ABC | 7.20 ± 0.272 | D | 6.15 ± 0.232 | C | 83.77 ± 5.284 | B | 34.36 ± 2.167 | C | 735.5 ± 18.63 |
6 | WH1/28 | 28.91 ± 0.485 | A | 36.35 ± 0.551 | F | 4.65 ± 0.175 | G | 6.75 ± 0.255 | A | 67.07 ± 4.060 | F | 31.27 ± 1.893 | EF | 506.7 ± 35.31 |
7 | WH3/76 | 27.63 ± 0.327 | B | 37.62 ± 0.474 | DEF | 4.95 ± 0.188 | F | 6.45 ± 0.244 | B | 72.86 ± 4.387 | E | 33.55 ± 2.020 | D | 777.6 ± 6.274 |
8 | WH4/84 | 23.94 ± 0.378 | F | 37.61 ± 1.027 | DEF | 4.95 ± 0.188 | F | 5.85 ± 0.220 | E | 66.57 ± 3.753 | F | 24.50 ± 1.381 | I | 835.0 ± 0.333 |
9 | BR2/11 | 24.87 ± 0.131 | E | 40.21 ± 0.790 | ABCD | 4.95 ± 0.188 | F | 5.45 ± 0.208 | F | 63.26 ± 3.940 | G | 27.45 ± 1.710 | G | 734.6 ± 43.44 |
10 | 938 | 22.40 ± 0.282 | G | 42.09 ± 0.157 | A | 5.35 ± 0.203 | E | 5.45 ± 0.207 | F | 72.26 ± 4.589 | E | 26.23 ± 1.666 | H | 815.5 ± 32.15 |
11 | 720/18 | 25.65 ± 0.065 | D | 39.40 ± 0.395 | BCDE | 4.55 ± 0.172 | G | 5.85 ± 0.220 | E | 75.09 ± 4.639 | D | 34.65 ± 2.140 | C | 800.0 ± 27.95 |
12 | 720/20 | 25.33 ± 0.145 | DE | 38.61 ± 0.393 | CDEF | 15.0 ± 0.568 | A | 6.10 ± 0.231 | C | 71.59 ± 4.455 | E | 27.53 ± 1.713 | G | 746.5 ± 0.415 |
13 | BAT 881 | 25.34 ± 0.058 | DE | 41.22 ± 1.575 | AB | 4.50 ± 0.171 | G | 5.45 ± 0.207 | F | 77.42 ± 4.822 | C | 30.65 ± 1.909 | F | 627.4 ± 38.98 |
No. of replications | 2 | 2 | 2 | 2 | 2 | 2 | 3 | |||||||
Maximum value | 28.91 | 42.09 | 15.00 | 6.75 | 91.37 | 37.94 | 878.3 | |||||||
Minimum value | 22.40 | 36.22 | 4.50 | 5.35 | 63.26 | 24.50 | 506.7 | |||||||
Max/min | 1.29 | 1.16 | 3.33 | 1.26 | 1.44 | 1.55 | 1.73 | |||||||
Coeff. of variation (%) | 0.90 | 2.00 | 1.78 | 0.45 | 0.72 | 0.80 | 17.6 |
Variable No. → | 8 | 9 | 10 | 11 | 12 | 13 | 14 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | Line/cv | Raw Protein Digestibility (% ± SD) a | Native Starch Hydrolysis Index (HI ± SD) b | Cystine/Crude Proteins (% ± SD) | Methionine/Crude Proteins (% ± SD) | Cond. Tannins (mg of Delphinidin Equiv. g−1 ± SD) c | Total Phenolics (mg of Gallic Acid Equiv. g−1 ± SD) | Ash (%) | |||
1 | HP5/1 | 79.99 ± 0.824 | 52.77 ± 0.824 | 2.94 ± 0.125 | CD | 2.43 ± 0.103 | B | 7.507 ± 0.293 | 15.540 ± 0.610 | A | 5.08 |
2 | 730/1 | 82.03 ± 0.740 | 50.70 ± 2.482 | 3.62 ± 0.156 | B | 2.28 ± 0.098 | CD | 6.680 ± 0.310 | 13.947 ± 0.550 | B | 5.36 |
3 | 042/5 | 80.08 ± 0.821 | 48.33 ± 2.528 | 3.01 ± 0.084 | C | 2.44 ± 0.068 | B | 6.917 ± 0.260 | 12.800 ± 0.511 | C | 4.85 |
4 | 041/1 | 77.11 ± 0.943 | 42.25 ± 2.832 | 2.76 ± 0.108 | D | 2.22 ± 0.087 | DEF | 4.737 ± 0.344 | 8.037 ± 0.182 | E | 4.62 |
5 | 720/12 | 78.04 ± 0.905 | 41.83 ± 2.341 | 3.04 ± 0.108 | C | 2.59 ± 0.092 | A | 6.613 ± 0.261 | 11.550 ± 0.201 | D | 5.07 |
6 | WH1/28 | 79.05 ± 0.863 | 48.02 ± 3.073 | 1.60 ± 0.088 | H | 2.33 ± 0.127 | C | 0.010 ± 0.000 | 3.497 ± 0.303 | F | 4.68 |
7 | WH3/76 | 83.06 ± 0.698 | 50.03 ± 3.533 | 1.79 ± 0.089 | G | 2.33 ± 0.116 | C | 0.010 ± 0.000 | 3.497 ± 0.390 | F | 4.38 |
8 | WH4/84 | 79.97 ± 0.825 | 43.46 ± 1.924 | 2.07 ± 0.111 | F | 2.43 ± 0.130 | B | 0.010 ± 0.000 | 3.723 ± 0.087 | F | 4.20 |
9 | BR2/11 | 77.43 ± 0.930 | 43.55 ± 2.604 | 1.99 ± 0.086 | F | 2.21 ± 0.095 | EF | 6.740 ± 0.209 | 13.383 ± 0.323 | BC | 4.22 |
10 | 938 | 80.10 ± 0.820 | 42.70 ± 1.123 | 2.39 ± 0.060 | E | 2.44 ± 0.062 | B | 6.283 ± 0.269 | 13.680 ± 0.256 | B | 4.69 |
11 | 720/18 | 83.18 ± 0.693 | 48.78 ± 2.827 | 1.77 ± 0.072 | G | 2.27 ± 0.092 | CDE | 3.677 ± 0.081 | 11.080 ± 0.352 | D | 4.96 |
12 | 720/20 | 80.67 ± 0.796 | 48.23 ± 3.513 | 5.92 ± 0.191 | A | 2.40 ± 0.077 | B | 3.860 ± 0.270 | 10.863 ± 0.381 | D | 4.69 |
13 | BAT 881 | 71.75 ± 1.164 | 42.25 ± 2.780 | 1.79 ± 0.072 | G | 2.16 ± 0.087 | F | 6.563 ± 0.272 | 13.133 ± 0.214 | BC | 5.16 |
No. of replications | 2 | 2 | 2 | 2 | 3 | 3 | 1 | ||||
Maximum value | 83.18 | 52.77 | 5.92 | 2.59 | 7.507 | 15.54 | 5.36 | ||||
Minimum value | 71.75 | 41.83 | 1.60 | 2.16 | 0.010 | 3.497 | 4.20 | ||||
Max/min | 1.16 | 1.26 | 3.68 | 1.20 | 750.7 | 4.44 | 1.28 | ||||
Coeff. of variation (%) | 0.34 | 5.82 | 2.00 | 0.88 | 6.62 | 5.31 |
Variable No. → | 15 | 16 | 17 | 18 | 19 | 20 | 21 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Line/cv | Sapogenols | Hemicellulose (% ± SD) | Cellulose (% ± SD) | Lignin (ADL) (% ± SD) | Trypsin Inhibitors (µg mg−1) | |||||||
Oleanolic Acid (µg g–1 ± SD) | Soya-Sapogenol A (µg g–1 ± SD) | Soya-sap. B (µg g–1 ± SD) * | |||||||||||
1 | HP5/1 | 245 ± 5.962 | A | 30 ± 0.369 | BCD | 1060 ± 14.14 | 20.72 ± 0.861 | EFG | 7.330 ± 0.301 | D | 1.500 ± 0.276 | CDEF | 8.27 |
2 | 730/1 | 135 ± 21.21 | BC | 65 ± 7.071 | ABC | 1525 ± 49.50 | 20.99 ± 0.582 | EF | 6.993 ± 0.303 | DE | 2.350 ± 0.077 | AB | 15.72 |
3 | 042/5 | 100 ± 14.14 | CD | 60 ± 14.14 | ABC | 1510 ± 70.71 | 27.76 ± 0.195 | B | 7.727 ± 0.275 | CD | 2.093 ± 0.033 | ABC | 6.95 |
4 | 041/1 | 120 ± 12.10 | BCD | 30 ± 0.527 | BCD | 1350 ± 482.5 | 19.63 ± 0.607 | GH | 6.147 ± 0.230 | F | 2.027 ± 0.196 | ABCD | 10.40 |
5 | 720/12 | 105 ± 8.300 | CD | 40 ± 25.57 | ABCD | 1355 ± 177.8 | 25.74 ± 0.594 | C | 6.567 ± 0.373 | EF | 2.260 ± 0.191 | AB | 7.05 |
6 | WH1/28 | 145 ± 22.43 | BC | 30 ± 16.41 | BCD | 1120 ± 141.2 | 22.46 ± 0.468 | D | 9.807 ± 0.111 | AB | 1.313 ± 0.170 | EF | 3.19 |
7 | WH3/76 | 30 ± 14.14 | F | 30 ± 14.14 | BCD | 990 ± 14.14 | 20.31 ± 0.327 | FG | 9.607 ± 0.355 | AB | 0.910 ± 0.264 | F | 6.20 |
8 | WH4/84 | 55 ± 18.81 | EF | 100 ± 14.14 | A | 1430 ± 84.85 | 30.94 ± 0.925 | A | 10.36 ± 0.199 | A | 1.550 ± 0.195 | CDEF | 6.94 |
9 | BR2/11 | 180 ± 28.28 | AB | 80 ± 14.14 | AB | 1400 ± 548.4 | 26.23 ± 0.438 | BC | 8.627 ± 0.316 | BC | 2.533 ± 0.435 | A | 7.60 |
10 | 938 | 120 ± 14.14 | BCD | 65 ± 34.90 | ABC | 1160 ± 70.71 | 21.77 ± 0.610 | DE | 8.413 ± 0.373 | BC | 1.383 ± 0.291 | DEF | 7.51 |
11 | 720/18 | 55 ± 7.071 | EF | 15 ± 6.823 | D | 1225 ± 20.49 | 22.29 ± 0.905 | D | 9.227 ± 0.306 | AB | 1.750 ± 0.216 | BCDE | 5.32 |
12 | 720/20 | 75 ± 7.189 | DE | 25 ± 7.922 | CD | 1375 ± 145.3 | 19.13 ± 0.381 | HI | 7.000 ± 0.666 | DE | 2.333 ± 0.479 | AB | 3.14 |
13 | BAT 881 | 35 ± 8.640 | F | 25 ± 7.071 | CD | 1160 ± 56.57 | 18.50 ± 0.101 | I | 7.633 ± 0.264 | CD | 2.417 ± 0.120 | AB | 6.56 |
No. of replications | 2 | 2 | 2 | 3 | 3 | 3 | 1 | ||||||
Maximum value | 245 | 100 | 1525 | 30.94 | 10.36 | 2.533 | 15.72 | ||||||
Minimum value | 30 | 15 | 990 | 18.50 | 6.147 | 0.910 | 3.14 | ||||||
Max/min | 8.17 | 6.67 | 1.54 | 1.67 | 1.69 | 2.78 | 5.01 | ||||||
Coeff. of variation (%) | 7.66 | 17.4 | 17.9 | 2.51 | 4.19 | 14.2 |
Variables A | Variables B | Correlation Value Variables A vs. B |
---|---|---|
Antinutrients vs. antinutrients | ||
Cond. tannins | Total Phenolics | +0.956 ** |
SoyasapogenolA | Hemicellulose | +0.751 ** |
Lignin | SoyasapogenolB | +0.691 ** |
“ | Cond. tannins | +0.635 * |
“ | Total Phenolics | +0.574 * |
Nutrients vs. antinutrients | ||
Spermidine | Trypsin inhibitors | +0.633 * |
Ash | Total Phenolics | +0.594 * |
“ | Cond. tannins | +0.572 * |
Methionine | Lignin | –0.591 * |
“ | Trypsin inhibitors | −0.550 * |
Total zinc | SoyasapogenolA | −0.577 * |
Crude proteins | SoyasapogenolA | −0.584 * |
“ | SoyasapogenolB | −0.593 * |
Nutrients vs. nutrients | ||
Total starch | Methionine | −0.610 * |
Crude proteins | Spermidine | −0.561 * |
“ | Methionine | +0.734 ** |
Total Fe | Total Zn | +0.759 ** |
Cystine | Cystine/Crude proteins | +0.991 ** |
Cellulose | ||
Cellulose | Cond. tannins | −0.727 ** |
“ | Total Fe | −0.623 * |
“ | Lignin | −0.617 * |
“ | Total Phenolics | −0.606 * |
“ | Cystine/Crude proteins | −0.605 * |
“ | Cystine | −0.581 * |
“ | Ash | −0.574 * |
Other correlations | ||
Raw protein digestibility | Starch hydrolysis index (HI) | +0.654 * |
Total starch | “““ | −0.814 ** |
Genetic Condition/Variable | Correlation Value |
---|---|
Presence of the lpa mutation a | |
Total Fe | − 0.645 * |
Ash | −0.582 * |
Total starch | −0.564 * |
Cellulose | +0.637 * |
Absence of phaseolin | |
Total Fe | +0.719 ** |
Trypsin inhibitors | +0.615 * |
Total Zn | +0.604 * |
Cond. tannins | +0.548 * |
Cellulose | −0.712 ** |
Presence of the α-AI | |
Total Fe | +0.687 ** |
Absence of phaseolin + Presence of the α-AI b | |
Total Fe | +0.839 ** |
Total Zn | +0.667 * |
Cellulose | −0.553 * |
** = Significant at p ≤ 0.01; * = Significant at p [0.01 < p ≤ 0.05]. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuberti, G.; Tava, A.; Mennella, G.; Pecetti, L.; Masoero, F.; Sparvoli, F.; Lo Fiego, A.; Campion, B. Nutrients’ and Antinutrients’ Seed Content in Common Bean (Phaseolus vulgaris L.) Lines Carrying Mutations Affecting Seed Composition. Agronomy 2019, 9, 317. https://doi.org/10.3390/agronomy9060317
Giuberti G, Tava A, Mennella G, Pecetti L, Masoero F, Sparvoli F, Lo Fiego A, Campion B. Nutrients’ and Antinutrients’ Seed Content in Common Bean (Phaseolus vulgaris L.) Lines Carrying Mutations Affecting Seed Composition. Agronomy. 2019; 9(6):317. https://doi.org/10.3390/agronomy9060317
Chicago/Turabian StyleGiuberti, Gianluca, Aldo Tava, Giuseppe Mennella, Luciano Pecetti, Francesco Masoero, Francesca Sparvoli, Antonio Lo Fiego, and Bruno Campion. 2019. "Nutrients’ and Antinutrients’ Seed Content in Common Bean (Phaseolus vulgaris L.) Lines Carrying Mutations Affecting Seed Composition" Agronomy 9, no. 6: 317. https://doi.org/10.3390/agronomy9060317
APA StyleGiuberti, G., Tava, A., Mennella, G., Pecetti, L., Masoero, F., Sparvoli, F., Lo Fiego, A., & Campion, B. (2019). Nutrients’ and Antinutrients’ Seed Content in Common Bean (Phaseolus vulgaris L.) Lines Carrying Mutations Affecting Seed Composition. Agronomy, 9(6), 317. https://doi.org/10.3390/agronomy9060317