Assessing Creatine Supplementation for Neuroprotection against Perinatal Hypoxic-Ischaemic Encephalopathy: A Systematic Review of Perinatal and Adult Pre-Clinical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Selection Criteria
2.3. Data Extraction
2.4. Risk of Bias
3. Results
3.1. Search Results
3.2. Description of Included Studies
3.3. Regime and Timing of Creatine Delivery
3.4. Measurement of Creatine in the Brain
3.5. Neurological Outcome and Survival Time after HI Injury
3.6. Sex
3.7. Temperature Monitoring
3.8. Risk of Bias Assessment
4. Discussion
4.1. Bioavailability
4.2. Regime and Timing of Delivery
4.3. Survival Time
4.4. Sex
4.5. Creatine for Neuroprotection in the Era of Therapeutic Hypothermia
4.6. Bias
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manuck, T.A.; Rice, M.M.; Bailit, J.L.; Grobman, W.A.; Reddy, U.M.; Wapner, R.J.; Thorp, J.M.; Caritis, S.N.; Prasad, M.; Tita, A.T.; et al. Preterm neonatal morbidity and mortality by gestational age: A contemporary cohort. Am. J. Obstet. Gynecol. 2016, 215, 103.e101–103.e114. [Google Scholar] [CrossRef] [Green Version]
- Low, J.A.; Killen, H.; Derrick, E.J. Antepartum fetal asphyxia in the preterm pregnancy. Am. J. Obstet. Gynecol. 2003, 188, 461–465. [Google Scholar] [CrossRef]
- Ahearne, C.E.; Boylan, G.B.; Murray, D.M. Short and long term prognosis in perinatal asphyxia: An update. World J. Clin. Pediatr. 2016, 5, 67–74. [Google Scholar] [CrossRef]
- Finder, M.; Boylan, G.B.; Twomey, D.; Ahearne, C.; Murray, D.M.; Hallberg, B. Two-Year Neurodevelopmental Outcomes After Mild Hypoxic Ischemic Encephalopathy in the Era of Therapeutic Hypothermia. JAMA Pediatr. 2020, 174, 48–55. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, Cd003311. [Google Scholar] [CrossRef]
- Shankaran, S.; Laptook, A.R.; Pappas, A.; McDonald, S.A.; Das, A.; Tyson, J.E.; Poindexter, B.B.; Schibler, K.; Bell, E.F.; Heyne, R.J.; et al. Effect of Depth and Duration of Cooling on Death or Disability at Age 18 Months Among Neonates With Hypoxic-Ischemic Encephalopathy: A Randomized Clinical Trial. JAMA 2017, 318, 57–67. [Google Scholar] [CrossRef]
- Lawn, J.E.; Lee, A.C.; Kinney, M.; Sibley, L.; Carlo, W.A.; Paul, V.K.; Pattinson, R.; Darmstadt, G.L. Two million intrapartum-related stillbirths and neonatal deaths: Where, why, and what can be done? Int. J. Gynaecol. Obstet. 2009, 107 (Suppl. S1), S5–S19. [Google Scholar] [CrossRef]
- Lee, A.C.; Kozuki, N.; Blencowe, H.; Vos, T.; Bahalim, A.; Darmstadt, G.L.; Niermeyer, S.; Ellis, M.; Robertson, N.J.; Cousens, S.; et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr. Res. 2013, 74 (Suppl. S1), 50–72. [Google Scholar] [CrossRef] [Green Version]
- Pauliah, S.S.; Shankaran, S.; Wade, A.; Cady, E.B.; Thayyil, S. Therapeutic hypothermia for neonatal encephalopathy in low- and middle-income countries: A systematic review and meta-analysis. PLoS ONE 2013, 8, e58834. [Google Scholar] [CrossRef] [Green Version]
- Robertson, N.J.; Nakakeeto, M.; Hagmann, C.; Cowan, F.M.; Acolet, D.; Iwata, O.; Allen, E.; Elbourne, D.; Costello, A.; Jacobs, I. Therapeutic hypothermia for birth asphyxia in low-resource settings: A pilot randomised controlled trial. Lancet 2008, 372, 801–803. [Google Scholar] [CrossRef]
- Thayyil, S.; Pant, S.; Montaldo, P.; Shukla, D.; Oliveira, V.; Ivain, P.; Bassett, P.; Swamy, R.; Mendoza, J.; Moreno-Morales, M.; et al. Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): A randomised controlled trial in India, Sri Lanka, and Bangladesh. Lancet Glob. Health 2021, 9, e1273–e1285. [Google Scholar] [CrossRef]
- Wallimann, T.; Tokarska-Schlattner, M.; Schlattner, U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011, 40, 1271–1296. [Google Scholar] [CrossRef] [Green Version]
- Beal, M.F. Neuroprotective effects of creatine. Amino Acids 2011, 40, 1305–1313. [Google Scholar] [CrossRef]
- de Guingand, D.L.; Palmer, K.R.; Snow, R.J.; Davies-Tuck, M.L.; Ellery, S.J. Risk of Adverse Outcomes in Females Taking Oral Creatine Monohydrate: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1780. [Google Scholar] [CrossRef]
- De Guingand, D.L.; Ellery, S.J.; Davies-Tuck, M.L.; Dickinson, H. Creatine and pregnancy outcomes, a prospective cohort study in low-risk pregnant women: Study protocol. BMJ Open 2019, 9, e026756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [Green Version]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [Green Version]
- Adcock, K.H.; Nedelcu, J.; Loenneker, T.; Martin, E.; Wallimann, T.; Wagner, B.P. Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev. Neurosci. 2002, 24, 382–388. [Google Scholar] [CrossRef]
- Berger, R.; Middelanis, J.; Vaihinger, H.M.; Mies, G.; Wilken, B.; Jensen, A. Creatine protects the immature brain from hypoxic-ischemic injury. J. Soc. Gynecol. Investig. 2004, 11, 9–15. [Google Scholar] [CrossRef]
- Holtzman, D.; Togliatti, A.; Khait, I.; Jensen, F. Creatine increases survival and suppresses seizures in the hypoxic immature rat. Pediatr. Res. 1998, 44, 410–414. [Google Scholar] [CrossRef]
- Holtzman, D.; Khait, I.; Mulkern, R.; Allred, E.; Rand, T.; Jensen, F.; Kraft, R. In vivo development of brain phosphocreatine in normal and creatine-treated rabbit pups. J. Neurochem. 1999, 73, 2477–2484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, S.; Ali, M.; Iqbal, F. Long term creatine monohydrate supplementation, following neonatal hypoxic ischemic insult, improves neuromuscular coordination and spatial learning in male albino mouse. Brain Res. 2015, 1603, 76–83. [Google Scholar] [CrossRef]
- Iqbal, S.; Ali, M.; Akbar, A.; Iqbal, F. Effects of dietary creatine supplementation for 8 weeks on neuromuscular coordination and learning in male albino mouse following neonatal hypoxic ischemic insult. Neurol. Sci. 2015, 36, 765–770. [Google Scholar] [CrossRef]
- Allah Yar, R.; Akbar, A.; Iqbal, F. Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice. Brain Res. 2015, 1595, 92–100. [Google Scholar] [CrossRef]
- Rice, J.E., 3rd; Vannucci, R.C.; Brierley, J.B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 1981, 9, 131–141. [Google Scholar] [CrossRef]
- Semple, B.D.; Blomgren, K.; Gimlin, K.; Ferriero, D.M.; Noble-Haeusslein, L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013, 106–107, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ireland, Z.; Castillo-Melendez, M.; Dickinson, H.; Snow, R.; Walker, D.W. A maternal diet supplemented with creatine from mid-pregnancy protects the newborn spiny mouse brain from birth hypoxia. Neuroscience 2011, 194, 372–379. [Google Scholar] [CrossRef]
- Harel, S.; Watanabe, K.; Linke, I.; Schain, R.J. Growth and development of the rabbit brain. Biol. Neonate 1972, 21, 381–399. [Google Scholar] [CrossRef]
- Lensman, M.; Korzhevskii, D.E.; Mourovets, V.O.; Kostkin, V.B.; Izvarina, N.; Perasso, L.; Gandolfo, C.; Otellin, V.A.; Polenov, S.A.; Balestrino, M. Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat. Brain Res. 2006, 1114, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Prass, K.; Royl, G.; Lindauer, U.; Freyer, D.; Megow, D.; Dirnagl, U.; Stöckler-Ipsiroglu, G.; Wallimann, T.; Priller, J. Improved reperfusion and neuroprotection by creatine in a mouse model of stroke. J. Cereb. Blood Flow Metab. 2007, 27, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Li, M.; Figueroa, B.E.; Liu, A.; Stavrovskaya, I.G.; Pasinelli, P.; Beal, M.F.; Brown, R.H., Jr.; Kristal, B.S.; Ferrante, R.J.; et al. Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J. Neurosci. 2004, 24, 5909–5912. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, T.; Wick, M.; Fujimori, H.; Matsumura, A.; Frahm, J. Proton MRS of oral creatine supplementation in rats. Cerebral metabolite concentrations and ischemic challenge. NMR Biomed. 1999, 12, 309–314. [Google Scholar] [CrossRef]
- Wick, M.; Fujimori, H.; Michaelis, T.; Frahm, J. Brain water diffusion in normal and creatine-supplemented rats during transient global ischemia. Magn. Reson. Med. 1999, 42, 798–802. [Google Scholar] [CrossRef]
- Tang, L.H.; Xia, Z.Y.; Zhao, B.; Wei, X.D.; Luo, T.; Meng, Q.T. Phosphocreatine preconditioning attenuates apoptosis in ischemia-reperfusion injury of rat brain. J Biomed Biotechnol 2011, 2011, 107091. [Google Scholar] [CrossRef]
- Li, T.; Wang, N.; Zhao, M. Neuroprotective effect of phosphocreatine on focal cerebral ischemia-reperfusion injury. J. Biomed. Biotechnol. 2012, 2012, 168756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Wang, Q.; Yu, W.; Chen, L.; Li, Z. Efficacy of phosphocreatine pre-administration on XIAP and Smac in ischemic penumbra of rats with focal cerebral ischemia reperfusion injury. Acta Cir. Bras. 2018, 33, 117–124. [Google Scholar] [CrossRef]
- Otellin, V.A.; Korzhevskii, D.E.; Kostkin, V.B.; Balestrino, M.; Lensman, M.V.; Polenov, S.A. The neuroprotective effect of creatine in rats with cerebral ischemia. Dokl. Biol. Sci. 2003, 390, 197–199. [Google Scholar] [CrossRef]
- Harding, J.D. Nonhuman Primates and Translational Research: Progress, Opportunities, and Challenges. ILAR J. 2017, 58, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Galinsky, R.; Dean, J.M.; Lear, C.A.; Davidson, J.O.; Dhillon, S.; Wassink, G.; Bennet, L.; Gunn, A.J. In the Era of Therapeutic Hypothermia, How Well Do Studies of Perinatal Neuroprotection Control Temperature? Dev. Neurosci. 2017, 39, 7–22. [Google Scholar] [CrossRef]
- Ohtsuki, S.; Tachikawa, M.; Takanaga, H.; Shimizu, H.; Watanabe, M.; Hosoya, K.; Terasaki, T. The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J. Cereb. Blood Flow Metab. 2002, 22, 1327–1335. [Google Scholar] [CrossRef] [Green Version]
- Mak, C.S.; Waldvogel, H.J.; Dodd, J.R.; Gilbert, R.T.; Lowe, M.T.; Birch, N.P.; Faull, R.L.; Christie, D.L. Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience 2009, 163, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Perasso, L.; Cupello, A.; Lunardi, G.L.; Principato, C.; Gandolfo, C.; Balestrino, M. Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res. 2003, 974, 37–42. [Google Scholar] [CrossRef]
- Braissant, O.; Henry, H.; Loup, M.; Eilers, B.; Bachmann, C. Endogenous synthesis and transport of creatine in the rat brain: An in situ hybridization study. Brain Res. Mol. Brain Res. 2001, 86, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Braissant, O.; Henry, H.; Villard, A.M.; Speer, O.; Wallimann, T.; Bachmann, C. Creatine synthesis and transport during rat embryogenesis: Spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev. Biol. 2005, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Ontiveros, M.L.; Wallimann, T. Creatine supplementation in health and disease. Effects of chronic creatine ingestion in vivo: Down-regulation of the expression of creatine transporter isoforms in skeletal muscle. Mol. Cell. Biochem. 1998, 184, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Speer, O.; Neukomm, L.J.; Murphy, R.M.; Zanolla, E.; Schlattner, U.; Henry, H.; Snow, R.J.; Wallimann, T. Creatine transporters: A reappraisal. Mol. Cell. Biochem. 2004, 256–257, 407–424. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, H.; Ireland, Z.J.; Larosa, D.A.; O’Connell, B.A.; Ellery, S.; Snow, R.; Walker, D.W. Maternal dietary creatine supplementation does not alter the capacity for creatine synthesis in the newborn spiny mouse. Reprod. Sci. 2013, 20, 1096–1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, A.; Zhang, M.; Sakamoto, T.; Ishii, Y.; Morishima, Y.; Mochizuki, M.; Kimura, T.; Uchida, Y.; Sekizawa, K. Anti-inflammatory activity of creatine supplementation in endothelial cells in vitro. Br. J. Pharmacol. 2003, 139, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Khanna, N.K.; Madan, B.R. Studies on the anti-inflammatory activity of creatine. Arch. Int. Pharmacodyn. Ther. 1978, 231, 340–350. [Google Scholar]
- Bassit, R.A.; Curi, R.; Costa Rosa, L.F. Creatine supplementation reduces plasma levels of pro-inflammatory cytokines and PGE2 after a half-ironman competition. Amino Acids 2008, 35, 425–431. [Google Scholar] [CrossRef]
- Lawler, J.M.; Barnes, W.S.; Wu, G.; Song, W.; Demaree, S. Direct antioxidant properties of creatine. Biochem. Biophys. Res. Commun. 2002, 290, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Baharom, S.; De Matteo, R.; Ellery, S.; Della Gatta, P.; Bruce, C.R.; Kowalski, G.M.; Hale, N.; Dickinson, H.; Harding, R.; Walker, D.; et al. Does maternal-fetal transfer of creatine occur in pregnant sheep? Am. J. Physiol. Endocrinol. Metab. 2017, 313, e75–e83. [Google Scholar] [CrossRef]
- Back, S.A.; Riddle, A.; Dean, J.; Hohimer, A.R. The instrumented fetal sheep as a model of cerebral white matter injury in the premature infant. Neurotherapeutics 2012, 9, 359–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunn, A.J.; Thoresen, M. Animal studies of neonatal hypothermic neuroprotection have translated well in to practice. Resuscitation 2015, 97, 88–90. [Google Scholar] [CrossRef]
- Koszalka, T.R.; Jensh, R.P.; Brent, R.L. Placental transport of creating in the rat. Proc. Soc. Exp. Biol. Med. 1975, 148, 864–869. [Google Scholar] [CrossRef]
- Ellery, S.J.; Della Gatta, P.A.; Bruce, C.R.; Kowalski, G.M.; Davies-Tuck, M.; Mockler, J.C.; Murthi, P.; Walker, D.W.; Snow, R.J.; Dickinson, H. Creatine biosynthesis and transport by the term human placenta. Placenta 2017, 52, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Woznicki, D.T.; Walker, J.B. Utilization of cyclocreatine phosphate, and analogue of creatine phosphate, by mouse brain during ischemia and its sparing action on brain energy reserves. J. Neurochem. 1980, 34, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Perasso, L.; Adriano, E.; Ruggeri, P.; Burov, S.V.; Gandolfo, C.; Balestrino, M. In vivo neuroprotection by a creatine-derived compound: Phosphocreatine-Mg-complex acetate. Brain Res. 2009, 1285, 158–163. [Google Scholar] [CrossRef]
- Burov, S.; Leko, M.; Dorosh, M.; Dobrodumov, A.; Veselkina, O. Creatinyl amino acids: New hybrid compounds with neuroprotective activity. J. Pept. Sci. 2011, 17, 620–626. [Google Scholar] [CrossRef]
- Vlasov, T.D.; Chefu, S.G.; Baĭsa, A.E.; Leko, M.V.; Burov, S.V.; Veselkina, O.S. Amides of creatine: Perspectives of neuroprotection. Rossiiskii Fiziologicheskii Zhurnal Imeni IM Sechenova 2011, 97, 708–717. [Google Scholar] [CrossRef]
- Pang, R.; Advic-Belltheus, A.; Meehan, C.; Fullen, D.J.; Golay, X.; Robertson, N.J. Melatonin for Neonatal Encephalopathy: From Bench to Bedside. Int. J. Mol. Sci. 2021, 22, 5481. [Google Scholar] [CrossRef]
- Wassink, G.; Gunn, E.R.; Drury, P.P.; Bennet, L.; Gunn, A.J. The mechanisms and treatment of asphyxial encephalopathy. Front. Neurosci. 2014, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- Lalor, J.G.; Fawole, B.; Alfirevic, Z.; Devane, D. Biophysical profile for fetal assessment in high risk pregnancies. Cochrane Database Syst. Rev. 2008, 2008, Cd000038. [Google Scholar] [CrossRef]
- Nelson, K.B.; Dambrosia, J.M.; Ting, T.Y.; Grether, J.K. Uncertain value of electronic fetal monitoring in predicting cerebral palsy. N. Engl. J. Med. 1996, 334, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Gunn, A.J.; Gunn, T.R.; Gunning, M.I.; Williams, C.E.; Gluckman, P.D. Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics 1998, 102, 1098–1106. [Google Scholar] [CrossRef]
- Gunn, A.J.; Bennet, L.; Gunning, M.I.; Gluckman, P.D.; Gunn, T.R. Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep. Pediatr. Res. 1999, 46, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Burnsed, J.C.; Chavez-Valdez, R.; Hossain, M.S.; Kesavan, K.; Martin, L.J.; Zhang, J.; Northington, F.J. Hypoxia-ischemia and therapeutic hypothermia in the neonatal mouse brain—A longitudinal study. PLoS ONE 2015, 10, e0118889. [Google Scholar] [CrossRef]
- Bennet, L.; Galinsky, R.; Draghi, V.; Lear, C.A.; Davidson, J.O.; Unsworth, C.P.; Gunn, A.J. Time and sex dependent effects of magnesium sulphate on post-asphyxial seizures in preterm fetal sheep. J. Physiol. 2018, 596, 6079–6092. [Google Scholar] [CrossRef] [PubMed]
- Galinsky, R.; Dhillon, S.K.; Lear, C.A.; Yamaguchi, K.; Wassink, G.; Gunn, A.J.; Bennet, L. Magnesium sulfate and sex differences in cardiovascular and neural adaptations during normoxia and asphyxia in preterm fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R205–r217. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.L.; Alexander, M.; Rosenkrantz, T.S.; Sadek, M.L.; Fitch, R.H. Sex differences in behavioral outcome following neonatal hypoxia ischemia: Insights from a clinical meta-analysis and a rodent model of induced hypoxic ischemic brain injury. Exp. Neurol. 2014, 254, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, S.; Ettaro, R.; Hoffman, M.D.; Ombach, H.J.; Brown, J.; Lynch, C.; Sheth, C.S.; Renshaw, P.F. Sex-Based Impact of Creatine Supplementation on Depressive Symptoms, Brain Serotonin and SSRI Efficacy in an Animal Model of Treatment-Resistant Depression. Int. J. Mol. Sci. 2021, 22, 8195. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.; Osredkar, D.; Puchades, M.; Maes, E.; Falck, M.; Flatebo, T.; Walloe, L.; Sabir, H.; Thoresen, M. Treatment temperature and insult severity influence the neuroprotective effects of therapeutic hypothermia. Sci. Rep. 2016, 6, 23430. [Google Scholar] [CrossRef] [Green Version]
- DeBow, S.B.; Clark, D.L.; MacLellan, C.L.; Colbourne, F. Incomplete assessment of experimental cytoprotectants in rodent ischemia studies. Can. J. Neurol. Sci. 2003, 30, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Meloni, B.P.; Moore, S.R.; Majda, B.T.; Knuckey, N.W. Intravenous administration of magnesium is only neuroprotective following transient global ischemia when present with post-ischemic mild hypothermia. Brain Res. 2004, 1014, 53–60. [Google Scholar] [CrossRef]
- Galinsky, R.; Bennet, L.; Groenendaal, F.; Lear, C.A.; Tan, S.; van Bel, F.; Juul, S.E.; Robertson, N.J.; Mallard, C.; Gunn, A.J. Magnesium Is Not Consistently Neuroprotective for Perinatal Hypoxia-Ischemia in Term-Equivalent Models in Preclinical Studies: A Systematic Review. Dev. Neurosci. 2014, 36, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Moraes, R.; Van Bavel, D.; Moraes, B.S.; Tibiriçá, E. Effects of dietary creatine supplementation on systemic microvascular density and reactivity in healthy young adults. Nutr. J. 2014, 13, 115. [Google Scholar] [CrossRef] [Green Version]
- Hull, D. Chapter 4—Thermoregulation in Young Mammals. In Comparative Physiology of Thermoregulation; Whittow, G.C., Ed.; Academic Press: Cambridge, MA, USA, 1973; pp. 167–200. [Google Scholar]
- Percie du Sert, N.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef] [PubMed]
Database | Search Terms Used |
---|---|
PUBMED | (“hypoxia-ischemia, brain”[MeSH Terms]) OR (“hypoxia, brain”[MeSH Terms]) OR (“brain ischemia”[MeSH Terms]) OR (“stroke”[MeSH Terms]) AND (“creatine”[MeSH Terms]) AND (“cerebral”[All Fields]) OR (“brain”[All Fields]) OR (“brain injury”[All Fields]) AND (“english”[Language]) AND (“preclinical”[All Fields]) OR (“animals”[MeSH Terms:noexp]) NOT “review”[Publication Type] |
EMBASE | (“hypoxia ischemia” OR “hypoxia” OR “ischemia” OR “stroke”) AND “creatine”:ti, ab AND (“brain”/exp OR “brain injury” OR “cerebral”) AND [animals]/lim AND [english]/lim |
OVID MEDLINE | (Hypoxia/or Brain Ischemia/or Hypoxia-Ischemia, Brain/or Hypoxia, Brain/or Stroke/) and Creatine/and Animals/(limited to English language and review articles excluded) |
Reference | HI Model | Intervention Characteristics | Outcome Assessment (Compared to Vehicle Treatment + HI Injury) | ||||||
---|---|---|---|---|---|---|---|---|---|
Age; Species; Sex | HI Method | Dose, Route and Frequency | Timing | Temp (T) | Time of Assessment | Pathology | Function | Measurement of Brain Creatine | |
[27] | 38 d gestation Spiny mice; ♀/♂ | Birth asphyxia, 7.5 min in 37–38 °C saline bath | 5%; maternal diet daily | Pre-HI: 20–38 days of gestation | Ambient T 37–38 °C during HI, heat pad during recovery, T not reported | 1 d post HI | ~40–55% ↓ apoptosis in cortical subplate, piriform cortex and thalamus 27% ↓ lipid peroxidation in cerebrum vs. vehicle + HI, p < 0.05 | - | - |
[21] | P5, 10, 15, 20, 30, New Zealand white rabbits; ? sex | 4% O2 for 8 min | 3 g/kg s.c. daily | Pre-H: 3 days | - | During and 20 min post H | - | ↓ electrographic seizures at P15 vs. vehicle + HI, p < 0.05 | Cr loading was age dependent: PCr/NTP in Cr group at P5 ~↑ 65%, at P15 ~↑ 60%, at P20 ~↑ 30%, at P30 ↔ vs. vehicle + HI |
[18] | P7, Sprague-Dawley rat; ? sex | Right CAL, then 100 min of hypoxia (8% O2) | 3 g/kg s.c. daily | Pre-HI: 3 days | Core T: 37 °C during HI and recovery | 1 d post HI | 24% ↓ in brain oedema vs. vehicle + HI, p < 0.05 | - | P7: PCr/NTP in Cr ~27% ↑ vs. vehicle + HI |
[19] | P7, Wistar rat; ? sex | Left CAL, then 80 min of hypoxia (8% O2) | 3 g/kg s.c. daily | Pre and post HI: −64, −40, −16 and +3 h | Ambient T: 36 °C during HI | 7 d post HI | ~24% ↑ cerebral hemisphere volume; ↓ neuronal necrosis in the cortex (~23–48%) and hippocampus (CA1–4, DG; ~28–49%) vs. vehicle + HI, p < 0.05 | - | P7: 49% ↑ Cr vs. vehicle, 45% ↑ PCr vs. vehicle + HI |
[20] | P10 and P20, Long Evans rat; ? sex | 4% O2 for 8 min | 3 g/kg s.c. daily | Pre-HI; 3 days | Core T: 32–35 °C during and post HI | During and 20 min post HI | - | P10: ↓ electrographic and behavioural seizures vs. vehicle + HI, p < 0.05 P20: No seizures in control and Cr treated groups | P10: 25% ↑ PCr/NTP vs. vehicle, P20: ↔PCr/NTP vs. vehicle + HI |
[23] | P10, Albino (BALB/C) mice; ♂ | Right CAL, then 25 min of hypoxia (8% O2) | 2% dietary supplement daily | Post HI: P20 for 8 weeks | - | 9 weeks post HI | ↔ infarct size | ↑ muscle strength and co-ordination vs. HI + vehicle, p < 0.05, ↔ spatial memory | - |
[24] | P10, Albino mice; ♀ | Left CAL, then 25 min of hypoxia (8% O2) | 1 or 3% dietary supplement daily | Post HI: started at P20 for 10 weeks | Heat pad 36 °C during HI | 11 weeks post HI | 37% ↓ infarct size in 3% diet vs. HI + vehicle, p < 0.05 | ↑ sensory motor function and spatial memory vs. HI + vehicle, p < 0.05; 3% diet performed better in all parameters | - |
[22] | P10, Albino (BALB/C) mice; ♂ | Right CAL, then 25 min of hypoxia (8% O2) | 2%; dietary supplement daily | Post HI: started at P20 for 15 weeks | Heat pad 36 °C during HI | 1 h, 24 h and 16 weeks post injury | ↔ infarct size | ↔ functional neurological scoring in all tests | - |
Reference | HI Model | Intervention Characteristics | Outcome Assessment (Compared to Vehicle Treatment + HI Injury) | ||||||
---|---|---|---|---|---|---|---|---|---|
Age; Species; Sex | HI Method | Dose, Route and Frequency | Timing; Frequency | Temp (T) | Time of Assessment | Pathology | Functional | Measurement of Brain Creatine | |
[30] | >7 weeks old; 129S6/ ScEv mice; ♂ | Transient MCAO for 45 min | 0.5%, 1% or 2%; dietary supplement daily | Pre-HI: 3 weeks | Core T: 37°C during HI and recovery (data not shown) | During injury and 4 days post HI | ~35–40% ↓ infarct size: 1 and 2% creatine vs. vehicle + HI, p < 0.05; ~41% ↓ ADC in 2% creatine vs. vehicle + HI, p < 0.05 | ~63% ↑ brain perfusion during recovery vs. vehicle + HI, p < 0.05 | ↔ Cr, PCr |
[31] | 9–10 weeks old; Sprague-Dawley rat; ♂ | Transient MCAO for 2 h (described as internal carotid artery) | 20 mg/kg BW; IP | Pre-HI; NS | Core T: 37–37.5 °C during HI | 24 h post HI | 45% ↓ apoptotic cells in ischemic penumbra; ↓ apoptotic gene expression in penumbra vs. vehicle + HI, p < 0.05 | 46% ↑ functional neurological score vs. vehicle + HI, p < 0.05 | - |
[29] | Adult; Sprague-Dawley rat; ♂ | 12 min BCAO | 50 mM, continuous infusion at 0.25 µL/h; ICV daily | Pre-HI: 5 days | Core T: 37–38 °C during HI | 7 days post HI | ↓ pyknosis in hippocampus (CA1–3 & DG), neocortex and striatum vs. vehicle + HI, p < 0.05 | ~55% ↑ functional neurological score vs. vehicle + HI p < 0.05 | - |
[29] | Adult; Sprague-Dawley rat; ♂ | 12 min BCAO | 50 mM, continuous infusion at 0.25 µL/h; ICV daily | Post-HI: 7 days | Core T: 37–38 °C during HI | 7 days post HI | ↓ hippocampal pyknosis vs. HI + vehicle, p < 0.05 | ↔ neurological score | - |
[32] | Adult; C57BL/6 mouse; ♀ | Transient MCAO for 2 h | 2%; dietary daily | Pre-HI: 4 weeks | - | 30 min and 24 h post HI | 56% ↓ in infarct size; ↓ caspase activation in ischemic brain region vs. vehicle + HI, p < 0.05 | 50% ↑ functional neurological score vs. HI + vehicle, p < 0.05 ↔ brain perfusion during recovery | ↔ Cr |
[33] | Adult; Wistar rat; ♂ | 12 min BCAO | 2.56 g/kg BW; dietary daily | Pre-HI: 10 days | Core T: 37 °C during HI | During injury and 60, 90 min post HI | - | ↑ oxidative metabolism vs. vehicle + HI, p < 0.05 | 13% ↑ tCr |
[34] | Adult; Wistar rat; ♂ | 12 min BCAO | 2.23 g/kg BW; dietary daily | Pre-HI: 10 days | - | 10 min before, during and 18 min post HI | No significant improvement on MRI during injury and reperfusion | - | 7% ↑ tCr |
[35] | Adult; Sprague-Dawley rat; ? sex | 12 min BCAO | 50 mM, continuous infusion at 0.25 µL/h; ICV daily | Pre-HI: 5 days Post-HI: 7 days | - | 7 days post HI | ~70%↓ in neuronal pyknosis and ↓ gliosis in hippocampus (CA1 and 3), neocortex, and caudate nucleus vs. vehicle + HI, p < 0.05 | - | - |
[36] | Adult; Wistar rat; ? sex | 10 min BCAO | 150 mg/kg BW; IV | Pre-HI: 60 min | Core T: 37–38 °C during HI | 48 h post HI | ~53%↓ in apoptosis, ~28% ↓ in lipid peroxidation vs. vehicle + HI, p < 0.05 | - | - |
[37] | Adult; Wistar rat; ? sex | Transient MCAO for 2 h | 100, 200 and 400 mg/kg BW; IV | Pre-HI: 30 min | - | 24 and 72 h post injury | ~25–38% ↓ apoptosis with increasing dosage at 72 h, p < 0.05 vs. vehicle + HI; ~20–40% ↓ AQP4 protein vs. vehicle + HI at 72 h, p < 0.05 | ~13–65% ↑ neurological score with increasing creatine dosage at 72 h vs. vehicle + HI, p < 0.05 | - |
Reference | Selection Bias | Performance Bias | Detection Bias | Attrition Bias | Reporting Bias | Free from Other Bias? | ||||
---|---|---|---|---|---|---|---|---|---|---|
Random Sequence Generation | Groups Similar at Baseline | Allocation Concealment | Animals Random Housing | Blinding of CAREGIVERS and/or Examiners | Random Outcome Assessment | Blinding of Outcome Assessor | Incomplete Outcome Data Addressed | Free from Selective Outcome Reporting | ||
[18] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[24] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[19] | Unclear | Yes | Yes | Unclear | Yes | Yes | Yes | Yes | Yes | Yes |
[20] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[21] | Unclear | Yes | Yes | Unclear | Unclear | Yes | Unclear | Unclear | Yes | Yes |
[23] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[22] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[27] | Unclear | Yes | Yes | Unclear | Yes | Yes | Yes | Yes | Yes | Yes |
[29] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[37] | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | No | Yes | Yes |
[33] | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[35] | Unclear | Yes | Unclear | Unclear | Unclear | Unclear | Unclear | No | Yes | Yes |
[30] | Unclear | Yes | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[36] | Unclear | Yes | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[31] | Unclear | Yes | Yes | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[34] | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
[32] | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, N.T.; Kelly, S.B.; Snow, R.J.; Walker, D.W.; Ellery, S.J.; Galinsky, R. Assessing Creatine Supplementation for Neuroprotection against Perinatal Hypoxic-Ischaemic Encephalopathy: A Systematic Review of Perinatal and Adult Pre-Clinical Studies. Cells 2021, 10, 2902. https://doi.org/10.3390/cells10112902
Tran NT, Kelly SB, Snow RJ, Walker DW, Ellery SJ, Galinsky R. Assessing Creatine Supplementation for Neuroprotection against Perinatal Hypoxic-Ischaemic Encephalopathy: A Systematic Review of Perinatal and Adult Pre-Clinical Studies. Cells. 2021; 10(11):2902. https://doi.org/10.3390/cells10112902
Chicago/Turabian StyleTran, Nhi Thao, Sharmony B. Kelly, Rod J. Snow, David W. Walker, Stacey J. Ellery, and Robert Galinsky. 2021. "Assessing Creatine Supplementation for Neuroprotection against Perinatal Hypoxic-Ischaemic Encephalopathy: A Systematic Review of Perinatal and Adult Pre-Clinical Studies" Cells 10, no. 11: 2902. https://doi.org/10.3390/cells10112902
APA StyleTran, N. T., Kelly, S. B., Snow, R. J., Walker, D. W., Ellery, S. J., & Galinsky, R. (2021). Assessing Creatine Supplementation for Neuroprotection against Perinatal Hypoxic-Ischaemic Encephalopathy: A Systematic Review of Perinatal and Adult Pre-Clinical Studies. Cells, 10(11), 2902. https://doi.org/10.3390/cells10112902