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Abstract: Endotoxemia-activated tumor necrosis factor (TNF«)/nuclear factor kappa B (NF«B) sig-
nals result in acute on chronic inflammation-driven renal dysfunction in advanced cirrhosis. Systemic
activation of peroxisome proliferator-activated receptor gamma (PPARY) with pioglitazone can sup-
press inflammation-related splanchnic and pulmonary dysfunction in cirrhosis. This study explored
the mechanism and effects of pioglitazone treatment on the abovementioned renal dysfunction in
cirrhotic rats. Cirrhotic ascitic rats were induced with renal dysfunction by bile duct ligation (BDL).
Then, 2 weeks of pioglitazone treatment (Pio, PPAR gamma agonist, 12 mg/kg/day, using the azert
osmotic pump) was administered from the 6th week after BDL. Additionally, acute lipopolysaccha-
ride (LPS, Escherichia coli 0111:B4; Sigma, 0.1 mg/kg b.w, i.p. dissolved in NaCl 0.9%) was used
to induce acute renal dysfunction. Subsequently, various circulating, renal arterial and renal tissue
pathogenic markers were measured. Cirrhotic BDL rats are characterized by decreased mean arterial
pressure, increased cardiac output and portal venous pressure, reduced renal arterial blood flow
(RABF), increased renal vascular resistance (RVR), increased relative renal weight/hydroxyproline,
downregulated renal PPARYy expression, upregulated renal inflammatory markers (TNF«, NF«B,
IL-6, MCP-1), increased adhesion molecules (VCAM-1 and ICAM-1), increased renal macrophages
(M1, CD68), and progressive renal dysfunction (increasing serum and urinary levels of renal injury
markers (lipocalin-2 and IL-18)). In particular, acute LPS administration induces acute on chronic
renal dysfunction (increasing serum BUN/ creatinine, increasing RVR and decreasing RABF) by
increased TNFa-NFkB-mediated renal inflammatory markers as well as renal M1 macrophage in-
filtration. In comparison with the BDL+LPS group, chronic pioglitazone pre-treatment prevented
LPS-induced renal pathogenic changes in the BDL-Pio+LPS group. Activation of systemic, renal
vessel and renal tissue levels of PPARy by chronic pioglitazone treatment has beneficial effects on the
endotoxemia-related TNFo./NF«B-mediated acute and chronic renal inflammation in cirrhosis. This
study revealed that normalization of renal and renal arterial levels of PPARY effectively prevented
LPS-induced acute and chronic renal dysfunction in cirrhotic ascitic rats.
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1. Introduction

In cirrhosis, endotoxemia-activated tumor necrosis factor « (TNFe)/NFkB signals are
involved in the development of systemic, pulmonary, splanchnic and renal dysfunction [1-3].
In cirrhotic kidneys, acute accumulation of lipopolysaccharide (LPS, endotoxin) results in
TNF«/NF«B-mediated hypoperfusion and inflammation-driven acute on chronic renal
dysfunction by increasing renal adhesion molecule, increasing renal M1 macrophage
infiltration, decreasing renal blood flow (RABF), increasing renal vascular resistance (RVR),
and increasing renal tissue/renal vascular inflammation [4-8].

Endotoxemia-related renal inflammation is characterized by a reduction in RABF in
septic rats [8]. Endotoxin and TNF«/NFkB are involved in the RABF decline and chronic
renal dysfunction in bile-duct ligated rats [9,10]. In healthy rats, the infusion of TNFx
lowers RABF and increases RVR by inducing vascular inflammation without affecting
arterial pressure [11,12]. In cirrhotic ascitic patients, decreasing the levels of circulating
endotoxin and TNF« using selective intestinal decontamination with rifaximin improved
chronic renal dysfunction [13]. During renal vascular inflammation, a significant (around
40%) reduction in RABF and chronic renal dysfunction were reported in compensated
cirrhotic patients compared to those in healthy volunteers [1]. PPARYy is expressed in
renal medullary interstitial cells in the juxtaglomerular apparatus and glomeruli, includ-
ing podocytes, mesangial cells, and renal microvascular endothelial cells [14]. Given
that multiple renal cell types have endogenous PPARY expression and activity, its acti-
vation in the kidney may be critical for governing renal function. In mice with diabetic
nephropathy, chronic pioglitazone treatment decreases both renal vascular inflammation
and reduces RVR [15].

Decreased pulmonary expression of PPARYy accelerated the ongoing endotoxemia-
related TNFa/NFkB-mediated lung inflammation and injury [16]. In septic rats, phar-
macological activation of PPARy attenuates endotoxin-induced TNFa/NFkB-mediated
renal injury and dysfunction [17,18]. Activation of PPARYy with pioglitazone reduces renal
macrophage infiltration [19,20].

Activation of endothelial PPARy with PPARy agonist rosiglitazone inhibits LPS-
induced vascular inflammation [21]. Pioglitazone is a nuclear receptor PPARYy activator that
exerts anti-inflammatory effects by antagonizing LPS-mediated vascular inflammation [22].
Downregulated hepatic PPARYy expression is associated with increased systemic circulating
inflammatory cytokines in BDL rats [23]. In BDL-cirrhotic rats, chronic pioglitazone treat-
ment attenuates motor and cognition impairments and suppresses TNFo./NF«B-mediated
inflammation-related portosystemic shunting and hepatopulmonary syndrome [24-26].

Taken together, the effects of chronic pioglitazone treatment on endotoxemia-induced
cirrhosis-related acute on chronic vascular and tissue inflammation-related renal dys-
function have not been explored. This study evaluated the mechanism and effects of
activation of systemic, renal tissue and renal vascular levels of PPARy by chronic piogli-
tazone treatment on the TNFo/NFkB-mediated acute on chronic renal dysfunction in
cirrhotic ascitic rats.

2. Materials and Methods
2.1. Methods

Common bile duct ligation (BDL) was conducted on adult male Sprague-Dawley rats
(300-350 g), as described previously [2,5,10,24]. All animal experiments were approved by
the Animal Care Committee of the National Yang-Ming Chiao Tung University (YMCU)
and conducted in the animal facilities of YMCU with No. 1090211r which was approved
on 1 January 2020. All efforts were made to minimize the number of animals necessary to
produce reliable results, and suffering was reduced by administering anesthetics (zoletil
and xylocaine). At the end of the experiments, the rats were euthanized using a 2-3 times
high anesthetic dose of zoletil.

To evaluate the effects of chronic pioglitazone (Pio, PPAR gamma agonist, 12 mg/kg/day,
using the azert osmotic pump for intraperitoneal administration) or DMSO (a substance
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used to dissolve pioglitazone), pre-treatment on LPS was used to induce acute on chronic
renal injury of cirrhotic rats. Four weeks after BDL, cirrhotic rats were randomized to
receive two weeks of pioglitazone before the acute LPS challenge. Without modifying
blood sugar levels, this dose of chronic pioglitazone treatment can ameliorate splanchnic
inflammation, decrease portosystemic shunting, and prevent hepatopulmonary syndrome
in cirrhotic animals [24-26]. Then, to induce an acute renal dysfunction, rats were randomly
allocated 6 weeks after BDL to receive an intraperitoneal injection of LPS (Escherichia coli
0111:B4; Sigma, 0.1 mg/kg b.w, i.p. dissolved in NaCl 0.9%). Subsequently, various
parameters were measured 3 h after LPS administration. The experimental groups were
sham (n = 4), sham+LPS (n = 4), sham-Pio+LPS (n = 4), BDL (n = 9), BDL+LPS (1 = 9), and
BDL-Pio+LPS (n = 9) rats.

2.2. Urine Sample Collection

In order to evaluate the effects of chronic pioglitazone treatment on progressive
cirrhosis-related renal injury, urinary renal tubular epithelial damage markers (uLipocalin-2,
ulL-18 and creatinine (Colorimetric kits purchased by Cayman Chemical)) were measured
in urine collected daily at 1-2, 15-16, 29-30, and 43-44 days after BDL. All the measure-
ments and acute LPS infusion were conducted after the last daily urine collection. To collect
urine, the rats were first caged in 24 h metabolic cages for 2 days of acclimatization to
reduce separation effects.

2.3. Hemodynamic Measurements in the Days of Tissue Collections

Tissue and blood samples were collected after various hemodynamic measurements
(mean arterial pressure (MAP), cardiac output (CO), heart rate (HR), bilateral RABF
(mL/min-100 g body weight, BW), and portal venous pressure (PVP)). The right renal
artery was identified at its aortic origin, and a 5 mm segment was gently dissected from
the surrounding tissues. A pulsed-Doppler flow transducer (T206 small animal blood
flowmeter; Transonic Systems, Ithaca, NY, USA) was then placed to measure the renal
artery blood flow rate. Following a 1 h equilibrium period, the RABF was measured
for 1 h. The results are reported as mL/min. Extrarenal renal vascular resistance (RVR)
was calculated as MAP/RABE. The cardiac index (CI) was calculated using the following
formula: CI=CO/BW. Stroke volume (SV; mL/beats) was calculated as (CO (mL/min)/HR
(beats/min))).

2.4. Measurement of Various Plasma Pathogenic Factors

Blood was obtained from the inferior vena cava at the time of euthanasia. Plasma levels
of biochemical parameters were determined using an automated biochemistry analyzer
(Olympus, Tokyo, Japan). Additionally, serum samples were analyzed for TNF-o and IL-6
levels by enzyme-linked immunosorbent assay according to the manufacturer’s instructions
(BioSource International, Camarillo, CA, USA).

2.5. Isolated Renal Perfusion Study

All rats were anesthetized intraperitoneally with zoletil (50 mg/kg body weight, ip)
and fixed in the supine position. The isolated renal perfusion study of the right kidney
was conducted as previously described [10,12]. In the rat perfusion system, RVR was
recorded using a pressure transducer (Gould, Oxnard, CA, USA) as changes in renal
perfusion pressure (RPP) downstream from the pump. RVR (mm Hg/mL per min/g) was
calculated from the ratio of constant perfusion flow to the RPP. Once the RPP reached
its steady state, experiments were initiated by the addition of cumulative concentrations
of TNFa (0.1, 0.3, and 0.5 ng/g/min) to the perfusion apparatus with Krebs—Henseleit
solution inside. Different concentrations of TNFx were added after the previous response
reached a maximum.
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2.6. Tissue Profiles

All renal arteries (including renal, lobar, and arcuate arteries) and kidneys were
collected, immediately frozen in liquid nitrogen, and stored at —80 °C until analysis. In
addition to immunochemistry and immunofluorescence staining, periodic acid-Schiff
(PAS)-stained and Sirius Red-stained renal sections were also prepared to evaluate the
severity of renal tubular damage and tubulointerstitial fibrosis.

2.7. Flow Cytometry

For measuring macrophage infiltration, the cell pellets of renal tissue were washed in
FACS bulffer for staining with F4/80-FITC, CD11c-PE, and CD206-AF488 antibodies (BD
Biosciences, Franklin Lakes, NJ, USA) and incubated on ice for 1 h. After the wells were
washed in FACS buffer, they were re-suspended in 500 puL of FACS and analyzed with
a FACS Calibur flow cytometer; the resulting data were analyzed using the Flow]o software
(Tree Star, Ashland, OR, USA). Fluorescence voltages were determined using matched
unstained cells. Two hundred thousand events were acquired in a live mononuclear gate.
Then, the number of M1 (F4/80(+)/CD11c(+)) and M2 (F4/80(+)/CD206(+)) macrophages
in 1 mL of tissue homogenates was obtained.

2.8. Materials

Antibodies against TNF«, IL-6, CD68, CD163, MCP-1, F4/80-FITC, CD11c-PE, and
CD206-AF488 were purchased from Cell Signaling Technology (Danvers, MA, USA) and
Santa Cruz Biotechnology (Santa Cruz, CA, USA). Primers (Table 1) of TNFx, MCP-1,
IL-4, IL-13 and 185 were purchased from Applied Biosystems. All other reagents were
obtained from Sigma (St. Louis, MO, USA). Tissue levels of the adhesion molecules ICAM-1,
VCAM-1 and MCP-1 were measured by enzyme-linked immunosorbent assay (ELISA)
using commercially available ELISA kits (BD Bioscience, San Jose, CA, USA).

Table 1. Primers of various genes.

Gene Name Forwards Reverse
TNF«x 5'-GCT CAC AAT GTC TGT GCT TAGAG-3' 5'-GCA GTA GCC ACA GCT CCAG-3'
MCP-1 5'-ATG CAG TTA ATG CCC CAC TC-3' 5/-TGC TGC TGG TGA TTG TCT TG-3
IL-4 5-GGA TGT GCC AAA CGT CCT C-3/ 5'-GAG TTC TTC TTC AAG CAT GGAG-3’
IL-13 5/-CTT TCT TTA GCG GCC AC-3 5'-CAG AGC GCC ATG AAG CCC AGAG-3/
18S 5'-ACGGAAGGGCACCACCAGGA-3' 5'-CACCACCACCCACGGAATCG-3

TNFo: tumor necrosis factor « (TNFx); MCP-1: monocyte chemoattractant protein-1; IL-4: interleukin-4; IL-13: interleukin-13.

2.9. Statistical Analysis

All values are expressed as the mean =+ standard error of the mean (SEM). Differences
between groups were compared using Mann-Whitney U test for the comparison of the
data of mean/SEM, and differences between two groups and ANOVA with post-hoc test
for comparison among multiple groups. Statistical significance was set at p < 0.05.

3. Results
3.1. Cirrhotic BDL Rats Are Characterized by Progressive Renal Dysfunction that Can Be
Attenuated by Chronic Pioglitazone Treatment

In comparison with sham rats, cirrhotic rats were characterized by decreased MAP, in-
creased CO and PVP, reduced RABEF, increased RVR, increased relative renal weight and in-
creased renal hydroxyproline levels (Table 2). Although not reaching significance, acute LPS
administration showed a decreasing MAP and CO and increasing PVP and RABE. Acute
on chronic renal dysfunction (increased blood urea nitrogen and creatinine, Figure 1C,D)
were observed in BDL+LPS groups. Notably, the relative kidney weight and renal hydrox-
yproline were not different between the sham, sham+LPS, BDL, and BDL+LPS groups.
In comparison with the sham group, a serial increase in renal injury markers (IL-18 and
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lipocalin-2) in urine and renal tissue were observed (Figures 1A,B and 2A) in BDL groups.
This observation indicated that progressive injury-related renal dysfunction existed in rat
cirrhotic kidneys two weeks after BDL. In the BDL-Pio+LPS group, before LPS admin-
istration, the urinary levels of IL-18 and lipocalin-2 were lower than those in the BDL
group (Figure 1A,B). These results indicated that the two weeks of pioglitazone treatment
attenuated progressive renal dysfunction as well as acute LPS-deteriorated renal function in
cirrhotic rats. Additionally, this pre-treatment attenuated the LPS-induced decrease in MAP
and CO and the increase in RABF, serum BUN, and serum creatinine in the BDL-Pio+LPS
group (Table 2 and Figure 1C,D).

Table 2. Hemodynamic parameters of cirrhotic rats receiving chronic pioglitazone treatments after acute LPS infusion.

Sham Sham+LPS  Sham-Pio+LPS BDL BDL+LPS BDL-Pio+LPS
n=4) n=4) n=4) (n=9) n=9) (n=9)
MAP (mmHg) 110 + 14 106 + 9 109 + 11 92 4+12% 87 +5* 90 + 6
Cardiac output (CO, 229 + 38 203 + 28 211419 259 4 41 * 212429 % 242 + 33
mL/min)
PVP (mmHg) 7.8+ 0.9 9.1+ 0.6 82+ 0.8 173 +16* 182 +2.3 179 + 2.1
RABF (mL/min-100 g) 51+ 1.4 56+ 1.6 54+12 30+13* 38405 3.6+ 0.9
Body weight 3546 +184 3498 +165 34724139 3064 +21.4* 3093+ 189 3102 + 143
(BW, gram)
Kidney weight (KW, oo 4 007 1204 148 1.21 + 0.018 1.9 + 0.078 2.1 + 0.065 1.4 4 0.009
both sides, grams)
KW/BW (10~3) 0.36 +0.0021  0.35 + 0.003 0.35+0.007  0.62+0004* 0.68+0003 045+ 0.002*
Renal hydroxyproline 312 + 22 309 + 27 310 + 19 429 +12% 418 +17 420+ 8
(ug/mg kidney)

In sham-LPS or BDL-LPS groups, all measurements were undergone 3 h after LPS infusion; * p < 0.05 vs. sham group; # p < 0.05 vs. BDL
group. MAP: mean arterial pressure; portal venous pressure (PVP); RABF: renal artery blood flow is the summation of right and left
side kidney.
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Figure 1. Chronic piogliotazone treatment attenuated chronic renal dysfunction in cirrhotic rats. (A,B) Urinary levels of renal
injury markers including interleukin-18 (IL-18) and lipocalin-2; (C,D) serum BUN and creatinine; serum levels of (E) vascular
cell adhesion molecule-1 (VCAM-1), (F) intracellular adhesion molecule-1 (ICAM-1), (G) monocyte chemoattractant
protein-1 (MCP-1); renal levels of (H) TNFow, tumor necrosis factor o (TNF«) and (I) interleukin-6 (IL-6); * p < 0.05 sham vs.
BDL group; # p < 0.05 vs. BDL vs. BDL-LPS group; t p < 0.05 vs. BDL-pio+LPS vs. BDL-LPS group.
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Figure 2. Chronic pioglitazone treatment suppressed LPS-induced acute on chronic renal dysfunction by prevention of

increased renal macrophage infiltration. (A) Renal interleukin-18 (IL-18) expression; (B) various renal protein expressions

between groups; (C) renal Sirius Red staining expression; * p < 0.05 vs. sham group; # p < 0.05 vs. BDL group; t p <0.05

vs. BDL-LPS.

3.2. Chronic Pioglitazone Treatment Suppressed Serum Endotoxin, TNFw, IL-6, ALT and Total
Bilirubin in Advanced Cirrhotic Rats

Notably, cirrhotic rats were characterized by higher circulating TNF«, IL-6, VCAM-1,
ICMA-1, ALT, total bilirubin (TB) and lower serum albumin than rats in the sham group
(Table 3 and Figure 1E,F). Acute LPS administration significantly increased circulating
TNFe«, IL-6, VCAM-1, ICAM-1, ALT, TB and decreased serum albumin levels in the
BDL+LPS group. In particular, the chronic pioglitazone pre-treatment prevented the
LPS-induced increase in serum TNF«, IL-6, VCAM-1, ICAM-1, ALT, TB and decreased
serum albumin in BDL-Pio+LPS rats. The fasting blood sugar (FBS) level was slightly
higher in the BDL group than in the sham group. Nonetheless, FBS was not affected by
acute LPS administration and chronic pioglitazone treatment in sham-LPS, sham-Pio+LPS,
BDL-LPS, and BDL-Pio+LPS rats.

3.3. Acute LPS Administration Downregulated Renal PPAR"y Expression and Increased Renal M1
Macrophage Infiltration and Inflammation in Cirrhotic Ascitic Rats

In comparison with the sham group, the downregulation of renal PPARy expression
was accompanied by the upregulation of renal TNFx, NFkBp65, IL-6 and increased re-
nal macrophage infiltration (upregulated macrophage marker CD68) in the BDL group
(Figures 1H,I and 2B,C). In the BDL group, the frequency of renal M1 macrophage infiltra-
tion (increased levels of TNFoe and MCP-1 in cell lysates) was higher than that in the sham
group (Figures 1H, 3A-D and 4A). The decrease in the percentage of renal M2 macrophages
was companied by decreased levels of M2 marker (IL-4 and IL-13) in cell lysates of renal
tissue of the BDL group (Figures 2B and 3C,D). Particularly, acute LPS administration in-
duced a further increase in renal M1 macrophage infiltration, suppression of renal PPARy,
and upregulation of renal TNFo, NFkBp65, IL-6 and MCP-1. Chronic pioglitazone pre-
treatment attenuated the above-mentioned LPS-related infiltrated macrophage-mediated
pathogenic changes in the BDL group (Figures 1-3).
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3.4. Effects of Chronic Pioglitazone Pre-Treatment Suppressed LPS-Induced TNFwa -Mediated
Renal Injury and Fibrosis in Cirrhotic Ascitic Rats

Pioglitazone pre-treatment attenuated LPS-induced renal tubular injury (IL-18, Figure 2A),
inflammation (TNF«, IL-6, MCP-1, Figures 1G-I, 2B, 3B and 4A), tubulointerstitial injury
and fibrosis (PAS-stained and Sirius Red-stained data, Figures 2C and 3A) by activating
renal PPARy expression. In addition, pioglitazone reduced the mortality rate of BDL rats

to 32.9% during the 3 h following LPS injection compared with the saline treated group
(p <0.05).

Table 3. Clinical and serum biochemical data of rats with biliary cirrhosis receiving pioglitazone or vehicle.

Sham+LPS (n =4)

Sham Sham-Pio+LPS (n = 4) BDL+LPS (n=9) BDL-Pio+LPS (n=9)
(n=4) (Mean % Increase from (Mean % Increase from BDL (n=9) (Mean % Increase from (Mean % Increase from
- Data of Sham Group) Data of Sham Group) Data of Sham Group) Data of Sham Group)
(Endotoxin) (pg/mL) 7.3 % 0.9 9.6+08 83+ 05 179 £2.6* 27.3 +2.8% 194+18%
(TNF) (pg/mL) 12.9 £54 348 +£48 171428 56.9 4+ 8.1* 168.3 £ 9.6 641+7.1%
(IL-6) (pg/mL) 105+ 1.1 17.6 + 2.1 142+ 16 29.8 +34* 73.6 + 19" 31.8 4224
Fasmz%’n tg;’gﬁ)s“gar 95 + 15 108 + 20 98 + 16 112 +23 123+ 19 119+ 16
(Albumin) (g/L) 41407 3.7+09 39408 294+09 26+04 28+0.7
(ALT) (IU/L) 58 + 14 69 + 13 61+ 12 98 + 7+ 352 + 15 # 168 + 12 #
(T"?;‘Ill gi/lgl‘f)bin) 0.38 % 0.09 0.58 = 0.04 0.41 % 0.06 78+08* 185+ 17# 1314251

In sham-LPS or BDL-LPS groups, blood was collected for various measurement 3 h after LPS infusion; * p < 0.05 vs. sham group; # p < 0.001

vs. BDL group; i H p < 0.05, 0.001 vs. BDL+LPS group; TNFa: tumor necrosis factor « (TNF«); IL-6: interleukin-6; ALT: alanine
aminotransferase.
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Figure 3. Chronic pioglitazone treatment suppressed the lipopolysaccharide (LPS)-induced acute on chronic renal injury by
the prevention of increased renal M1 macrophages. (A,B) Renal PAS stain; (C) frequency of M1/M2 macrophages in renal

tissue; (D). mRNA of M1/M2 markers in homogenates of renal tissue. * p < 0.05 vs. sham group; # p < 0.05 vs. BDL group;
tp <0.05 vs. BDL-LPS.
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Figure 4. Chronic pioglitazone treatment inhibited the lipopolysaccharide (LPS)-enhanced TNF« and tumor necrosis factor

o (TNFx)-induced increase in renal vascular resistance (RVR) of BDL-cirrhotic rats. (A) Immunofluorescence (IF) stain of

monocyte chemoattractant protein-1 (MCP-1) expression in rat kidney. Concentration-response curve and bar graphs of
AUC of (B) RVR and (C) renal blood flow (RABF) in response to cumulative concentrations of TNF«; * p < 0.05 vs. sham
group; # p < 0.05 vs. BDL group; * p < 0.05 vs. BDL-LPS; § p < 0.05 vs. lower concentration of TNFx.

3.5. Chronic PPARy Agonist Pioglitazone Pre-Treatment Attenuates the LPS-Induced
TNFa-Mediated Increase in Renal Vascular Resistance (RVR) in Cirrhotic Ascitic Rats

Figure 4B,C shows that the cumulative concentrations of TNFo induced an increase in
RVR and a decrease in RABF in sham-perfused kidneys. Significantly, the degrees of TNFx-
induced increase in RVR and decrease in RABF were higher in BDL-perfused rat kidneys
than those in sham-perfused kidney. Furthermore, acute LPS administration significantly
increased the magnitude of the TNFx-induced increase in RVR and the decrease in RABF
both in sham+LPS and BDL+LPS groups, whereas the degree of changes was higher
in the BDL+LPS group than those in the sham+LPS group. In BDL rats with chronic
pioglitazone pre-treatment, a lower degree of LPS-enhanced TNF«-induced increase in
RVR and decrease in RABF were noted in the BDL-Pio+LPS group than in the BDL+LPS
group (Figure 4B,C).

3.6. Chronic Pioglitazone Pre-Treatment Attenuated LPS-Induced TNFa/NFxB-Mediated Renal
Tissue and Renal Vascular Inflammation in BDL Rats

In comparison with the sham group, lower PPARYy expression was associated with
increased levels of inflammatory mediators (TNF«, IL-6, MCP-1, NFkBp65, and CD68,
Figure 5A,B,E H) in the renal arterial tissue of the BDL group. Furthermore, acute LPS pre-
administration significantly downregulated PPARy expression, increased M1 macrophage
infiltration, and increased vascular inflammation in renal arteries of the BDL+LPS group.
In particular, chronic pioglitazone pre-treatment attenuated the LPS-induced TNF«/NF«B-
mediated pathogenic changes in the renal arterial tissue of the BDL-Pio+LPS group.
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Figure 5. Chronic pioglitazone treatment inhibited the lipopolysaccharide (LPS)-induced vascular inflammation in rat

cirrhotic renal arteries. Renal arterial concentrations of (A) TNF«, tumor necrosis factor « (TNF«), (B) interleukin-6
(IL-6), (C) vascular cell adhesion molecule-1(VCAM-1), (D) intracellular adhesion molecule-1 ICAM-1), (E) monocyte
chemoattractant protein-1 (MCP-1), (F) interleukin-4 (IL-4), and (G) interleukin-13 (IL-13). (H) Expression of various

proteins in renal arteries.

*p < 0.05 vs. sham group; # p < 0.05 vs. BDL group; t p < 0.05 vs. BDL-LPS.

4. Discussion

In this study, cirrhotic portal hypertensive rats were characterized by reduced RABF,
increased RVR, upregulated renal inflammatory/adhesion molecules markers, and progres-
sive renal dysfunction. In particular, acute endotoxin (LPS) administration induced acute
on chronic renal dysfunction by increasing TNFx-NFkB-mediated renal inflammatory
markers. Chronic pioglitazone pre-treatment prevented LPS-induced renal pathogenic
changes in the cirrhotic group. Activation of systemic, renal tissue and renal vessel levels of
PPARYy by chronic pioglitazone treatment has beneficial effects on the endotoxemia-related
TNFa/NFxB-mediated acute on chronic renal inflammation in cirrhosis. This study re-
vealed that normalization of renal and renal arterial levels of PPARYy effectively prevented
LPS-induced acute and chronic renal dysfunction in cirrhotic ascitic rats.

Cirrhotic mice are suspected to develop LPS-induced TNFx-mediated AKI [27]. In
cirrhotic patients with spontaneous bacterial peritonitis (SBP), those with renal impairment
had significantly higher plasma and ascitic fluid TNF« levels than those without renal
dysfunction [28]. In this study, the chronic inhibition of the levels of circulating, renal tissue
and renal arterial TNFx by the chronic PPARy agonist pioglitazone significantly improved
renal function of cirrhotic ascitic rats (Figure 6).

TNFa directly induces lipocalin-2 and IL-18 production from renal epithelial cells,
which are markers that represent the severity of renal injury [29-32]. In the Child-Pugh
class of decompensated cirrhosis, urinary lipocalin-2/IL-18 levels increased and GFR
decreased significantly [30-32]. The most common cause for acute on chronic renal
dysfunction in cirrhosis is acute tubular necrosis (ATN), which occurs as a complication
of sepsis [4,5,9,15,32]. Urine levels of IL-18 and lipocalin-2 from patients with cirrhosis
discriminate between those with ATN and other types of kidney impairments [32].
Activation of renal PPAR-y with pioglitazone suppressed renal IL-18 and lipocalin-2
expression in a renal ischemia-reperfusion model [33]. In our study, restoration of
renal tissue PPARYy levels by chronic pioglitazone treatment suppressed the progressive
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TNF«x-mediated increased RVR and renal injury (inhibition of urinary lipocalin-2 and
IL-18) in cirrhotic ascitic rats with renal dysfunction. As shown in Table 2, in comparison
with the BDL group, the acute intraperitoneal (IP) infusion of LPS induced a mean
195% (56.9 + 8.1 vs. 168.3 £ 9.6 pg/mL) increase in serum TNF« level in the BDL+LPS
group, whereas LPS only induced a 12% (56.9 £ 8.1 vs. 64.1 £ 7.1 pg/mL) increase in
serum TNFo level in the BDL-pio+LPS group. This result indicated that pioglitazone
treatment prevented 183% of the LPS-induced elevation of serum TNF« level in cirrhotic
rats. Additionally, in comparison with liver injury markers (serum ALT level) of the
BDL group, the 259% of elevation of liver injury markers in the BDL+LPS group was
suppressed to 71%, which indicated that the pioglitazone treatment prevented 186% of
the LPS-induced elevation of serum ALT (Table 2). Similarly, the pioglitazone treatment
suppressed 40% of the LPS-elevated renal injury marker (renal IL-18 expression) in the
BDL-pio+LPS group. Particularly, a higher degree of pioglitazone-suppressed liver
injury marker (serum ALT) than renal marker (IL-18) might be the result of the direct
access of LPS to the portal system by IP administration. These results indicated that the
circulating TNF mediated the LPS-induced liver and renal injury, and these changes
in cirrhotic rats in this study can be ameliorated by pioglitazone treatment.

‘ Cirthotic ascitic rats ‘

MAP, COMN, PVPAN, RABF ¥
[BUN, C1] AN, [ICAM-1/VCAM-1] A, [MCP-1] P

1

Chronic renal dysfunction ‘
Renal tissue & vessel PPARyN

Exacerbate acute on
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Figure 6. Graphical summary of the pathogenic mechanisms and effects of restoration of renal tissue and vessels PPAR

with pioglitazone on the endotoxemia-induced acute on chronic renal dysfunction in cirrhotic rats. MAP: mean arterial
pressure; CO: cardiac output; PVP: portal venous pressure; RABF: renal arterial blood flow; ICAM-1: intercellular adhesion
molecule 1; VCAM-1: vascular cell adhesion molecule 1; MCP-1: monocyte chemoattractant protein 1; PPARy: peroxisome
proliferator-activated receptor gamma; TNFa: tumor necrosis factor alpha; NFkB: nuclear factor kappa-light-chain-enhancer
of activated B cells; LPS: lipopolysaccharide; RVR: renal vascular resistance; M1/M2: two types of macrophages; PAS stain:

periodic acid-Schiff stain.

NFkB plays a major role in the inflammatory response, and over-activation of
NF«kB induces the overexpression of TNF«, thus accelerating renal injury [4,7,8,13,34]. In
streptozotocin-induced diabetic nephropathy rats, chronic pioglitazone treatment reduced
renal NF«B, IL-1§3 and IL-18 levels, depressed the glomerular mesangial expansion, and
decreased serum BUN/ creatinine [35].

Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1) expressed on endothelial cells are involved in the interaction between leuko-
cytes and endothelial cells [6,36]. Suppression of NFkB signaling inhibits TNFa-stimulated
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expression of ICAM-1 and VCAM-1 and the adhesion of monocytes to the human bronchial
epithelial cell line [36]. In cholestasis, TNFx mediates IL-6 release from macrophages to
aggravate renal dysfunction [7,9,10]. In a sepsis model, pioglitazone reduced LPS-induced
TNFo and IL-6 production from mouse macrophages through inhibition of NF«B [37,38].
Pioglitazone was found to inhibit TNFa-induced expression of ICAM-1 and VCAM-1 in
activated cultured endothelial cells and an ischemia/reperfusion renal injury model [33,39].
Notably, in cirrhotic ascitic rats from our study, chronic pioglitazone pre-treatment attenu-
ated LPS-induced TNF«/NF«B-mediated acute on chronic renal dysfunction by suppress-
ing renal IL-6, ICAM-1 and VCAM-1.

LPS can induce NFkB-mediated MCP-1 production in rat macrophages and renal tubular
epithelial cells [40,41]. MCP-1 can stimulate glomerular macrophage infiltration and renal
inflammation [42,43]. Increased renal macrophage infiltration is associated with progressive
tubulointerstitial renal fibrosis in mice three weeks after BDL [44]. Cirrhotic patients with
higher urine MCP-1 level have a higher probability of developing acute renal dysfunction [45].
Chronic pioglitazone protects patients from diabetic nephropathy by reducing urinary MCP-1
excretion and proteinuria [46]. In our current study, pioglitazone pre-treatment prevented LPS-
induced acute on chronic renal dysfunction by inhibiting MCP-1-mediated renal macrophage
infiltration and renal inflammation in cirrhotic ascitic rats.

M1 macrophages exert a pathogenic function in renal inflammation, whereas M2
macrophages appear to suppress inflammation and promote injury repair [47]. Increased
M1 macrophage infiltration is a critical pathogenic factor for the initiation of LPS-induced
or inflammation-driven renal dysfunction [48,49]. Activation of PPARy with pioglita-
zone suppresses M1 macrophage polarization and skews circulating monocytes toward
an anti-inflammatory M2 macrophage phenotype [19,20]. The CD68 molecule, which is
highly expressed on tissue macrophages, is functionally important for M1 macrophages.
Treatment with pioglitazone reduces CD68* macrophage infiltration and MCP-1 release in
adipose tissue [50]. In summary, chronic pioglitazone pre-treatment in cirrhotic ascitic rats
effectively decreased LPS-induced M1 polarization of macrophages and renal dysfunction.

It has been reported that intraperitoneal (IP) administration of drugs in experimental
animals is a justifiable route for pharmacological and proof-of-concept studies where the goal is
to evaluate the effect(s) of target engagement rather than the properties of a drug formulation
and/or its pharmacokinetics for clinical translation. A previous study had reported that the
bioavailability and absorption for the IP route of small molecular agents (MW < 5000), such
as pioglitazone (MW 392.9), are higher than those by oral route. However, both IP and oral
routes have a similar degree of first pass metabolism of these small molecular agents in the
liver [51]. In comparison with the oral route, the IP technique is easy to master and minimally
stressful for animals. The IP route is especially commonly used in chronic studies involving
rats for which repetitive oral access is challenging. In this study, two weeks of pioglitazone
was administered by IP with an azert osmotic pump. Pioglitazone is well absorbed, has an oral
bioavailability of about 80%, and is extensively metabolized to active and inactive metabolites
in the liver [52-55]. In future studies, the effectiveness of oral administration of two weeks of
pioglitazone is needed to be compared with the IP administration in this study.

A high prevalence of renal dysfunction has been reported among non-alcoholic steato-
hepatitis (NASH) patients [56]. Severe NASH is the most rapidly growing indication for
simultaneous liver-kidney transplantation, with poor renal outcomes [57]. Several large-
scale randomized controlled trials have reported the effectiveness of pioglitazone in treat-
ing NASH to improve markers of hepatic steatosis and fibrosis on liver histology [52,58].
A recent study reported that a low dose of pioglitazone was safe and effective in diabetes
patients with CKD [53]. In particular, pioglitazone decreases the incidence of new-onset
end-stage renal disease in diabetes patients [59]. Renal dysfunction in NASH and diabetic
patients share a common pathogenesis [60,61]. Taken together, pioglitazone might have
the potential to protect NASH patients from the development of renal dysfunction; this
needs to be evaluated in future studies.
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5. Conclusions

In conclusion, as shown in Figure 6, restoration of systemic, renal tissue and renal arte-
rial PPARy by chronic pioglitazone treatment attenuated cirrhosis-related renal dysfunction
and endotoxemia-induced acute on chronic renal dysfunction.
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