Distinct Metabolomic Signatures in Preclinical and Obstructive Hypertrophic Cardiomyopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Serum Preparation
2.3. Metabolomics Profiling
2.4. Data Analysis and Modeling
2.5. Correlation Analysis
2.6. Prediction Model
2.7. Analysis of Metabolite–Protein Links
2.8. Statistics
3. Results
3.1. Characteristics of Study Population
3.2. Multivariate Modeling Reveals Altered Metabolic Profile in Preclinical Stage of HCM
3.3. Distinct Metabolic Signatures at Preclinical and Symptomatic Stages of HCM
3.4. Metabolic Signature Versus In Vivo Energetic Status of the Heart
4. Discussion
4.1. Altered Inflammatory Signature at Preclinical Disease Stage
4.2. Altered Metabolic Blood Profile Reflects Changes in the HOCM Heart
4.3. Disease Stage-Dependent Changes in Metabolic Signatures
4.4. Altered Protein Homeostasis in HCM
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Semsarian, C.; Ingles, J.; Maron, M.S.; Maron, B.J. New Perspectives on the Prevalence of Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2015, 65, 1249–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Mahrholdt, H.; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.Y.; Charron, P.; Richard, P.; Girolami, F.; Van Spaendonck-Zwarts, K.Y.; Pinto, Y. Genetic advances in sarcomeric cardiomyopathies: State of the art. Cardiovasc. Res. 2015, 105, 397–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.Y.; López, B.; Coelho-Filho, O.R.; Lakdawala, N.K.; Cirino, A.L.; Jarolim, P.; Kwong, R.; González, A.; Colan, S.D.; Seidman, J.; et al. Myocardial Fibrosis as an Early Manifestation of Hypertrophic Cardiomyopathy. N. Engl. J. Med. 2010, 363, 552–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Captur, G.; Heywood, W.E.; Coats, C.; Rosmini, S.; Patel, V.; Lopes, L.; Collis, R.; Patel, N.; Syrris, P.; Bassett, P.; et al. Identification of a Multiplex Biomarker Panel for Hypertrophic Cardiomyopathy Using Quantitative Proteomics and Machine Learning. Mol. Cell. Proteom. 2020, 19, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Crilley, J.G.; A Boehm, E.; Blair, E.; Rajagopalan, B.; Blamire, A.M.; Styles, P.; McKenna, W.J.; Östman-Smith, I.; Clarke, K.; Watkins, H. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol. 2003, 41, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Witjas-Paalberends, E.R.; Güçlü, A.; Germans, T.; Knaapen, P.; Harms, H.J.; Vermeer, A.M.; Christiaans, I.; Wilde, A.A.; Dos Remedios, C.; Lammertsma, A.; et al. Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc. Res. 2014, 103, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Parbhudayal, R.Y.; Harms, H.J.; Michels, M.; van Rossum, A.C.; Germans, T.; van der Velden, J. Increased Myocardial Oxygen Consumption Precedes Contractile Dysfunction in Hypertrophic Cardiomyopathy Caused by Pathogenic TNNT2 Gene Variants. J. Am. Heart Assoc. 2020, 9, e015316. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, V.; Wijnker, P.J.; Nijenkamp, L.L.; Kuster, D.W.; Najafi, A.; Witjas-Paalberends, E.R.; Regan, J.A.; Boontje, N.; Cate, F.J.T.; Germans, T.; et al. Perturbed Length-Dependent Activation in Human Hypertrophic Cardiomyopathy with Missense Sarcomeric Gene Mutations. Circ. Res. 2013, 112, 1491–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witjas-Paalberends, E.R.; Piroddi, N.; Stam, K.; Van Dijk, S.J.; Oliviera, V.S.; Ferrara, C.; Scellini, B.; Hazebroek, M.; Cate, F.T.; Van Slegtenhorst, M.; et al. Mutations in MYH7 reduce the force generating capacity of sarcomeres in human familial hypertrophic cardiomyopathy. Cardiovasc. Res. 2013, 99, 432–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witjas-Paalberends, E.R.; Ferrara, C.; Scellini, B.; Piroddi, N.; Montag, J.; Tesi, C.; Stienen, G.; Michels, M.; Ho, C.; Kraft, T.; et al. Faster cross-bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q MYH7 mutation. J. Physiol. 2014, 592, 3257–3272. [Google Scholar] [CrossRef] [PubMed]
- Piroddi, N.; Witjas-Paalberends, E.R.; Ferrara, C.; Ferrantini, C.; Vitale, G.; Scellini, B.; Wijnker, P.J.; Sequeira, V.; Dooijes, D.; dos Remedios, C.; et al. The homozygous K280N troponin T mutation alters cross-bridge kinetics and energetics in human HCM. J. Gen. Physiol. 2018, 151, 18–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, J.W.; Li, A.; Lal, S.; Bos, J.M.; Harris, S.P.; van der Velden, J.; Ackerman, M.J.; Cooke, R.; Dos Remedios, C.G. MYBPC3 mutations are associated with a reduced super-relaxed state in patients with hypertrophic cardiomyopathy. PLoS ONE 2017, 12, e0180064. [Google Scholar] [CrossRef] [PubMed]
- Toepfer, C.N.; Garfinkel, A.C.; Venturini, G.; Wakimoto, H.; Repetti, G.; Alamo, L.; Sharma, A.; Agarwal, R.; Ewoldt, J.F.; Cloonan, P.; et al. Myosin Sequestration Regulates Sarcomere Function, Cardiomyocyte Energetics, and Metabolism, Informing the Pathogenesis of Hypertrophic Cardiomyopathy. Circulation 2020, 141, 828–842. [Google Scholar] [CrossRef] [PubMed]
- Güçlü, A.; Knaapen, P.; Harms, H.J.; Parbhudayal, R.Y.; Michels, M.; Lammertsma, A.A.; van Rossum, A.C.; Germans, T.; van der Velden, J. Disease Stage–Dependent Changes in Cardiac Contractile Performance and Oxygen Utilization Underlie Reduced Myocardial Efficiency in Human Inherited Hypertrophic Cardiomyopathy. Circ. Cardiovasc. Imaging 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Coats, C.J.; Heywood, W.E.; Virasami, A.; Ashrafi, N.; Syrris, P.; dos Remedios, C.; Treibel, T.A.; Moon, J.C.; Lopes, L.R.; McGregor, C.G.; et al. Proteomic Analysis of the Myocardium in Hypertrophic Obstructive Cardiomyopathy. Circ. Genom. Precis. Med. 2018, 11, e001974. [Google Scholar] [CrossRef] [Green Version]
- Schuldt, M.; Pei, J.; Harakalova, M.; Dorsch, L.M.; Schlossarek, S.; Mokry, M.; Knol, J.C.; Pham, T.V.; Schelfhorst, T.; Piersma, S.R.; et al. Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy. Circ. Heart Fail. 2021, 14, e007022. [Google Scholar] [CrossRef]
- Güçlü, A.; Germans, T.; Witjas-Paalberends, E.R.; Stienen, G.; Brouwer, W.P.; Harms, H.J.; Marcus, J.T.; Vonk, A.B.A.; Stooker, W.; Yilmaz, A.; et al. ENerGetIcs in hypertrophic cardiomyopathy: TraNslation between MRI, PET and cardiac myofilament function (ENGINE study). Neth. Heart J. 2013, 21, 567–571. [Google Scholar] [CrossRef] [Green Version]
- Haijes, H.A.; Willemsen, M.; van der Ham, M.; Gerrits, J.; Pras-Raves, M.L.; Prinsen, H.C.M.T.; van Hasselt, P.M.; Velden, M.G.M.D.S.-V.D.; Verhoeven-Duif, N.M.; Jans, J.J.M. Direct Infusion Based Metabolomics Identifies Metabolic Disease in Patients’ Dried Blood Spots and Plasma. Metabolites 2019, 9, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Allison, P.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- Caruana, R.; Niculescu-Mizil, A.; Crew, G.; Ksikes, A. Ensemble Selection from Libraries of Models. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; Association for Computing Machinery: New York, NY, USA, 2004; p. 18. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: San Francisco, CA, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, N.; Bühlmann, P. Stability selection. J. R. Stat. Soc. Ser. B Methodol. 2010, 72, 417–473. [Google Scholar] [CrossRef]
- Larson, A.; Libermann, T.; Bowditch, H.; Das, G.; Diakos, N.; Huggins, G.; Rastegar, H.; Chen, F.; Rowin, E.; Maron, M.; et al. Plasma Proteomic Profiling in Hypertrophic Cardiomyopathy Patients before and after Surgical Myectomy Reveals Post-Procedural Reduction in Systemic Inflammation. Int. J. Mol. Sci. 2021, 22, 2474. [Google Scholar] [CrossRef] [PubMed]
- Domiciano, T.P.; Dalalio, M.M.D.O.; Silva, E.L.; Ritter, A.M.V.; Estevão-Silva, C.F.; Ramos, F.S.; Caparroz-Assef, S.M.; Cuman, R.K.N.; Bersani-Amado, C.A. Inhibitory effect of anethole in nonimmune acute inflammation. Naunyn-Schmiedeberg Arch. Pharmacol. 2013, 386, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Chainy, G.B.; Manna, S.K.; Chaturvedi, M.M.; Aggarwal, B.B. Anethole blocks both early and late cellular responses transduced by tumor necrosis factor: Effect on NF-κB, AP-1, JNK, MAPKK and apoptosis. Oncogene 2000, 19, 2943–2950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takaoka, Y.; Matsuura, S.; Boda, K.; Nagai, H. The Effect of Mesoporphyrin on the Production of Cytokines by Inflammatory Cells In Vitro. Jpn. J. Pharmacol. 1999, 80, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Esser-von Bieren, J. Immune-regulation and -functions of eicosanoid lipid mediators. Biol. Chem. 2017, 398, 1177–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haeggström, J.Z.; Kull, F.; Rudberg, P.C.; Tholander, F.; Thunnissen, M.M. Leukotriene A4 hydrolase. Prostaglandins Other Lipid Mediat. 2002, 68-69, 495–510. [Google Scholar] [CrossRef]
- Coleman, J.W. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 2001, 1, 1397–1406. [Google Scholar] [CrossRef]
- Schwenk, R.W.; Holloway, G.P.; Luiken, J.J.; Bonen, A.; Glatz, J.F. Fatty acid transport across the cell membrane: Regulation by fatty acid transporters. Prostaglandins Leukot. Essent. Fat. Acids 2010, 82, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, S. The Failing Heart—An Engine Out of Fuel. N. Engl. J. Med. 2007, 356, 1140–1151. [Google Scholar] [CrossRef] [Green Version]
- Ingwall, J.S. Energy metabolism in heart failure and remodelling. Cardiovasc. Res. 2009, 81, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, F.B.; Constantin-Teodosiu, D.; Greenhaff, P. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J. Physiol. 2007, 581 Pt 2, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Sugihara, H.; Kinoshita, N.; Ito, K.; Adachi, Y.; Hirasaki, S.; Matsuo, A.; Azuma, A.; Kodo, N.; Nakagawa, M. Serum carnitine concentrations in patients with idiopathic hypertrophic cardiomyopathy: Relationship with impaired myocardial fatty acid metabolism. Clin. Sci. 1999, 97, 493–501. [Google Scholar] [CrossRef]
- Henriques, B.; Olsen, R.; Bross, P.; Gomes, C.M. Emerging Roles for Riboflavin in Functional Rescue of Mitochondrial β-Oxidation Flavoenzymes. Curr. Med. Chem. 2010, 17, 3842–3854. [Google Scholar] [CrossRef]
- Eckle, S.; Corbett, A.; Keller, A.N.; Chen, Z.; Godfrey, D.; Liu, L.; Mak, J.; Fairlie, D.; Rossjohn, J.; McCluskey, J. Recognition of Vitamin B Precursors and Byproducts by Mucosal Associated Invariant T Cells. J. Biol. Chem. 2015, 290, 30204–30211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonassen, T.; Clarke, C.F. Isolation and Functional Expression of Human COQ3, a Gene Encoding a Methyltransferase Required for Ubiquinone Biosynthesis. J. Biol. Chem. 2000, 275, 12381–12387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregus, Z.; Roos, G.; Geerlings, P.; Németi, B. Mechanism of Thiol-Supported Arsenate Reduction Mediated by Phosphorolytic-Arsenolytic Enzymes. Toxicol. Sci. 2009, 110, 282–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorsch, L.M.; Schuldt, M.; dos Remedios, C.G.; Schinkel, A.F.L.; de Jong, P.L.; Michels, M.; Kuster, D.W.D.; Brundel, B.J.J.M.; van der Velden, J. Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells 2019, 8, 741. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.-S.; Roberts, R.; Marian, A.J. Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: Insight into the pathogenesis of phenotypes. J. Am. Coll. Cardiol. 2001, 38, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Jørgenrud, B.; Jalanko, M.; Heliö, T.; Jääskeläinen, P.; Laine, M.; Hilvo, M.; Nieminen, M.S.; Laakso, M.; Hyötyläinen, T.; Oresic, M.; et al. The Metabolome in Finnish Carriers of the MYBPC3-Q1061X Mutation for Hypertrophic Cardiomyopathy. PLoS ONE 2015, 10, e0134184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Zhou, M.; Sun, H.; Wang, Y. Branched-chain amino acid metabolism in heart disease: An epiphenomenon or a real culprit? Cardiovasc. Res. 2011, 90, 220–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.Y.; Cirino, A.L.; Lakdawala, N.K.; Groarke, J.; Valente, A.M.; Semsarian, C.; Colan, S.D.; Orav, E.J. Evolution of hypertrophic cardiomyopathy in sarcomere mutation carriers. Heart 2016, 102, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Jalanko, M.; Heliö, T.; Mustonen, P.; Kokkonen, J.; Huhtala, H.; Laine, M.; Jääskeläinen, P.; Tarkiainen, M.; Lauerma, K.; Sipola, P.; et al. Novel electrocardiographic features in carriers of hypertrophic cardiomyopathy causing sarcomeric mutations. J. Electrocardiol. 2018, 51, 983–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Carrier (n = 31) | HOCM (n = 14) | Ctrl (n = 9) | |
---|---|---|---|
Age (years) | 38 ± 14 * | 50 ± 13 # | 51 ± 8 |
Male sex (no. (%)) $ | 7 (22.6) | 10 (71.4) | 6 (66.7) |
BMI (kg/m2) | 22.7 ± 2.9 * | 26.9 ± 3.0 # | 26.4 ± 2.6 |
LVM (g) | 72.4 ± 18.3 | 193.7 ± 68.7 *,# | 102.5 ± 17.8 |
LVMi | 39.6 ± 7.8 | 95.4 ± 33.0 *,# | 49.5 ± 6.1 |
LVEF (%) | 66 ± 6 | 71 ± 10 * | 61 ± 6 |
LVOTg (mmHg) | 34.7 ± 24.1 | ||
LVOTg (mmHg, post-myectomy) | 11 ± 8 | ||
Systolic BP (mmHg) | 113 ± 14 | 118 ± 17 | 124 ± 13 |
Diastolic BP (mmHg) | 66 ± 9 | 69 ± 13 | 69 ± 4 |
MAP (mmHg) | 81 ± 10 | 85 ± 14 | 88 ± 5 |
HR (bpm) | 63 ± 11 | 60 ± 4 | 66 ± 9 |
NT-proBNP (pg/l) | 77 ± 55 (n = 28) | 1533 ± 2976 # | 54 ± 55 |
FFA | 0.6 ± 0.2 | 0.3 ± 0.2# | 0.5 ± 0.3 |
Carrier vs. Ctrl | Carrier vs. HOCM | HOCM vs. Ctrl |
---|---|---|
Benzenoids | ||
2 | 1 | 2 |
Metabolite 2 | Metabolite 2 | |
Vanilloylglycine | 3-Polyprenyl-4,5-dihydroxybenzoate | 1,3,5-Trimethoxybenzene |
Lipids and lipid-like molecules | ||
10 | 14 | 13 |
11beta,20-Dihydroxy-3-oxopregn-4-en-21-oic acid | 11beta,20-Dihydroxy-3-oxopregn-4-en-21-oic acid | |
13′-Hydroxy-alpha-tocotrienol | 13′-Hydroxy-alpha-tocotrienol | |
Metabolite 3 | Metabolite 3 | |
Metabolite 5 | Metabolite 5 | |
8-[(Aminomethyl)sulfanyl]-6-sulfanyloctanoic acid | 3,4-Methylenesebacic acid | 5b-Cyprinol sulfate |
19,20-DIHDPA | 7a,12a-Dihydroxy-3-oxo-4-cholenic acid | 9′-Carboxy-gamma-tocotrienol |
Metabolite 1 | Glutarylcarnitine | Metabolite 28 |
Metabolite 6 | Metabolite 15 | Metabolite 30 |
Metabolite 7 | Metabolite 16 | Metabolite 34 |
Metabolite 14 | Metabolite 18 | Metabolite 39 |
Perillic acid | Metabolite 22 | Metabolite 40 |
Tetracosanoic acid | Metabolite 25 | Metabolite 41 |
Metabolite 26 | Stearic acid | |
Metabolite 27 | Stigmastanol | |
Palmitoyl glucuronide | ||
Nucleosides, nucleotides and analogues | ||
1 | 0 | 3 |
SAICAR | SAICAR | |
dADP | ||
Glycineamideribotide | ||
Organic acids and derivatives | ||
10 | 7 | 8 |
Pentadecanoylglycine | Pentadecanoylglycine | |
5-(methylthio)-2,3-Dioxopentyl phosphate | Metabolite 17 | Cytidine 2′,3′-cyclic phosphate |
Indoleacetyl glutamine | Metabolite 19 | Dityrosine |
Metabolite 4 | Metabolite 20 | Gamma Glutamylglutamic acid |
Metabolite 9 | Metabolite 21 | Metabolite 29 |
Metabolite 11 | Metabolite 24 | Metabolite 31 |
Metabolite 12 | N-Acetylaspartylglutamic acid | Metabolite 32 |
Metabolite 13 | Metabolite 36 | |
N-Acetylhistamine | Metabolite 38 | |
Phosphocreatinine | ||
Organic oxygen compounds | ||
3 | 2 | 2 |
Metabolite 8 | Epinephrine glucoronide | Metabolite 33 |
Metabolite 10 | Heptyl ketone | Metabolite 35 |
Ribose-1-arsenate | ||
Organoheterocyclic compounds | ||
2 | 5 | 2 |
6-Dimethylaminopurine | 2-Pyrrolidinone | 6-Carboxy-5,6,7,8-tetrahydropterin |
Cinnavalininate | 7-Hydroxy-6-methyl-8-ribityl lumazine | Metabolite 37 |
Mesoporphyrin IX | ||
Metabolite 23 | ||
Pentaporphyrin I | ||
Organosulfur compounds | ||
1 | 0 | 0 |
Dimethyl sulfone | ||
Phenylpropanoids and polyketides | ||
0 | 1 | 0 |
Equol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuldt, M.; van Driel, B.; Algül, S.; Parbhudayal, R.Y.; Barge-Schaapveld, D.Q.C.M.; Güçlü, A.; Jansen, M.; Michels, M.; Baas, A.F.; van de Wiel, M.A.; et al. Distinct Metabolomic Signatures in Preclinical and Obstructive Hypertrophic Cardiomyopathy. Cells 2021, 10, 2950. https://doi.org/10.3390/cells10112950
Schuldt M, van Driel B, Algül S, Parbhudayal RY, Barge-Schaapveld DQCM, Güçlü A, Jansen M, Michels M, Baas AF, van de Wiel MA, et al. Distinct Metabolomic Signatures in Preclinical and Obstructive Hypertrophic Cardiomyopathy. Cells. 2021; 10(11):2950. https://doi.org/10.3390/cells10112950
Chicago/Turabian StyleSchuldt, Maike, Beau van Driel, Sila Algül, Rahana Y. Parbhudayal, Daniela Q. C. M. Barge-Schaapveld, Ahmet Güçlü, Mark Jansen, Michelle Michels, Annette F. Baas, Mark A. van de Wiel, and et al. 2021. "Distinct Metabolomic Signatures in Preclinical and Obstructive Hypertrophic Cardiomyopathy" Cells 10, no. 11: 2950. https://doi.org/10.3390/cells10112950
APA StyleSchuldt, M., van Driel, B., Algül, S., Parbhudayal, R. Y., Barge-Schaapveld, D. Q. C. M., Güçlü, A., Jansen, M., Michels, M., Baas, A. F., van de Wiel, M. A., Nieuwdorp, M., Levin, E., Germans, T., Jans, J. J. M., & van der Velden, J. (2021). Distinct Metabolomic Signatures in Preclinical and Obstructive Hypertrophic Cardiomyopathy. Cells, 10(11), 2950. https://doi.org/10.3390/cells10112950