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Abstract: Adoption of no-till systems in Eastern Washington has been slow due to the difficulty of
managing wheat (Triticum aestivum L.) straw residue and the unknown decomposition potential of
cultivars. We hypothesize that by analyzing wheat straw with near-infrared spectroscopy (NIRS),
calibration models can be developed to accurately predict fiber and chemical constituents of wheat,
determining straw decomposition potential. Straw from a panel of 480 soft winter wheat cultivars
adapted to the Pacific Northwest are analyzed for neutral detergent fiber (NDF), acid detergent
fiber (ADF), acid detergent lignin (ADL), cellulose, hemicellulose, carbon (C), and nitrogen (N).
Using modified partial least squares regression and cross validation techniques, specific environment
and broad-based NIRS models are calibrated and predictive ability is validated. R2

cal values from
broad models are better than the specific models, and are 0.85 (NDF), 0.86 (ADF), 0.65 (ADL),
0.88 (cellulose), 0.42 (hemicellulose), 0.67 (C), and 0.73 (N). The corresponding SEP values are 1.68%
(NDF), 1.54% (ADF), 0.62% (ADL), 1.14% (cellulose), 1.11% (hemicellulose), 1.23% (C), and 0.06% (N).
A Finch × Eltan breeding population is used to further validate models and prediction accuracies
for variety selection within a breeding program scenario. The broad NIRS models prove useful for
estimating high and low ranges of NDF, ADF, and cellulose in wheat cultivars which translate into
characteristics of slow and fast decomposition potential.
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1. Introduction

The rainfed regions of Eastern Washington are recognized for their highly successful dryland wheat
(Triticum aestivum L.) production systems. However, soil erosion threatens the future productive stability
of these cropping systems [1,2]. In regions receiving high precipitation (>300 mm), annual cropping is
generally practiced with a three-year rotation of winter wheat/spring cereal/spring legume [3]. These
regions are distinguished by slopes as steep as 45% [4] and soils high in clay content [3]. Conventional
tillage practices are common and can accelerate erosion issues [5]. The combination of steep slopes,
clay soils, and tillage makes these cropping systems prone to serious water erosion [3,6]. Water erosion
is especially serious on newly planted winter wheat following a low-residue spring legume [3].

In contrast, the production regions of central Washington receive less than 300 mm of annual
precipitation and the grain yield potential is low [3]. Due to the low amount of annual precipitation,
a regularly practiced winter wheat/summer fallow cropping system is used, intended to conserve
moisture [7]. This rotation involves a 13-month period of barren soil between the harvest and planting
of wheat [8] that allows the soil to store water. Tillage is conducted during summer months to break
the capillary pores in the soil and it creates a soft dust mulch, which minimizes water losses due to
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evaporation [9]. Unfortunately, this practice produces fine particulate matter ≤10 µm in diameter (PM10)
which are prone to intense wind erosion [10]. This is the dominant rotation in the low precipitation
region because no other system has proven able to compete agronomically or economically [11].

Leaving straw residue on top of the soil through reduced tillage or through planting directly into
the stubble of the previous crop (colloquially termed ‘no-till’) is an excellent solution to minimize soil
erosion in both high and low rainfall regions of Eastern Washington. Accumulated runoff and soil
erosion have been observed to be up to 54 times lower in a no-till system than in a conventional tillage
system [5]. Long term benefits in soil quality have been observed in no-till systems [4]. Excessive
surface residue can, however, create difficulties in planting and can delay seed germination [12].
Seeding into a no-till field is often only possible for farmers who can afford to invest in specialized
planting equipment designed for this purpose [13]. Many growers resort to alternative management
practices for straw which can be detrimental to air and soil quality, such as burning or baling [14,15].
Managing straw residue in sustainable ways will be important for continued production of wheat in
the Pacific Northwest while minimizing soil erosion.

Depending on the cropping system each grower is using, the needs for straw residue management
will differ. Within no-till production systems in high rainfall regions, straw will need to decompose
rapidly over the winter months to avoid the planting complications that excessive straw residue
can create in the spring. On the other hand, straw residue in the low rainfall regions needs to
decompose slowly to cover the soil during the entirety of the fallow season. Wheat fiber and chemical
constituents have previously been associated with straw decomposition [16,17]. The standard method
for determining decomposition potential in winter wheat is based upon a fiber and nutrient analysis [18]
that quantifies hemicellulose, cellulose, and acid detergent lignin (ADL) through a wet chemistry
process that measures neutral detergent fiber (NDF), acid detergent fiber (ADF), and ADL. Nitrogen
(N), carbon (C), and C:N ratios are analyzed in straw by dry combustion and are also used to determine
decomposition [19]. High NDF, ADF, ADL, and low N are all indicators of slow decomposition [16].
However, these fiber and chemical analysis methods are slow, expensive, and destructive to the samples.

Near-infrared spectroscopy (NIRS) is potentially an inexpensive, rapid, and nondestructive
method for predicting fiber and nutrient content of wheat residue. Prediction models can be made by
developing a partial least squares regression to predict phenotypic data based on NIRS- generated
spectra. In wheat, NIRS calibration models have been successful for determining protein and gluten
content [20,21]. NIRS has also been evaluated to predict the degradability and ash content of wheat
straw for use in bioethanol production [22]. Furthermore, wheat and rice straw has been evaluated for
use in energy conversion, with NIRS being tested as a predictive measure [23]. The ruminal animal
industry has successfully used NIRS to determine chemical composition and nutritive value of forages
and straw [24,25]. NIRS also successfully predicted NDF, ADF, and N in canola [26], NDF and ADF in
dryland cereal cultivars [14], and ADF and ADL in rice [27]. The use of NIRS is routine for prediction
of various traits in many other agricultural crops such as postharvest quality of apples [28], postharvest
ripeness and quality of mango [29,30], and carbohydrate content in zucchini fruit [31].

The objective of this experiment was to analyze a diverse winter wheat population with NIRS
to develop prediction models that would facilitate the determination of residue decomposition rates.
By standardizing NIRS as a primary method of predicting residue decomposition rates, breeders will
be able to select for this trait in their breeding programs and farmers can be provided with information
regarding the decomposition potential of released winter wheat cultivars. The risk involved with
transitioning to no-till systems will be reduced because farmers will be able to make informed decisions
when selecting a cultivar that meets their specific needs for production.

2. Materials and Methods

2.1. Sample Collection and Preparation

Two separate populations were used in this study. The first was a panel of 480 advanced soft
white winter wheat cultivars from breeding programs in the Pacific Northwest (Washington State
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University, University of Idaho, Oregon State University, USDA-ARS). This panel was harvested
from Pullman, WA in 2016 and from Pullman, Central Ferry, and Mansfield, WA in 2017. Pullman is
located at 46.73◦ N, 117.18◦ W, on the eastern border of Washington state at 717 m elevation above
sea level. The average annual precipitation exceeds 500 mm, soil types range from silt loams to silty
clay loams [32], and winter wheat grain yields average 7900 kg/ha [33]. Central Ferry is located
approximately 95 km southwest of Pullman at 46.62◦ N, 117.79◦ W and 195 m elevation. Central Ferry
averages approximately 6700 kg/ha of grain yield under irrigation (600 mm) on silt loam soils [32].
Mansfield, located 320 km northwest of Pullman at 47.81◦ N, 119.64◦ W, has an annual precipitation of
less than 300 mm and grain yields average around 3550 kg/ha [33]. The soils are classified as ashy fine
sandy loam [32] and the elevation is 692 m. At each location, the population and checks were planted
in an augmented design with repeating checks every 20 entries and one rep per location. The second
population included 167 recombinant inbred lines (RIL) developed through single seed descent after
crossing Finch (PI 628640) and Eltan (PI 536994) winter wheat cultivars [34–36]. These two cultivars
were selected for crossing because they are cultivars released for production in the low rainfall areas of
Washington and stark contrasts in decomposition potential exist between the two [16]. This population
was harvested from Pullman, Mansfield, and Waterville, WA in 2015, whereas samples were harvested
in 2017 from Pullman and Mansfield. Waterville is located approximately 50 km southwest of Mansfield,
has mostly silty loam and sandy loam soils [32], and has grain yields comparable to Mansfield. The
coordinates of Waterville are 47.65◦ N, 120.07◦ W and the elevation is 800 m. At all locations, the
Finch/Eltan RIL population was planted as a randomized complete block with two reps per location
and a repeating check every 20 entries. In all experiments 0.5 m rows of straw from each plot was cut
just above ground level at harvest maturity (Stage 11.4 on Feekes’ scale) [37,38] and placed in brown
paper sacks with the grain removed. For consistency, the leaves and the nodes were removed, leaving
only the internode portion of the straw. The internode residue was cut into 1–2 cm pieces and then
ground to pass through a one mm sieve using a FOSS Cyclotec Sample Mill (FOSS North America,
Eden Prairie, MN, USA). Samples were stored in a low humidity chamber prior to analysis to ensure
similar moisture content.

2.2. Fiber and Nutrient Analysis

Neutral detergent fiber, ADF, and ADL were determined by analyzing 0.5–0.55 gram of ground
winter wheat straw using the vanSoest et al. [18] procedure modified slightly by using an ANKOM
automated system with specialized filter bags (ANKOM Technology, Macedon, NY, USA). The NDF
procedure removed starches, sugars, free amino acids, and other water-soluble components, leaving
hemicellulose, cellulose, and ADL. The ADF procedure removed the hemicelluloses, leaving only the
cellulose and ADL. The ADL procedure removed the cellulose from the straw. The NDF and ADF
procedures were performed sequentially using an ANKOM 200 Fiber Analyzer (ANKOM Technology,
Macedon, NY, USA). The straw samples were then digested in 72% H2SO4 to determine the ADL.
After each procedure, the samples were dried overnight in a fume hood and then were oven dried in a
hybridization incubator for a minimum of 6 h at 64 ◦C. The samples were removed from the incubator,
placed in desiccator pouches to cool, and individually weighed. The hemicellulose value was calculated
as the difference between NDF and ADF whereas the cellulose value was determined by calculating
the difference between ADF and ADL. Carbon and N were determined using dry combustion with a
LECO TruSpec Analyzer (LECO Corp., St. Joseph, MI, USA) as described by Gazulla et al. [39].

2.3. Near-Infrared Spectroscopy

Finely ground winter wheat residue from the internode samples described above was enclosed in metal ring
cups (36 mm inside diameter) and scanned with a FOSS XDS Rapid Content Analyzer (FOSS North America,
Eden Prairie, MN, USA) using ISIscan software, version 3.10 (Infrasoft International, State College, PA, USA).
At the start of each day, check samples were run to calibrate the machine. Each sample was then scanned twice,
with the cup rotated 90◦ between the first and second scan, using the wavelength range 400–2498 nm at 2 nm
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intervals. The two resulting spectra from each sample were averaged. Background spectra was recorded with
each sample analyzed.

2.4. Statistics

The data from each of the four environments from the first population of 480 cultivars were
combined into one set to develop broad range prediction models for each trait, with the exception of
one cultivar which was removed from analysis due to lack of emergence under field conditions. After
laboratory reference data was combined with the corresponding spectra, each data set was randomly
divided into two parts to develop calibration models (n = 1566) and to validate the models (n = 350)
using WinISI software, version 4.0 (Infrasoft International, State College, PA, USA). Roughly 18%
of the samples were used in the validation models using a random selection procedure within the
WinISI software. Principle component analysis was used to eliminate spectral outliers, which were
defined as spectra with Mahalanobis distance values greater than 3.0. Modified partial least-squares
(MPLS) and fold-cross validation methods using four iterations, as implemented in the WinISI software,
were used to develop prediction models [40]. The modification to PLS scales the reference method
data and the reflectance data at each wavelength to ensure a standard deviation (SD) of 1.0 before
each PLS term [40]. Standard normal variant and detrend (SNV-D) as a scatter correction, first and
second derivative spectra, as well as mathematical treatments for derivative order number, gap, first
smoothing, and second smoothing were applied. The derivative order improved spectral resolution
by enhancing spectral differences [41,42]. The gap (listed as the second value in the math treatment)
was the length in nm between points over which the derivative was calculated and the smoothing
treatments were used to reduce random noise in the spectral data [42]. The degree of first smoothing is
expressed by the segment of wavelength points used as a moving average to ‘smooth’ the spectral
output, and the number of wavelength points used is listed as the third value in the math treatment.
For all models, the second smoothing (fourth value in the math treatment) was set at 1 to indicate that
no second smoothing was used. Numerous combinations of math treatments were tested to develop
prediction models. The best prediction equation was determined by identifying that which displayed
the highest 1-variance ratio (1-VR) and lowest standard error of cross validation (SECV). The ratio of
the SD of phenotypic data to the SECV was calculated, as done by Deaville et al. [43], to determine if
an equation was acceptable for quantitative prediction, screening only, or was not useful. The standard
error of the calibration (SEC) and the coefficient of determination (R2) were also computed. The unit of
measurement for SEC, SECV, and SEP are all recorded in percentages. The second population of RIL
was used to confirm the best prediction equation performance in a breeding population closely related
to the first population, and analyses were repeated as described above.

3. Results and Discussion

3.1. Calibration Models

Summary statistics for fiber and chemical constituents from the four locations are presented in
Table S1. Calibration models were developed for each trait based on the highest 1-VR and lowest
SECV, after all environments were combined into one dataset. The mathematical treatments accounting
for derivative, gap, and first smoothing differed for each trait when developing calibration models
(Table 1). The 1-VR values were highest for NDF, ADF, and cellulose models and lowest for ADL and
hemicellulose models (Table 1). SECV values ranged from 0.05% for N to 1.52% for NDF. The SD/SECV
is a guideline for determining whether an equation can be validly used for making predictions,
as utilized by Deaville et al. [43]. Calibrations with SD/SECV ratios >3.0 are useful for quantitative
prediction, models with ratios >2.5 and <3.0 are acceptable for screening purposes, and any equation
with a ratio <2.5 is not considered to be useful. A high SD indicates high variation within a population
and is desirable because increased data variation will improve the robustness of a calibration [28] and
result in an increased SD/SECV ratio. A low SECV indicates that the NIRS calibration is predicting
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similarly during each iteration of the cross-validation process [41]. According to these guidelines,
our NDF and ADF models are useful for sample screening whereas the cellulose equation is acceptable
for quantitative prediction (Table 1).

Table 1. Near-infrared spectroscopy (NIRS) calibration statistics of the broad models developed when
combining a population of 480 cultivars in four environments.

Trait Math Treatment n Mean SD SEC (%) R2
cal SECV (%) 1-VR SD/SECV

NDF 2,6,4,1 1517 79.48 4.12 1.49 0.87 1.52 0.86 2.71
ADF 2,6,4,1 1511 51.79 3.92 1.32 0.89 1.38 0.88 2.84
ADL 1,10,10,1 1504 6.42 0.97 0.55 0.68 0.56 0.67 1.73
CELL 2,6,4,1 1513 45.34 3.17 0.97 0.91 1.00 0.90 3.17
HEMI 2,10,10,1 1513 27.63 1.43 1.06 0.45 1.07 0.44 1.34

C 3,5,5,1 1508 43.32 2.19 1.08 0.76 1.12 0.74 1.96
N 2,4,4,1 1511 0.16 0.10 0.05 0.75 0.05 0.73 2.00

SNV and detrend was used for scatter correction. For traits, NDF is neutral detergent fiber, ADF is acid detergent fiber,
ADL is acid detergent lignin, CELL is cellulose, HEMI is hemicellulose, C is carbon, N is nitrogen. The four numbers listed
for each trait under Math Treatment are sequentially: derivative number, gap, first smoothing, second smoothing. n is
number of samples in calibration set; SD is standard deviation; SEC is standard error of calibration; R2

cal is coefficient of
determination; SECV is standard error of cross validation; 1-VR is 1 minus the variance ratio; SD/SECV is ratio of standard
deviation to standard error of cross validation.

Initially, individual calibration models were developed for each separate environment (Table S2).
The 1-VR for NDF was best in Pullman 2016, best in Central Ferry 2017 for ADF, and moderately high
across all environments for cellulose. However, the SD/SECV ratio threshold for acceptable performance
was not met for the individual environment calibrations. Due to the decreased number of data points
and variability within the populations, the individual environment calibration models were much
poorer in comparison to the combined environment models (Table 1; Table S2). A broad-based NIRS
calibration has advantages over specific calibrations within environments, with increased reliability
and robustness [44].

3.2. Validation of Models

The best combined environment calibration models were used to predict a randomly selected
validation set (n = 350) that was removed from the population prior to equation development (Table 2).
Cellulose was predicted with the highest accuracy and the predictions for ADF and NDF were also
acceptable. Nitrogen was predicted with reasonable accuracy, although the SD/SECV ratio of the
N equation was below 2.5 which indicates that the usefulness of the equation may be questionable.
The R2

pred values for ADL and hemicellulose were lower than all other traits included in this study.
Additionally, the slope of each trait neared 1 (Table 2; Figure 1).

Table 2. Near-infrared spectroscopy (NIRS) validation statistics displaying laboratory reference measurements
vs. NIRS predicted results for the broad models and validation set.

Laboratory Measurements Validation Results

Trait n Range Lab Mean Lab SD NIRS Mean Bias R2
pred SEP (%) Slope

NDF 350 66.64–87.21 78.88 4.38 79.07 −0.196 0.85 1.68 1.02
ADF 349 40.54–60.14 51.47 4.10 51.52 −0.053 0.86 1.54 1.03
ADL 350 3.91–9.21 6.37 1.05 6.37 0.005 0.65 0.62 1.08
CELL 349 35.20–51.13 45.09 3.31 45.12 −0.030 0.88 1.14 1.02
HEMI 349 22.84–31.35 27.45 1.45 27.53 −0.074 0.42 1.11 0.94

C 349 39.39–47.56 43.35 2.12 43.41 −0.061 0.67 1.23 0.94
N 347 0.00–0.56 0.17 0.11 0.18 −0.003 0.73 0.06 0.95

NDF is neutral detergent fiber, ADF is acid detergent fiber, ADL is acid detergent lignin, CELL is cellulose, HEMI is
hemicellulose, C is carbon, N is nitrogen. n is number of samples in calibration set; SD is standard deviation; Bias is the
difference between the mean of reference data and the mean of NIRS predicted values; R2

pred is coefficient of determination;
SEP is standard error of prediction.
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In previous literature concerning NIRS predictions of fiber characteristics in other crops, there are
findings that are both similar and dissimilar to ours. Excellent NIRS prediction models were developed
by Jin and Chen [45] for cellulose of rice straw and NDF and ADF of barley straw were successfully
predicted by Mathison et al. [22]. Campo et al. [46] reported high R2

pred values for NDF (0.91) and
ADF (0.91) in maize whereas Wittkop et al. [47] reported an R2

pred value for NDF of oilseed rape as
0.62. Several other studies that used NIRS to predict ADL in numerous grain crops reported R2

pred

values higher than ours [27,48]. Stubbs and Kennedy [26] developed excellent calibration models for
NDF, ADF, ADL, C, and N in canola and all traits, with the exception of ADL, which had models that
surpassed the SD/SECV threshold of 3.0.

Correlations between reference data and NIRS predicted values for all traits were statistically
significant (p < 0.05). Laboratory reference values and predicted values had high Pearson correlation
coefficients (above 0.90) for NDF, ADF, and cellulose (Table 3). Reference and NIRS predicted values
for ADL, C, and N were also moderately high, ranging from 0.81 to 0.86. The Pearson correlation
coefficient was lowest for hemicellulose.

Figure 1. Linear regression relationship (includes R2pred, slope, and SEP) of laboratory reference data and NIRS 

predicted values from the first validation set for (a) neutral detergent fiber (NDF), (b) acid detergent fiber 

(ADF), (c) acid detergent lignin (ADL), (d) cellulose, (e) hemicellulose, (f) carbon, and (g) nitrogen using the 

broad NIRS models developed when combining a population of 480 cultivars in four environments. 
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Figure 1. Linear regression relationship (includes R2
pred, slope, and SEP) of laboratory reference data

and NIRS predicted values from the first validation set for (a) neutral detergent fiber (NDF), (b) acid
detergent fiber (ADF), (c) acid detergent lignin (ADL), (d) cellulose, (e) hemicellulose, (f) carbon, and
(g) nitrogen using the broad NIRS models developed when combining a population of 480 cultivars in
four environments.

Table 3. Coefficients of Pearson Correlation between laboratory reference data and NIRS predicted
values for NDF, ADF, ADL, cellulose, hemicellulose, C, and N in the first validation set.

NDF ADF ADL CELL HEMI C N

Correlation 0.92 0.93 0.81 0.94 0.65 0.82 0.86
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

NDF is neutral detergent fiber, ADF is acid detergent fiber, ADL is acid detergent lignin, CELL is cellulose, HEMI is
hemicellulose, C is carbon, N is nitrogen. α = 0.05 for the probability level.

Other guidelines for acceptability of NIRS predictions have been proposed besides the SD/SECV
ratio. Williams [49] recommended the residual prediction deviation (RPD) guideline, which is calculated
as the ratio of the standard deviation of laboratory reference values and the standard error of prediction
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(SEP) of the validation set. An RPD value greater than or equal to 2.5 was considered acceptable for NIRS
predictions [24], whereas an RPD of 10 or greater was considered excellent [24,49]. In our study, the RPD
of NDF (2.61), ADF (2.66), and cellulose (2.90) predictions would be considered successful. The range error
ratio (RER), or the ratio of the range of reference data to the SEP, was another NIRS guideline originally
developed by Starr et al. [50]. Malley et al. [51] developed guidelines to use the RER alongside the R2

pred

and RPD for additional insight into the acceptability of NIRS predictions on environmental samples. They
proposed that excellent predictions have R2

pred > 0.95, RPD > 4, and RER > 20, successful predictions
have R2

pred between 0.90 and 0.95, RPD = 3–4, and RER = 15–20, and moderately successful predictions
have R2

pred between 0.8 and 0.9, RPD = 2.25–3, and RER = 10–15. Moderately useful predictions have
R2

pred from 0.7 to 0.8, RPD = 1.75–2.25, and RER = 8–10. Our predictions of NDF (R2
pred = 0.85, RPD

= 2.61, RER = 12.24), ADF (R2
pred = 0.86, RPD = 2.66, RER = 12.73), and cellulose (R2

pred = 0.88, RPD
= 2.90, RER = 13.97) would be considered moderately successful whereas the prediction for N (R2

pred

= 0.73, RPD = 1.83, RER = 9.33) would be considered only moderately useful. Model indices for C,
hemicellulose, and ADL are not reported as they did not meet the 2.5 RPD threshold for acceptable
NIRS predictions.

Calibration models developed for individual environments were also used to predict validation
sets that had been removed from each population before the models were created (Table S3).

Models developed for Central Ferry 2017 best predicted NDF, ADF, cellulose, and C whereas
predictions for N, ADL, and hemicellulose were less accurate. For Pullman 2016, the best prediction
accuracies were again observed for NDF, ADF, cellulose, and C. Hemicellulose and ADL were predicted
with less accuracy, whereas the R2

pred value for N was the lowest for all traits in this environment.
In Pullman 2017, N had a higher R2

pred than all other traits besides cellulose. This is contrary to what
was predicted in other environments as prediction accuracies for N were generally lower than most
traits. The predictions in Mansfield 2017 were similar to those of Central Ferry 2017 and Pullman 2016,
with NDF, ADF, and cellulose being predicted with the highest accuracies. When compared to the
R2

pred values from the broad calibration model predictions, each trait was predicted with less accuracy
in every environment. The R2

pred values for C in Central Ferry 2017 and Pullman 2016 were similar to
the R2

pred for C from the broad model, but were still slightly lower. These results demonstrated that a
narrow, specific calibration will generally predict with lower accuracy than a broad, robust calibration.

3.3. Predictions within Breeding Populations

Our calibration models were developed with the purpose of predicting decomposition constituents
of winter wheat cultivars from a broad range of environments and germplasm. For this reason,
the models were further validated by predicting NDF, ADF, ADL, cellulose, hemicellulose, C, and
N of straw samples in a breeding population derived from a cross of Finch and Eltan, two winter
wheat cultivars from the Pacific Northwest that were also included in the first population. Across all
environments, the highest R2

pred values were generally found in NDF, ADF, and cellulose (Table 4).
Hemicellulose was consistently difficult to predict and NIRS was generally unsuccessful in predicting
C and N. Based upon R2

pred values, our equation best predicted NDF in Waterville 2015, ADL,
hemicellulose, and C in Pullman 2015, and ADF, cellulose and N in Pullman 2017. The lowest R2

pred

values for each trait were observed in Mansfield 2017, with the exception of N which was lowest in
Waterville 2015. Like the R2

pred values, Pearson correlation coefficients were generally lower in this
population than they were in the first validation set (Table 5). Even though these values are lower
than in the original validation sets, they are expected since we are moving from a diversity panel to a
breeding population. Within a breeding context, these values are still acceptable for making selections
within segregating populations and identifying lines with either fast or slow decomposition potential.
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Table 4. NIRS validation statistics for all fiber and chemical constituents in five environments from the
Finch × Eltan Breeding Population.

Lab Measurements Validation Results

Trait n Lab Mean Lab SD NIRS Mean Bias R2
pred SEP (%) Slope

F × E Pullman 2015

NDF 142 86.97 0.83 85.38 1.587 0.53 1.71 0.68
ADF 142 59.30 1.18 56.45 2.854 0.56 2.96 0.89
ADL 142 10.99 0.63 7.43 3.552 0.52 3.58 0.98
CELL 142 48.34 0.80 48.83 −0.497 0.50 0.77 0.75
HEMI 142 27.65 0.75 29.16 −1.508 0.50 1.60 0.93

C 154 46.14 0.57 46.32 −0.178 0.29 0.77 0.35
N 158 0.155 0.062 0.206 −0.052 0.13 0.08 0.72

F × E Waterville 2015

NDF 147 83.95 1.89 82.06 1.894 0.77 2.15 0.77
ADF 147 55.85 1.77 52.30 3.550 0.64 3.72 0.84
ADL 147 10.37 0.63 6.71 3.657 0.41 3.69 0.91
CELL 147 45.48 1.32 45.21 0.274 0.64 0.90 0.76
HEMI 147 28.16 1.01 29.41 −1.246 0.38 1.48 0.84

C 145 46.08 7.29 46.10 −0.015 0.03 7.47 −1.37
N 147 0.145 0.057 0.151 −0.006 <0.01 0.07 −0.05

F × E Mansfield 2015

NDF 170 80.04 1.87 76.30 3.741 0.54 4.04 0.62
ADF 170 50.60 1.76 46.94 3.655 0.58 3.89 0.66
ADL 170 8.30 0.75 5.61 2.686 0.32 2.76 0.86
CELL 170 42.28 1.25 41.58 0.701 0.55 1.25 0.60
HEMI 170 29.32 0.72 28.59 0.730 0.25 1.00 0.55

C 132 42.77 1.64 43.67 −0.906 0.03 1.94 0.32
N 153 0.381 0.169 0.214 0.166 0.14 0.23 1.22

F × E Pullman 2017

NDF 342 81.66 3.21 80.93 0.725 0.75 1.77 1.08
ADF 342 53.99 2.73 53.27 0.723 0.69 1.69 1.10
ADL 342 7.02 0.84 7.09 −0.064 0.24 0.74 0.83
CELL 342 46.97 2.29 46.46 0.514 0.79 1.17 1.06
HEMI 342 27.66 1.65 27.42 0.245 0.43 1.27 0.96

C 336 45.41 0.42 43.12 2.292 0.17 2.39 0.24
N 341 0.233 0.081 0.173 0.059 0.42 0.09 0.73

F × E Mansfield 2017

NDF 343 75.96 3.97 74.62 1.345 0.33 3.53 0.91
ADF 343 47.31 3.63 45.92 1.393 0.40 3.14 0.96
ADL 343 5.96 1.00 5.70 0.256 0.14 0.98 0.64
CELL 343 41.35 2.93 40.33 1.029 0.44 2.43 0.99
HEMI 343 28.65 1.81 28.49 0.159 0.10 1.74 0.67

C 336 45.31 0.51 42.60 2.705 0.00 2.96 0.001
N 345 1.005 5.824 0.124 0.881 0.06 5.87 28.32

NDF is neutral detergent fiber, ADF is acid detergent fiber, ADL is acid detergent lignin, CELL is cellulose, HEMI is
hemicellulose, C is carbon, N is nitrogen. n is number of samples in calibration set; SD is standard deviation; Bias is the
difference between the mean of reference data and the mean of NIRS predicted values; R2

pred is coefficient of determination;
SEP is standard error of prediction.
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Table 5. NIRS Coefficients of Pearson Correlation (and P values) of laboratory reference data and NIRS
predicted values for NDF, ADF, ADL, cellulose, hemicellulose, C, and N in five environments from the
Finch × Eltan breeding population.

F × E Pullman 2015

Trait NDF ADF ADL Cellulose Hemicell Carbon Nitrogen
Correlation 0.73 0.75 0.72 0.71 0.71 0.54 0.36

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

F × E Waterville 2015

Trait NDF ADF ADL Cellulose Hemicell Carbon Nitrogen
Correlation 0.88 0.80 0.64 0.80 0.61 −0.17 −0.03

p value <0.001 <0.001 <0.001 <0.001 <0.001 0.04 0.73

F × E Mansfield 2015

Trait NDF ADF ADL Cellulose Hemicell Carbon Nitrogen
Correlation 0.73 0.76 0.57 0.74 0.50 0.17 0.38

p value <0.001 <0.001 <0.001 <0.001 <0.001 0.05 <0.001

F × E Pullman 2017

Trait NDF ADF ADL Cellulose Hemicell Carbon Nitrogen
Correlation 0.87 0.83 0.49 0.89 0.66 0.41 0.65

p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

F × E Mansfield 2017

Trait NDF ADF ADL Cellulose Hemicell Carbon Nitrogen
Correlation 0.57 0.63 0.37 0.66 0.32 <0.01 0.24

p value <0.001 <0.001 <0.001 <0.001 <0.001 0.94 <0.001

NDF is neutral detergent fiber, ADF is acid detergent fiber, ADL is acid detergent lignin, CELL is cellulose, HEMI is
hemicellulose, C is carbon, N is nitrogen. α = 0.05 for the probability level.

In order to derive accurate predictions, the spectral data of a validation population must be
relatively similar to the spectra of the calibration population. As a general rule, spectra with a
Mahalanobis distance above 3.0 are considered outliers and may be difficult for an equation to
predict [41]. The very low prediction accuracy of the Finch × Eltan population in Mansfield 2017
for all traits (R2

pred range = 0.00–0.44) was surprising due to similarities between the spectral data
of this population and the population used for the calibration equation. Approximately 85% of the
spectra from Mansfield 2017 samples had Mahalanobis distances below 3.0 when compared with
the calibration set. The Mansfield 2017 location did have some variability across the field in early
spring growth due to snowdrifts that laid in the field, resulting in some lines being under snow cover
for a longer period, and could have affected the straw composition. The SEP was quite high for
most traits, indicating that there may be a lack of agreement between spectral information and the
reference method [39]. However, it is still possible to get accurate predictions for samples that have a
Mahalanobis distance above 3.0 [41]. The spectral data from Waterville 2015 was quite dissimilar to
that of the calibration population but was predicted with the best accuracy for NDF (Table 4). Every
spectra from samples within this environment had a Mahalanobis distance above 3.0. Nevertheless,
to improve the predictive ability and increase the reliability of our models on breeding populations,
it is likely that the number of environments included in the calibration will need to be increased.

4. Conclusions

The predictive ability of a NIRS equation is more reliable and accurate when a broad and robust
range of data is used in the calibration. Our broad NIRS models were successful in predicting NDF,
ADF, and cellulose of the first validation set with high accuracy whereas hemicellulose and ADL
were predicted with lower accuracy. The overall predictive ability of NIRS decreased when used
to predict the same traits in the Finch × Eltan breeding population but was still moderately high
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for NDF, ADF, and cellulose and suitable for our purposes of estimating decomposition potential.
The C and N prediction accuracies were too low across every environment to be trusted. Using NIRS
for screening, rather than prediction, will identify whether a sample fits into a range of high or low
NDF, ADF, and cellulose values, which will be sufficient for recommendations and breeding purposes.
Grouping NDF, ADF, and cellulose values into a “high” or “low” category, accompanied with C and N
values obtained through TruSpec analysis, will provide an estimate of fast or slow decomposition for
individual cultivars. Additional samples from a wider range of environments would be beneficial for
increasing the predictive accuracy and reliability of the NIRS models and would ultimately assist the
transition to conservation farming.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/8/462/s1,
Table S1: Summary statistics for neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin
(ADL), cellulose (CELL), hemicellulose (HEMI), carbon (C), and nitrogen (N) in Pullman 2016, Central Ferry 2017,
Pullman 2017, and Mansfield 2017, Table S2: Near-infrared spectroscopy (NIRS) calibration statistics of the specific
equations developed from the population of 480 in individual environments. Traits include neutral detergent fiber
(NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CELL), hemicellulose (HEMI), carbon (C),
and nitrogen (N). Table includes trait, math treatment, number of samples (n), mean, standard deviation (SD),
standard error of calibration (SEC), coefficient of determination (R2), standard error of cross-validation (SECV),
1 minus the variance ratio (1-VR), standard deviation to standard error of cross-validation ratio (SD/SECV),
Table S3. Near-infrared spectroscopy (NIRS) validation statistics displaying laboratory reference measurements vs.
NIRS predicted results of the specific equations developed from the population of 480 in individual environments.
Measurements for neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose
(CELL), hemicellulose (HEMI), C, and N. Includes trait, number of samples (n), range of reference data, lab mean,
lab standard deviation (Lab SD), NIRS predicted mean, bias, coefficient of determination (R2), standard error of
prediction (SEP), and slope.
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