Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer
Abstract
:1. Introduction
2. Effects of miRNAs on AR
2.1. Acting on AR mRNA to Directly Negatively Regulate AR Expression
2.2. Indirectly Regulate AR Expression or AR Signal
miRNAs | Expression of miRNAs in PCa | Target Region of AR mRNA/Effect of miRNAs on AR | Targeted Pathway | Cell Line/Samples/Animal Models | Function of miRNAs in Cancer Cells | References |
---|---|---|---|---|---|---|
miR-299-3p | ↓ | ↓ | VEGFA signaling | LNCaP-104S, MDA-PCa-2b, 22Rv-1, C4-2B, PC-3, WPE-1/TCGA PRAD publication: 330 matching tumor and 51 normal samples | ↓ proliferation, EMT process and migration, growth, ↑ cell cycle arrest, apoptosis, and drug sensitivity | [9] |
miR-185 | ↓ | ↓ 3′UTR | ARE, PSA | LNCaP | ↓ proliferation, ↑ apoptosis | [10] |
miR-381 | ↓ | ↓ 3′UTR | _ | LNCaP | ↓ proliferation, migration, and invasion | [11] |
miR-1207-3p | ↓ | ↓ | FNDC1, FN1, AR | WPE1-NA22, MDA PCa 2b, PC-3, E006AA, E006AA-hT, LNCaP, C4-2B, RWPE-1 | ↓ proliferation, migration, ↑ apoptosis | [17] |
miR-21 | ↑ | ↑ | TGFBR2, Smad2/3 | RWPE-1, MDA-PCa-2b, 22Rv1, PC-3, and LNCaP/male athymic nude mice | ↓ tumor-suppressive activity of TGFβ pathway | [18] |
miR-let-7c | ↓ | ↓ suppression of AR at the level of transcription | Lin28, c-Myc | LNCaP, C4-2B/22 PCa samples/nude mice | ↓ proliferation, ↓ transactivation, potential of AR | [12] |
miR-133a-5p | ↓ | ↓ 3′UTR | FUS, PSA, IGF1R, and EGFR | RWPE-1, VCaP, and LNCaP/TCGA database: 497 tumor tissue samples and 52 non-cancerous tissue samples | ↓ proliferation and viability | [19] |
miR-103a-2-5p/miR-30c-1-3p | ↓ | ↓ 3′UTR AR-V7 | _ | VCaP | ↓ cell growth and proliferation | [20] |
miR-30b-3p and miR-30d-5p | ↓ | ↓ 3′UTR | _ | LNCaP, PC3, LAPC4/15 primary PCa samples, 15 adjacent normal prostate samples, and 15 metastatic CRPC samples | ↓ cell growth | [21] |
miR-31 | ↓ | ↓ coding region | _ | RWPE-1, VCaP, LNCaP, 22Rv1, PC3, DU145, and HEK293 | ↓ proliferation, cell growth and colony formation, ↑ cell cycle arrest | [22] |
miR-205 | ↓ | ↓ 3′UTR | _ | DU145, PC3, 22Rv1, LNCaP/49 PCa, and 25 samples without PCa | ↓ proliferation, colony formation and metastases, ↑ cell adhesion, overall survival | [23] |
miR-124 | ↓ | ↓ 3′UTR | _ | LNCaP, 22Rv1, DU145, PC-3, C4-2/male BALB/C nude mice | ↓ proliferation, migration, and cell growth | [24] |
miR-145 | ↓ | ↓ | Ago2, PSA, TMPRSS2, KLK2 | PC3, DU145, LNCaP, 22Rv1, VCaP, PNT2/49 PCa, and 25 samples without PCa | ↓ proliferation, ↑ G1 arrest | [25] |
miR-8080 | _ | ↓ AR-V7 3′-UTR | IGF-1R and NKX3.1 | 22Rv1 and VCaP/male TRAP rats and male nude mice | Luteolin treatment: ↑ MiR-8080: ↓ proliferation, growth and oxidative stress, ↑ apoptosis, and Enz effects under castration conditions | [26] |
miR-124 | ↓ | ↓ 3′UTR | p53 | RWPE-1, pRNS-1-1, LNCaP, C4-2B, cds2, 22Rv1, and LAPC-4/8 matched pairs of CaP and BPH tissues/male athymic nu/nu mice | ↓ cell growth, ↑ apoptosis | [27] |
miR-124 | ↓ | ↓ 3′UTRs of AR-V4, -V7 | EZH2 and Src | LNCaP, C4-2B, 22Rv1, and VCaP/male athymic nude mice | ↓ proliferation and cell growth, ↑ apoptosis, sensitivity to Enz | [28] |
miR-125b | ↑ | ↑ indirectly by decreasing the co-repressor of AR | NCOR2 | HEK293 and LNCAP/male nude mice | ↑ cell growth and survival, ↓ apoptosis | [14] |
miR-473p | ↑ | _ | MEKK1 | LNCap/38 pairs of tumor tissues and ANCTs | ↑ cell survival, ↓ docetaxel-induced apoptosis in AR+ prostate cancer cells | [29] |
miR-185 | ↓ | ↓ directly by binding 3′UTRs, ↓ indirectly by suppressing co-activator of AR | BRD8 ISO2 | LNCaP, PC-3/10 pairs of tumor tissues and ANCTs | ↓ proliferation and invasion | [30] |
miR-449 | _ | ↓ AR-v7 | EZH2 | CWR22Rv1 and VCaP/male nude mice | ↓ cells growth and invasion, Enz resistance | [31] |
miR-34b | ↓ | ↓ 3′UTR | ETV1 | MDA-PCa-2b, DU-145/143 PCa samples (from 3 different groups), and GEO analysis: GSE21032 | ↓ proliferation, ↑ apoptosis | [32] |
miR-320a | ↓ | ↓ 3′UTR | _ | 22Rv1, VCaP, and LNCaP/10 PCa samples/SD rats | OBP-801 treatment: ↑ miR-320a: ↓ proliferation and cell growth | [33] |
miR-17 | ↓ | ↓ indirectly by suppressing co-activator of AR | PCAF | RWPE1, LNCaP, PC-3, DU145, C4–2B, and ALVA31 | PEITC treatment: ↑ miR-17: ↓ cell growth | [34] |
miR-141 | ↑ | ↑ AR-regulated transcriptional activity | Shp | RWPE-1, LNCaP, DU145, and C4-2B | PEITC treatment: ↓ miR-141 and AR signaling activation | [35] |
miR-449a | _ | ↓ 3′UTR | PSA | C4-2 and LNCaP | capsaicin treatment: ↑ miR-449a: ↓ proliferation, ↑ G0/G1 cell cycle arrest | [36] |
miR-331-3p | ↓ | ↓ indirectly by regulating ERBB-2 | ERBB-2, PI3K/AKT signaling pathway, PSA | LNCaP, 22RV1, DU145/tumor tissues, and ANCTs | ↓ indirectly AR pathway target genes via cross-talk between ERBB-2 and AR signaling pathways | [37] |
miR-371 | ↓ | ↓ 3′UTR | KLK3 | LNCaP and PC3/83 PCa samples and 6 BPH as controls/male nude mice | ↓ proliferation and tumor growth | [38] |
miR-1207-3p | ↓ | ↓ indirectly by regulating FNDC1 | FNDC1, FN1 | RWPE-1, CM, WPE1-NA22, RWPE-1, MDA PCa 2b, PC-3, E006AA, E006AA-hT, LNCaP, C4-2b | ↓ proliferation, migration, ↑ apoptosis | [39] |
miR-301a | ↑ | ↓ 3′UTR | TGF-β1/Smad/MMP9 signals | CWR22Rv1, 3T3-L1/21 pairs of tumor tissues, and ANCTs/male nude mice | Recruitment of pre-adipocytes: ↑ miR-301a: ↑ invasion and metastasis | [40] |
miR137 | ↓ | ↓ indirectly by regulating AR cofactor complexes | NCoA2, KDM1A, KDM2A, KDM4A, KDM5B, KDM7A and MED1 | PREC, LNCaP, LNCaP:C4-2, and PC-3/TCGA database | miR137: suppressor of androgen signaling by modulating expression of transcriptional coregulators | [41] |
miR-361-3p | ↓ | ↓ 3′UTR of ARv7 | _ | CW22Rv1, C4-2, and LNCaP/TCGA analysis/male nude mice | ↑ Enz sensitivity | [42] |
miR-2909 | ↑ | ↑ | TGFBR2, TGFβ signaling, PSA | PC3 and LNCaP | ↑ cell growth | [43] |
miR-200a | ↓ | ↓ AR-V7 indirectly by regulating BRD4 | BRD4 | LNCaP and C4-2B/10 ADPC tissue and 10 CRPC tissue samples | ↓ proliferation, ↑ apoptosis | [44] |
miR-135b | _ | ↓ | MUC1-C | LNCaP | ↑ invasion and EMT process | [45] |
miR-17-5p | ↓ | ↓ indirectly by regulating co-activator of AR | PCAF, PSA | RWPE1, LNCaP, C4-2B, PC3, and PrEC | ↓ cell growth | [46] |
miR-3162-5p | ↑ in PCa tissues with higher Gleason grade | ↓ 3′UTR | KLK3, PSA | LNCaP, PC3 | ↓ proliferation, migration, and colony formation | [47] |
miR-644a | ↓ | ↓ 3′UTR (directly) and indirectly by regulating co-activators of AR | SRC-1, SRC-2, SRC-3, CCND1, CBP, and ARA24 | LNCaP, LAPC4, and 22RV1/male athymic nude male mice | ↓ invasion, EMT process, metastasis and Warburg effect, ↑ apoptosis | [48] |
miR-221 | ↑ | ↓ indirectly by regulating co-activators of AR | HECTD2 and RAB1A | LNCaP and LNCaP-Abl, LAPC-4, PC-3, Du145, and 22Rv1 | ↑ AI cell growth, emt process, and metastasis | [13] |
miR-29b | ↑ | ↑ indirectly by regulating co-activators of AR | TET2, FOXA1, mTOR | LNCaP, BicR, VCaP, and 293T/male BALB/C nude mice | ↑ 5-hmC-mediated tumour progression | [49] |
miR-141-3p | _ | ↓ 3′UTR | _ | LNCaP | ↓ both mRNA and protein expression levels of AR | [50] |
miR-96 | ↑ | ↓ indirectly by regulating co-activator of AR | RARγ, TACC1 | RWPE-1, RWPE-2, PNT2, HPr1-AR, LNCaP, LAPC4, EAA006, MDAPCa2b, LNCaP-C42, 22Rv1, PC3 and DU145/36 PCa samples, and MSKCC dataset | ↑ proliferation and viability | [15] |
miR-185 | ↓ | ↓ indirectly by regulating co-activator of AR | SREBP signaling | LNCaP, C4-2B, RWPE-1/male athymic nude mice | ↓ proliferation, clonogenicit, tumorigenicity, cell growth, migration and invasion, ↑ apoptosis | [51] |
miR-342 | ↓ | ↓ indirectly by regulating co-activator of AR | SREBP signaling | LNCaP, C4-2B, RWPE-1/male athymic nude mice | ↓ proliferation, clonogenicit, tumorigenicity, cell growth, migration and invasion, ↑ apoptosis | |
miR-204 | ↓ | ↓ indirectly by regulating XRN1 | XRN1, PSA, miR-34a | LNCaP, 22Rv1 and PC-3 and CL1/171 BPH, plus PCa samples/nude mice and rats | ↓ growth and colony formation of LNCaP and 22Rv1 cells but ↑ growth and colony formation of CL1 and PC-3 cells | [52] |
miR-541 | ↑ | ↓ | FGF11, MMP9 | LNCaP, CWR22RV1 and C4-2/20 PCa samples/male nude mice | ↑ invasion and metastasis (while infiltrated T cells co-cultured with PCa cells) | [16] |
miR-205 | ↓ | ↓ indirectly by regulating SQLE | SQLE | LNCaP, C4-2, PC-3, DU145, RWPE-1, HEK293T, VcaP, andLNCaP Abl | ↓ cell growth and de novo cholesterol biosynthesis | [53] |
miR-130a | ↓ | ↓ indirectly by regulating coregulators of AR | CDK1, PSAP, PSMC3IP, GTF2H1 | LNCaP, PC-3, Du-145 and RWPE-1/5 low Gleason grade PCa samples, 6 high Gleason grade PCa samples, 3 recurrent PCa samples, and 6 nonmalignant samples | ↑ apoptosis | [54] |
miR-203 | ↓ | ↓ indirectly by regulating coregulators of AR | PARK7, MNAT1, TFIIH, NCOA4, CDK1 | LNCaP, PC-3, Du-145 and RWPE-1/5 low Gleason grade PCa samples, 6 high Gleason grade PCa samples, 3 recurrent PCa samples, and 6 nonmalignant samples | ↑ apoptosis and cell cycle arrest | |
miR-205 | ↓ | ↓ indirectly by regulating coregulators of AR | PARK7, RAN, KHDRBS1 | LNCaP, PC-3, Du-145 and RWPE-1/5 low Gleason grade PCa samples, 6 high Gleason grade PCa samples, 3 recurrent PCa samples, and 6 nonmalignant samples | ↑ cell cycle arrest | |
miR-212 | ↓ | ↓ (AR and AR-V7) indirectly by regulating hnRNPH1 | hnRNPH1, SRC-3 | LNCaP, MDA-PCa-2b and C4–2B/13 African American samples, and 17 Caucasian American samples/SCID mice | ↓ cell growth and ↑ sensitivity to bicalutamide | [55] |
miR-34a | ↓ | ↓ 3′UTR | Notch-1 | C4-2B, CWR22rv1, LNCaP, and VCaP | ↓ proliferation and self-renewal capacity | [56] |
miR-190a | ↓ | ↓ indirectly by regulating the activator of AR | YB-1 | LNCaP, C4-2, PC-3, DU-145, 22Rv1/mal nude mice | ↓ proliferation and cell growth | [57] |
2.3. Effects of miRNAs on AR in Other Different Cancer Types
3. Regulatory Impact of lncRNAs on AR
3.1. Regulation of AR Expression
3.2. Regulation of AR Activity as AR-Interacting Partner
3.3. Effects of lnRNAs on AR in Other Different Cancer Types
4. Effects of circRNAs on AR
5. Effects of AR on ncRNAs
5.1. AR Responsive miRNA
5.2. AR Responsive lncRNA and circRNA
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, N.Z.; Wardell, S.E.; Burnstein, K.L.; DeFranco, D.; Fuller, P.; Giguère, V.; Hochberg, R.B.; McKay, L.; Renoir, J.-M.; Weigel, N.L.; et al. International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: Glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol. Rev. 2006, 58, 782–797. [Google Scholar] [CrossRef]
- Roy, A.; Lavrovsky, Y.; Song, C.; Chen, S.; Jung, M.; Velu, N.; Bi, B.; Chatterjee, B. Regulation of androgen action. Vitam. Horm. 1998, 55, 309–352. [Google Scholar] [CrossRef]
- MacLean, H.E.; Warne, G.L.; Zajac, J.D. Localization of functional domains in the androgen receptor. J. Steroid Biochem. Mol. Biol. 1997, 62, 233–242. [Google Scholar] [CrossRef]
- Davey, R.A.; Grossmann, M. Androgen receptor structure, function and biology: From bench to bedside. Clin. Biochem. Rev. 2016, 37, 3–15. [Google Scholar]
- Eder, I.E.; Culig, Z.; Putz, T.; Nessler-Menardi, C.; Bartsch, G.; Klocker, H. Molecular biology of the androgen receptor: From molecular understanding to the clinic. Eur. Urol. 2001, 40, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Estrada, M.; Espinosa, A.; Müller, M.; Jaimovich, E. Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a g protein-coupled receptor in skeletal muscle cells. Endocrinology 2003, 144, 3586–3597. [Google Scholar] [CrossRef]
- Kang, H.-Y.; Cho, C.-L.; Huang, K.-L.; Wang, J.-C.; Hu, Y.-C.; Lin, H.-K.; Chang, C.; Huang, K.-E. Nongenomic androgen activation of phosphatidylinositol 3-Kinase/Akt signaling pathway in MC3T3-E1 osteoblasts. J. Bone Miner. Res. 2004, 19, 1181–1190. [Google Scholar] [CrossRef]
- Kousteni, S.; Bellido, T.; Plotkin, L.I.; O’Brien, C.A.; Bodenner, D.L.; Han, L.; Han, K.; Digregorio, G.B.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S.; et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: Dissociation from transcriptional activity. Cell 2001, 104, 719–730. [Google Scholar] [CrossRef]
- Ganapathy, K.; Staklinski, S.; Hasan, F.; Ottman, R.; Andl, T.; Berglund, A.E.; Park, J.Y.; Chakrabarti, R. Multifaceted function of MicroRNA-299-3p fosters an antitumor environment through modulation of androgen receptor and VEGFA signaling pathways in prostate cancer. Sci. Rep. 2020, 10, 5167. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Luo, F.; Xu, Y.; Wang, B.; Zhao, Y.; Xu, W.; Shi, L.; Lu, X.; Liu, Q. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract. Toxicol. Appl. Pharmacol. 2015, 282, 9–19. [Google Scholar] [CrossRef]
- Rui, X.; Gu, T.; Pan, H.; Shao, S.; Shao, H. MicroRNA-381 suppresses proliferation and invasion of prostate cancer cells through downregulation of the androgen receptor. Oncol. Lett. 2019, 18, 2066–2072. [Google Scholar] [CrossRef] [Green Version]
- Nadiminty, N.; Tummala, R.; Lou, W.; Zhu, Y.; Zhang, J.; Chen, X.; White, R.W.D.; Kung, H.-J.; Evans, C.P.; Gao, A.C. MicroRNA let-7c suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. J. Biol. Chem. 2012, 287, 1527–1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Wang, X.; He, H.H.; Sweeney, C.J.; Liu, S.X.; Brown, M.; Balk, S.P.; Lee, G.-S.; Kantoff, P.W. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene 2014, 33, 2790–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Bemis, L.; Su, L.-J.; Gao, D.; Flaig, T.W. miR-125b regulation of androgen receptor signaling via modulation of the receptor complex co-repressor NCOR2. BioRes. Open Access 2012, 1, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Long, M.; Singh, P.K.; Russell, J.R.; Llimos, G.; Rosario, S.; Rizvi, A.; Berg, P.V.D.; Kirk, J.; Sucheston-Campbell, L.E.; Smiraglia, D.J.; et al. The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression. Oncogene 2019, 38, 421–444. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Li, L.; Yeh, S.; Cui, Y.; Li, X.; Chang, H.-C. Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11→ miRNA-541→ androgen receptor (AR)→ MMP9 signaling. Mol. Oncol. 2015, 9, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Das, D.K.; Naidoo, M.; Ilboudo, A.; Park, J.Y.; Ali, T.; Krampis, K.; Robinson, B.D.; Osborne, J.R.; Ogunwobi, O.O. miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin. Exp. Cell Res. 2016, 348, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Deng, J.J.; Gowda, P.S.; Rao, M.K.; Lin, C.-L.; Chen, C.L.; Huang, T.; Sun, L.-Z. Androgen receptor and microRNA-21 axis downregulates transforming growth factor beta receptor II (TGFBR2) expression in prostate cancer. Oncogene 2014, 33, 4097–4106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Kang, Y.; Zhang, L.; Zou, W. MiR-133a-5p inhibits androgen receptor (AR)-induced proliferation in prostate cancer cells via targeting FUsed in Sarcoma (FUS) and AR. Cancer Biol. Ther. 2019, 21, 34–42. [Google Scholar] [CrossRef]
- Chen, W.; Yao, G.; Zhou, K. miR-103a-2-5p/miR-30c-1-3p inhibits the progression of prostate cancer resistance to androgen ab-lation therapy via targeting androgen receptor variant 7. J. Cell. Biochem. 2019, 120, 14055–14064. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Khaleghzadegan, S.; Mears, B.; Hatano, K.; Kudrolli, T.A.; Chowdhury, W.; Yeater, D.B.; Ewing, C.M.; Luo, J.; Isaacs, W.B.; et al. Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget 2016, 7, 72593–72607. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-C.; Chiu, Y.-L.; Banerjee, S.; Park, K.; Mosquera, J.M.; Giannopoulou, E.; Alves, P.; Tewari, A.-K.; Gerstein, M.-B.; Beltran, B.; et al. Epigenetic repression of miR-31 disrupts andro-gen receptor homeostasis and contributes to prostate cancer progression. Cancer Res. 2013, 73, 1232–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagman, Z.; Haflidadottir, B.; Ceder, J.; Larne, O.; Bjartell, A.; Lilja, H.; Edsjö, A.; Ceder, Y. miR-205 negatively regulates the androgen receptor and is associated with adverse outcome of prostate cancer patients. Br. J. Cancer 2013, 108, 1668–1676. [Google Scholar] [CrossRef]
- Chu, M.; Chang, Y.; Guo, Y.; Wang, N.; Cui, J.; Gao, W.-Q. Regulation and methylation of tumor suppressor MiR-124 by androgen receptor in prostate cancer cells. PLoS ONE 2015, 10, e0116197. [Google Scholar] [CrossRef]
- Larne, O.; Hagman, Z.; Lilja, H.; Bjartell, A.; Edsjö, A.; Ceder, Y. miR-145 suppress the androgen receptor in prostate cancer cells and correlates to prostate cancer prognosis. Carcinogenesis 2015, 36, 858–866. [Google Scholar] [CrossRef] [Green Version]
- Naiki-Ito, A.; Naiki, T.; Kato, H.; Iida, K.; Etani, T.; Nagayasu, Y.; Suzuki, S.; Yamashita, Y.; Inaguma, S.; Onishi, M.; et al. Recruitment of miR-8080 by luteolin inhibits androgen receptor splice variant 7 expression in castration-resistant prostate cancer. Carcinogenesis 2020, 41, 1145–1157. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.-B.; Xue, L.; Ma, A.-H.; Tepper, C.G.; Gandour-Edwards, R.; Kung, H.-J.; White, R.W.D. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2013, 32, 4130–4138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.-B.; Ma, A.-H.; Xue, L.; Li, M.; Nguyen, H.G.; Yang, J.C.; Tepper, C.G.; Gandour-Edwards, R.; Evans, C.P.; Kung, H.J.; et al. miR-124 and androgen receptor signaling inhibitors repress pros-tate cancer growth by downregulating androgen receptor splice variants, EZH2, and Src. Cancer Res. 2015, 75, 5309–5317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Huang, S.; Jiang, Q.; Yuan, T. Suppression of miR-4735-3p in androgen receptor-expressing prostate cancer cells in-creases cell death during chemotherapy. Am. J. Transl. Res. 2017, 9, 3714. [Google Scholar]
- Jiang, C.-Y.; Ruan, Y.; Wang, X.-H.; Zhao, W.; Jiang, Q.; Jing, Y.-F.; Han, B.-M.; Xia, S.-J.; Zhao, F.-J. MiR-185 attenuates androgen receptor function in prostate cancer indirectly by targeting bromodomain containing 8 isoform 2, an androgen receptor co-activator. Mol. Cell. Endocrinol. 2016, 427, 13–20. [Google Scholar] [CrossRef]
- Lin, S.-J.; Chou, F.-J.; Li, L.; Lin, C.-Y.; Yeh, S.; Chang, C. Natural killer cells suppress enzalutamide resistance and cell invasion in the castration resistant prostate cancer via targeting the androgen receptor splicing variant 7 (ARv7). Cancer Lett. 2017, 398, 62–69. [Google Scholar] [CrossRef]
- Shiina, M.; Hashimoto, Y.; Kato, T.; Yamamura, S.; Tanaka, Y.; Majid, S.; Saini, S.; Varahram, S.; Kulkarni, P.; Dasgupta, P.; et al. Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and Caucasians. Oncotarget 2016, 8, 8356–8368. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Katsushima, K.; Shinjo, K.; Hatanaka, A.; Ohka, F.; Suzuki, S.; Naiki-Ito, A.; Soga, N.; Takahashi, S.; Kondo, Y. Histone deacetylase inhibition in prostate cancer triggers miR-320–Mediated suppression of the androgen receptor. Cancer Res. 2016, 76, 4192–4204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Gong, A.-Y.; Chen, D.; Leon, D.S.; Young, C.Y.F.; Chen, X.-M. Phenethyl isothiocyanate inhibits androgen receptor-regulated transcriptional activity in prostate cancer cells through suppressing PCAF. Mol. Nutr. Food Res. 2013, 57, 1825–1833. [Google Scholar] [CrossRef]
- Xiao, J.; Gong, A.Y.; Eischeid, A.N.; Chen, D.; Deng, C.; Young, C.Y.; Chen, X.M. miR-141 modulates androgen receptor transcriptional activity in human prostate cancer cells through targeting the small heterodimer partner protein. Prostate 2012, 72, 1514–1522. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, J.; Ma, Z.; Liu, W.; Yang, F.; Yang, Z.; Wang, K.; Wang, X.; He, D.; Li, L. Capsaicin causes inactivation and degradation of the androgen receptor by inducing the restoration of miR-449a in prostate cancer. Oncol. Rep. 2015, 34, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Epis, M.R.; Giles, K.M.; Barker, A.; Kendrick, T.S.; Leedman, P.J. miR-331-3p Regulates ERBB-2 expression and androgen receptor signaling in prostate cancer. J. Biol. Chem. 2009, 284, 24696–24704. [Google Scholar] [CrossRef] [Green Version]
- Leite, K.R.; Morais, D.R.; Florez, M.G.; Reis, S.T.; Iscaife, A.; Viana, N.; Moura, C.M.; Silva, I.A.; Katz, B.S.; Pontes, J.; et al. The role of microRNAs 371 and 34a in androgen receptor control influencing prostate cancer behavior. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 267.e15–267.e22. [Google Scholar] [CrossRef]
- Das, D.K.; Ogunwobi, O.O. A novel microRNA-1207-3p/FNDC1/FN1/AR regulatory pathway in prostate cancer. RNA Dis. 2017, 4, e1503. [Google Scholar]
- Xie, H.; Li, L.; Zhu, G.; Dang, Q.; Ma, Z.; He, D.; Chang, L.; Song, W.; Chang, H.C.; Krolewski, J.J.; et al. Infiltrated preadipocytes increase prostate cancer metastasis via modulation of the miR-301a/androgen receptor (AR)/TGF-β1/Smad/MMP9 signals. Oncotarget 2015, 6, 12326. [Google Scholar] [CrossRef]
- Nilsson, E.M.; Laursen, K.B.; Whitchurch, J.; McWilliam, A.; Ødum, N.; Persson, J.; Heery, D.; Gudas, L.J.; Mongan, N.P. MiR137 is an androgen regulated repressor of an extended network of transcriptional coregulators. Oncotarget 2015, 6, 35710–35725. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Sun, Y.; Tang, M.; Liang, C.; Huang, C.-P.; Niu, Y.; Wang, Z.; Chang, C. The miR-361-3p increases enzalutamide (Enz) sensitivity via target-ing the ARv7 and MKNK2 to better suppress the Enz-resistant prostate cancer. Cell Death Dis. 2020, 11, 807. [Google Scholar] [CrossRef]
- Ayub, S.G.; Kaul, D.; Ayub, T. An androgen-regulated miR-2909 modulates TGFβ signalling through AR/miR-2909 axis in pros-tate cancer. Gene 2017, 631, 1–9. [Google Scholar] [CrossRef]
- Guan, H.; You, Z.; Wang, C.; Fang, F.; Peng, R.; Mao, L.; Xu, B.; Chen, M. MicroRNA-200a suppresses prostate cancer progression through BRD4/AR signaling pathway. Cancer Med. 2019, 8, 1474–1485. [Google Scholar] [CrossRef]
- Rajabi, H.; Ahmad, R.; Jin, C.; Joshi, M.D.; Guha, M.; Alam, M.; Kharbanda, S.; Kufe, N. MUC1-C oncoprotein confers androgen-independent growth of human prostate cancer cells. Prostate 2012, 72, 1659–1668. [Google Scholar] [CrossRef] [Green Version]
- Gong, A.-Y.; Eischeid, A.N.; Xiao, J.; Zhao, J.; Chen, D.; Wang, Z.-Y.; Young, C.Y.; Chen, X.-M. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 2012, 12, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matin, F.; Jeet, V.; Srinivasan, S.; Cristino, A.S.; Panchadsaram, J.; Clements, J.A.; Batra, J. MicroRNA-3162-5p-Mediated Crosstalk between Kallikrein Family Members including prostate-specific antigen in prostate cancer. Clin. Chem. 2019, 65, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Ebron, J.S.; Shankar, E.; Singh, J.; Sikand, K.; Weyman, C.M.; Gupta, S.; Lindner, D.-J.; Liu, X.; Campbell, M.-J.; Shukla, G.-C. MiR-644a disrupts oncogenic transformation and war-burg effect by direct modulation of multiple genes of tumor-promoting pathways. Cancer Res. 2019, 79, 1844–1856. [Google Scholar] [CrossRef] [Green Version]
- Takayama, K.I.; Misawa, A.; Suzuki, T.; Takagi, K.; Hayashizaki, Y.; Fujimura, T.; Homma, Y.; Takahashi, S.; Urano, T.; Inoue, S. TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat. Commun. 2015, 6, 1–16. [Google Scholar]
- Wang, C.; Ouyang, Y.; Lu, M.; Wei, J.; Zhang, H. miR-141-3p regulates the expression of androgen receptor by targeting its 3’UTR in prostate cancer LNCaP cells. Chin. J. Cell. Mol. Immunol. 2015, 31, 736–739. [Google Scholar]
- Li, X.; Chen, Y.-T.; Josson, S.; Mukhopadhyay, N.K.; Kim, J.; Freeman, M.R.; Huang, W.-C. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the srebp metabolic pathway in prostate cancer cells. PLoS ONE 2013, 8, e70987. [Google Scholar] [CrossRef]
- Ding, M.; Lin, B.; Li, T.; Liu, Y.; Li, Y.; Zhou, X.; Miao, M.; Gu, J.; Pan, H.; Yang, F.; et al. A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells. Oncotarget 2015, 6, 7686–7700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalogirou, C.; Linxweiler, J.; Schmucker, P.; Snaebjornsson, M.T.; Schmitz, W.; Wach, S.; Krebs, M.; Hartmann, E.; Puhr, M.; Müller, A.; et al. MiR-205-driven downregulation of cholesterol biosynthesis through SQLE-inhibition identifies therapeutic vulnerability in aggressive prostate cancer. Nat. Commun. 2021, 12, 5066. [Google Scholar] [CrossRef]
- Boll, K.; Reiche, K.; Kasack, K.; Mörbt, N.; Kretzschmar, A.; Tomm, J.; Verhaegh, G.; Schalken, J.; Bergen, M.-V.; Horn, F.; et al. MiR-130a, miR-203 and miR-205 jointly repress key on-cogenic pathways and are downregulated in prostate carcinoma. Oncogene 2013, 32, 277–285. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, D.; Kim, H.; Elmageed, Z.Y.A.; Datta, A.; Davis, R.; Srivastav, S.K.; Moroz, K.; Crawford, B.E.; Moparty, K.; et al. Dysregulation of miR-212 promotes castration resistance through hnRNPH1-Mediated regulation of AR and AR-V7: Implications for racial disparity of prostate cancer. Clin. Cancer Res. 2016, 22, 1744–1756. [Google Scholar] [CrossRef] [Green Version]
- Kashat, M.; Azzouz, L.; Sarkar, S.H.; Kong, D.; Li, Y.; Sarkar, F.H. Inactivation of AR and Notch-1 signaling by miR-34a attenuates prostate cancer aggressiveness. Am. J. Transl. Res. 2012, 4, 432–442. [Google Scholar] [PubMed]
- Xu, S.; Wang, T.; Song, W.; Jiang, T.; Zhang, F.; Yin, Y.; Jiang, S.-W.; Wu, K.; Yu, Z.; Wang, C.; et al. The inhibitory effects of AR/miR-190a/YB-1 negative feedback loop on prostate cancer and underlying mechanism. Sci. Rep. 2015, 5, srep13528. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Hu, J.; Cao, R.; Chen, Q.; Li, K. Androgen receptor is inactivated and degraded in bladder cancer cells by phenyl glucosa-mine via miR-449a restoration. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 2294. [Google Scholar]
- Bandini, E.; Fanini, F.; Vannini, I.; Rossi, T.; Plousiou, M.; Tumedei, M.M.; Limarzi, F.; Maltoni, R.; Fabbri, F.; Hrelia, S.; et al. miR-9-5p as a regulator of the androgen receptor pathway in breast cancer cell lines. Front. Cell Dev. Biol. 2020, 8, 579160. [Google Scholar] [CrossRef]
- Fan, Q.; Huang, T.; Sun, X.; Yang, X.; Wang, J.; Liu, Y.; Ni, T.; Gu, S.; Li, Y.; Wang, Y. miR 130a 3p promotes cell proliferation and invasion by targeting estrogen receptor α and androgen receptor in cervical cancer. Exp. Ther. Med. 2021, 21, 414. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.-X.; Wang, C.-H.; Jin, S.; Hu, K.-W.; Lu, J.-T. miR-135b-5p suppresses androgen receptor-enhanced hepatocellular carcinoma cell proliferation via regulating the HIF-2α/c-Myc/P27 Signals in vitro. OncoTargets Ther. 2020, 13, 9991. [Google Scholar] [CrossRef]
- Liu, G.; Ouyang, X.; Sun, Y.; Xiao, Y.; You, B.; Gao, Y.; Yeh, S.; Li, Y.; Chang, C. The miR-92a-2-5p in exosomes from macrophages increases liver cancer cells invasion via altering the AR/PHLPP/p-AKT/β-catenin signaling. Cell Death Differ. 2020, 27, 3258–3272. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lin, H.; Li, G.; Sun, Y.; Chen, J.; Shi, L.; Cai, X.; Chang, C. The miR-367-3p increases sorafenib chemotherapy efficacy to suppress hepato-cellular carcinoma metastasis through altering the androgen receptor signals. EBioMedicine 2016, 12, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Qi, L.; Hao, L.; Zhu, J. Upregulation of circ-ASPH contributes to glioma cell proliferation and aggressiveness by targeting the miR-599/AR/SOCS2-AS1 signaling pathway. Oncol. Lett. 2021, 21, 388. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, N.; Huang, J.; Ho, T.-T.; Zhu, Z.; Qiu, Z.; Zhou, X.; Bai, C.; Wu, F.; Xu, M.; et al. Regulation of androgen receptor splice variant AR3 by PCGEM1. Oncotarget 2016, 7, 15481–15491. [Google Scholar] [CrossRef]
- Parolia, A.; Venalainen, E.; Xue, H.; Mather, R.; Lin, D.; Wu, R.; Pucci, P.; Rogalski, J.; Evans, J.R.; Feng, F.; et al. The long noncoding RNA HORAS 5 mediates castration-resistant prostate cancer survival by activating the androgen receptor transcriptional program. Mol. Oncol. 2019, 13, 1121–1136. [Google Scholar] [CrossRef] [Green Version]
- Roediger, J.; Hessenkemper, W.; Bartsch, S.; Manvelyan, M.; Huettner, S.S.; Liehr, T.; Esmaeili, M.; Foller, S.; Petersen, I.; Grimm, M.-O.; et al. Supraphysiological androgen levels in-duce cellular senescence in human prostate cancer cells through the Src-Akt pathway. Mol. Cancer 2014, 13, 214. [Google Scholar] [CrossRef] [Green Version]
- Mirzakhani, K.; Kallenbach, J.; Rasa, S.M.M.; Ribaudo, F.; Ungelenk, M.; Ehsani, M.; Gong, W.; Gassler, N.; Leeder, M.; Grimm, M.-O.; et al. The androgen recep-tor-lncRNASAT1-AKT-p15 axis mediates androgen-induced cellular senescence in prostate cancer cells. Oncogene 2021, 1–14. [Google Scholar]
- Fang, Z.; Xu, C.; Li, Y.; Cai, X.; Ren, S.; Liu, H.; Wang, Y.; Wang, F.; Chen, R.; Qu, M.; et al. A feed-forward regulatory loop between androgen receptor and PlncRNA-1 promotes prostate cancer progression. Cancer Lett. 2016, 374, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Teng, J.; Jia, Z.; Zhang, G.; Ai, X. The long non-coding RNA PCAL7 promotes prostate cancer by strengthening androgen receptor signaling. J. Clin. Lab. Anal. 2021, 35, e23645. [Google Scholar] [CrossRef]
- Zhang, A.; Zhao, J.C.; Kim, J.; Fong, K.-W.; Yang, Y.A.; Chakravarti, D.; Mo, Y.-Y.; Yu, J. LncRNA HOTAIR enhances the andro-gen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep. 2015, 13, 209–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Liu, L.; Liang, Z.; Guo, K.; Xu, S.; Wang, H. Silencing of lncRNA MALAT1 inhibits cell cycle progression via androgen receptor signaling in prostate cancer cells. Pathol.-Res. Pract. 2019, 215, 712–721. [Google Scholar] [CrossRef]
- Lingadahalli, S.; Jadhao, S.; Sung, Y.Y.; Chen, M.; Hu, L.; Chen, X.; Cheung, E. Novel lncRNA LINC00844 regulates prostate cancer cell migration and invasion through AR Signaling. Mol. Cancer Res. 2018, 16, 1865–1878. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Pitchiaya, S.; Cieślik, M.; Niknafs, Y.S.; Tien, J.C.-Y.; Hosono, Y.; Iyer, M.K.; Yazdani, S.; Subramaniam, S.; Shukla, S.; et al. Analysis of the androgen receptor–regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat. Genet. 2018, 50, 814–824. [Google Scholar] [CrossRef]
- Yang, L.; Lin, C.; Jin, C.; Yang, J.C.; Tanasa, B.; Li, W.; Merkurjev, D.; Ohgi, K.-A.; Meng, D.; Zhang, J.; et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 2013, 500, 598–602. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Shi, X.; Li, Y.; Xiao, Y.; Butler, W.; Huang, Y.; Du, L.; Wu, T.; Bian, X.; Shi, G.; et al. LINC00675 activates androgen receptor axis signaling pathway to promote castration-resistant prostate cancer progression. Cell Death Dis. 2020, 11, 638. [Google Scholar] [CrossRef]
- You, Z.; Liu, C.; Wang, C.; Ling, Z.; Wang, Y.; Wang, Y.; Zhang, M.; Chen, S.; Xu, B.; Guan, H.; et al. LncRNA CCAT1 promotes prostate cancer cell proliferation by inter-acting with DDX5 and miR-28-5p. Mol. Cancer Ther. 2019, 18, 2469–2479. [Google Scholar] [CrossRef] [Green Version]
- Misawa, A.; Takayama, K.-I.; Urano, T.; Inoue, S. Androgen-induced long noncoding RNA (lncRNA) SOCS2-AS1 promotes cell growth and inhibits apoptosis in prostate cancer cells. J. Biol. Chem. 2016, 291, 17861–17880. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Chen, J.; Wumaner, A.; Li, M.; Liang, C.; Li, M. A novel long non-coding RNA PCLN16 facilitates androgen receptor sig-naling in prostate cancer. Biochem. Biophys. Res. Commun. 2021, 537, 78–84. [Google Scholar] [CrossRef]
- Li, L.; Dang, Q.; Xie, H.; Yang, Z.; He, D.; Liang, L.; Song, W.; Yeh, S.; Chang, C. Infiltrating mast cells enhance prostate cancer invasion via altering LncRNA-HOTAIR/PRC2-androgen receptor (AR)-MMP9 signals and increased stem/progenitor cell population. Oncotarget 2015, 6, 14179. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Sun, Y.; Li, L.; Niu, Y.; Lin, W.; Lin, C.; Antonarakis, E.S.; Luo, J.; Yeh, S.; Chang, C. Preclinical study using Malat1 small interfering RNA or androgen receptor splicing variant 7 degradation enhancer ASC-J9 ® to suppress enzalutamide-resistant prostate cancer progression. Eur. Urol. 2017, 72, 835–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Z.; Ren, S.; Lu, J.; Wang, F.; Xu, W.; Sun, Y.; Wei, M.; Chen, J.; Gao, X.; Xu, C.; et al. The prostate cancer-up-regulated long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. Urol. Oncol. Semin. Orig. Investig. 2013, 31, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Gu, P.; Chen, X.; Xie, R.; Xie, W.; Huang, L.; Dong, W.; Han, J.; Liu, X.; Shen, J.; Huang, J.; et al. A novel AR translational regulator lncRNA LBCS inhibits castration resistance of prostate cancer. Mol. Cancer 2019, 18, 109. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.-T.; Huang, J.; Zhou, N.; Zhang, Z.; Koirala, P.; Zhou, X.; Wu, F.; Ding, X.; Mo, Y.-Y. Regulation of PCGEM1 by p54/nrb in prostate cancer. Sci. Rep. 2016, 6, 34529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, C.-L.; Wang, L.-Y.; Yu, Y.-L.; Chen, H.-W.; Srivastava, S.; Petrovics, G.; Kung, H.-J. A long noncoding RNA connects c-Myc to tumor metabolism. Proc. Natl. Acad. Sci. USA 2014, 111, 18697–18702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.-W.; Zhang, Y.; Wang, L.-N.; Lin, Y.-N.; Xing, Y.-X.; Shi, Y.; Zhao, J.; Han, B. The novel long noncoding RNA LOC283070 is involved in the transition of LNCaP cells into androgen-independent cells via its interaction with PHB2. Asian J. Androl. 2018, 20, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Sun, Y.; Huang, C.-P.; Luo, J.; Zhang, L.; Meng, J.; Liang, C.; Chang, C. Targeting the Lnc-OPHN1-5/androgen receptor/hnRNPA1 com-plex increases Enzalutamide sensitivity to better suppress prostate cancer progression. Cell Death Dis. 2021, 12, 855. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Pu, X.; Luo, M.; Wen, H.; Xu, Z.; Wei, Q.; Dang, Q. Long noncoding RNA GAS5 interacts and suppresses androgen receptor ac-tivity in prostate cancer cells. Prostate 2021, 81, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.B.; Jeffery, P.; Gahete, M.D.; Whiteside, E.; Walpole, C.; Maugham, M.; Jovanovic, L.; Gunter, J.; Williams, E.; Nelson, C.; et al. The long non-coding RNA GHSROS repro-grams prostate cancer cell lines toward a more aggressive phenotype. PeerJ 2021, 9, e10280. [Google Scholar] [CrossRef] [PubMed]
- Lemos, A.E.G.; Ferreira, L.B.; Batoreu, N.M.; de Freitas, P.P.; Bonamino, M.H.; Gimba, E.R.P. PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells. Tumor Biol. 2016, 37, 11339–11348. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shi, S.; Wang, L.; Xie, Y.; Bai, E.; Zhou, X.; Li, M.; Jin, G.; Zhu, Q. Role of PRNCR1 in the castration resistant prostate cancer. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi Chin. J. Cell. Mol. Immunol. 2013, 29, 789–793. [Google Scholar]
- Xiong, Y.; Wang, L.; Li, Y.; Chen, M.; He, W.; Qi, L. The long Non-Coding RNA XIST interacted with MiR-124 to modulate bladder cancer growth, invasion and migration by targeting androgen receptor (AR). Cell. Physiol. Biochem. 2017, 43, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Zhang, X.; Bian, J.; Han, L.; Huang, H.; He, M.; Wei, M.; Wang, P. The long non-coding RNA LINC00460 predicts the prognosis and promotes the proliferation and migration of cells in bladder urothelial carcinoma. Oncol. Lett. 2019, 17, 3874–3880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Zhang, L.; Deng, J.; Guo, B.; Li, F.; Wang, Y.; Wu, R.; Zhang, S.; Lu, J.; Zhou, Y. A novel micropeptide encoded by Y-Linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma. Cancer Res. 2020, 80, 2790–2803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, K.; Weidmann, C.A.; Hilimire, T.A.; Yee, E.; Hatfield, B.M.; Schneekloth, J.S., Jr.; Weeks, K.M.; Novina, C.D. Targeting the oncogenic long non-coding RNA SLNCR1 by blocking its sequence-specific binding to the androgen receptor. Cell Rep. 2020, 30, 541–554.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, K.; Joyce, C.E.; Buquicchio, F.; Brown, A.; Ritz, J.; Distel, R.J.; Yoon, C.H.; Novina, C.D. The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region. Cell Rep. 2016, 15, 2025–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, W.; Sun, Y.; Guo, C.; Hu, G.; Wang, M.; Zheng, J.; Lin, W.; Huang, Q.; Li, G.; Zheng, J.; et al. LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor (AR)/miRNA-143-3p signals. Cell Death Differ. 2017, 24, 1502–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, W.; Sun, Y.; Jiang, M.; Wang, M.; Gasiewicz, T.; Zheng, J.; Chang, C. Differential regulation of LncRNA-SARCC suppresses VHL-mutant RCC cell proliferation yet promotes VHL-normal RCC cell proliferation via modulating androgen receptor/HIF-2α/C-MYC axis under hypoxia. Oncogene 2016, 35, 4866–4880. [Google Scholar] [CrossRef]
- Bai, J.-Y.; Jin, B.; Ma, J.-B.; Liu, T.-J.; Yang, C.; Chong, Y.; Wang, X.; He, D.; Guo, P. HOTAIR and androgen receptor synergistically increase GLI2 tran-scription to promote tumor angiogenesis and cancer stemness in renal cell carcinoma. Cancer Lett. 2021, 498, 70–79. [Google Scholar] [CrossRef]
- Jiang, H.; Lv, D.J.; Song, X.L.; Wang, C.; Yu, Y.Z.; Zhao, S.C. Upregulated circZMIZ1 promotes the proliferation of prostate cancer cells and is a valuable marker in plasma. Neoplasma 2020, 67, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yu, C.; Zhang, Y.; Liu, J.; Jia, Y.; Sun, F.; Zhang, P.; Li, J.; Guo, L.; Xiao, H.; et al. Circular RNA cir-ITCH is a potential therapeutic target for the treatment of castration-resistant prostate cancer. BioMed Res. Int. 2020, 2020, 7586521. [Google Scholar] [CrossRef]
- Greene, J.; Baird, A.-M.; Casey, O.; Brady, L.; Blackshields, G.; Lim, M.; O’Brien, O.; Gray, S.G.; McDermott, R.; Finn, S.P. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci. Rep. 2019, 9, 10739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Sun, Y.; Xiang, Z.; Wang, K.; Liu, B.; Xiao, G.; Niu, Y.; Wu, D.; Chang, C. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis. 2019, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Siu, M.K.; Chen, W.-Y.; Tsai, H.-Y.; Yeh, H.-L.; Yin, J.J.; Liu, S.-Y.; Liu, Y.-N. Androgen receptor regulates SRC expression through mi-croRNA-203. Oncotarget 2016, 7, 25726. [Google Scholar] [CrossRef] [Green Version]
- Gui, B.; Hsieh, C.-L.; Kantoff, P.W.; Kibel, A.S.; Jia, L. Androgen receptor-mediated downregulation of microRNA-221 and -222 in castration-resistant prostate cancer. PLoS ONE 2017, 12, e0184166. [Google Scholar] [CrossRef]
- Yao, J.; Xu, C.; Fang, Z.; Li, Y.; Liu, H.; Wang, Y.; Xu, C.; Sun, Y. Androgen receptor regulated microRNA miR-182-5p promotes prostate cancer progression by targeting the ARRDC3/ITGB4 pathway. Biochem. Biophys. Res. Commun. 2016, 474, 213–219. [Google Scholar] [CrossRef]
- Siu, M.; Chen, W.; Tsai, H.; Chen, H.; Yin, J.; Chen, C.; Tsai, Y.-C.; Liu, Y.-N. TCF7 is suppressed by the androgen receptor via microRNA-1-mediated downregulation and is involved in the development of resistance to androgen deprivation in prostate cancer. Prostate Cancer Prostatic Dis. 2017, 20, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, J.; Xie, H.; Liu, T.; Chen, Y.; Ma, Z.; Pei, X.; Yang, W.; Li, L. Androgen receptor suppresses prostate cancer metastasis but promotes bladder cancer metastasis via differentially altering miRNA525-5p/SLPI-mediated vasculogenic mimicry formation. Cancer Lett. 2020, 473, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Lu, Y.; Kong, Z.; Zhang, Y.; Fu, F.; Su, X.; Huang, Y.; Wan, X.; Li, Y. Androgen-responsive lncRNA LINC00304 promotes cell cycle and prolif-eration via regulating CCNA1. Prostate 2019, 79, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Misawa, A.; Takayama, K.-I.; Fujimura, T.; Homma, Y.; Suzuki, Y.; Inoue, S. Androgen-induced lncRNA POTEF-AS1 regulates apoptosis-related pathway to facilitate cell survival in prostate cancer cells. Cancer Sci. 2016, 108, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Wan, X.; Zhang, Y.; Kong, Z.; Lu, Y.; Sun, X.; Huang, Y.; Ji, C.; Li, D.; Luo, J.; et al. A novel androgen-reduced prostate-specific lncRNA, PSLNR, inhibits prostate-cancer progression in part by regulating the p53-dependent pathway. Prostate 2019, 79, 1379–1393. [Google Scholar] [CrossRef]
- Sun, M.; Geng, D.; Li, S.; Chen, Z.; Zhao, W. LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells. Biol. Chem. 2018, 399, 387–395. [Google Scholar] [CrossRef]
- Kong, Z.; Lu, Y.; Wan, X.; Luo, J.; Li, D.; Huang, Y.; Wang, C.; Li, Y.; Xu, Y. Comprehensive characterization of androgen-responsive circrnas in prostate cancer. Life 2021, 11, 1096. [Google Scholar] [CrossRef] [PubMed]
- Ribas, J.; Ni, X.; Haffner, M.; Wentzel, E.A.; Salmasi, A.H.; Chowdhury, W.H.; Kudrolli, T.-A.; Yegnasubramanian, S.; Luo, J.; Rodriguez, R.; et al. miR-21: An androgen receptor–regulated mi-croRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009, 69, 7165–7169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, L.; Gui, B.; Zheng, D.; Decker, K.F.; Tinay, I.; Tan, M.; Wang, X.; Kibel, A.S. Androgen receptor-regulated miRNA-193a-3p targets AJUBA to promote prostate cancer cell migration. Prostate 2017, 77, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lapek, J.; Fujimura, K.; Strnadel, J.; Liu, B.; Gonzalez, D.J.; Zhang, W.; Watson, F.; Yu, V.; Liu, C.; et al. Pseudopodium-enriched atypical kinase 1 mediates angiogenesis by modulating GATA2-dependent VEGFR2 transcription. Cell Discov. 2018, 4, 1–24. [Google Scholar] [CrossRef]
- Kroiss, A.; Vincent, S.; Decaussin-Petrucci, M.; Meugnier, E.; Viallet, J.; Ruffion, A.; Chalmel, F.; Samarut, J.; Allioli, N. Androgen-regulated microRNA-135a de-creases prostate cancer cell migration and invasion through downregulating ROCK1 and ROCK2. Oncogene 2015, 34, 2846–2855. [Google Scholar] [CrossRef]
- Meng, D.; Yang, S.; Wan, X.; Zhang, Y.; Huang, W.; Zhao, P.; Wang, L.; Huang, Y.; Li, T.; Li, Y. A transcriptional target of androgen receptor, miR-421 regulates proliferation and metabolism of prostate cancer cells. Int. J. Biochem. Cell Biol. 2016, 73, 30–40. [Google Scholar] [CrossRef]
- Liu, Y.-N.; Yin, J.; Barrett, B.; Tillman, H.; Li, D.; Casey, O.M.; Fang, L.; Hynes, P.G.; Ameri, A.H.; Kelly, K. Loss of androgen-regulated MicroRNA 1 activates SRC and promotes prostate cancer bone metastasis. Mol. Cell. Biol. 2015, 35, 1940–1951. [Google Scholar] [CrossRef] [Green Version]
- Dang, Q.; Li, L.; Xie, H.; He, D.; Chen, J.; Song, W.; Chang, L.-S.; Chang, H.-C.; Yeh, S.; Chang, C. Anti-androgen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation via altering the infiltrated mast cells→ androgen receptor (AR)→ miRNA32 signals. Mol. Oncol. 2015, 9, 1241–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zennami, K.; Choi, S.M.; Liao, R.; Li, Y.; Dinalankara, W.; Marchionni, L.; Rafiqi, F.H.; Kurozumi, A.; Hatano, K.; Lupold, S.E. PDCD4 is an Androgen-Repressed tumor suppressor that regulates prostate cancer growth and castration resistance. Mol. Cancer Res. 2019, 17, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Pasqualini, L.; Bu, H.; Puhr, M.; Narisu, N.; Rainer, J.; Schlick, B.; Schäfer, G.; Angelova, M.; Trajanoski, Z.; Börno, S.T.; et al. miR-22 and miR-29a Are Members of the Androgen Receptor Cistrome Modulating LAMC1 and Mcl-1 in Prostate Cancer. Mol. Endocrinol. 2015, 29, 1037–1054. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Layer, R.; Mueller, A.C.; Cichewicz, M.A.; Negishi, M.; Paschal, B.M.; Dutta, A. Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells. Oncogene 2013, 33, 1448–1457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalava, S.E.; Urbanucci, A.; Latonen, L.; Waltering, K.K.; Sahu, B.; Jänne, O.A.; Seppälä, J.; Lähdesmäki, H.; Tammela, T.L.J.; Visakorpi, T. Androgen-regulated miR-32 targets BTG2 and is overexpressed in castration-resistant prostate cancer. Oncogene 2012, 31, 4460–4471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, R.C.; Toubia, J.; Townley, S.; Hanson, A.R.; Dredge, B.K.; Pillman, K.A.; Bert, A.-G.; Winter, J.-M.; Iggo, R.; Das, R.; et al. Post-transcriptional gene regulation by mi-crorna-194 promotes neuroendocrine transdifferentiation in prostate cancer. Cell Rep. 2021, 34, 108585. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.E.; Dart, D.A.; Sita-Lumsden, A.; Cheng, H.; Rennie, P.S.; Bevan, C.L. Androgen-regulated processing of the oncomir MiR-27a, which targets Prohibitin in prostate cancer. Hum. Mol. Genet. 2012, 21, 3112–3127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, L.V.; Veliceasa, D.; Vinokour, E.; Volpert, O. miR-200b inhibits prostate cancer EMT, growth and metastasis. PLoS ONE 2013, 8, e83991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, W.; Zhang, J.; Li, X.; Meng, D.; Gao, Y.; Yang, S.; Wan, X.; Zhou, C.; Guo, F.; Huang, Y.; et al. Identification of novel AR-targeted microRNAs mediating androgen sig-nalling through critical pathways to regulate cell viability in prostate cancer. PLoS ONE 2013, 8, e56592. [Google Scholar]
- Maina, P.; Shao, P.; Liu, Q.; Fazli, L.; Tyler, S.; Nasir, M.; Dong, X.; Qi, H.H. c-MYC drives histone demethylase PHF8 during neuroendocrine differentiation and in castration-resistant prostate cancer. Oncotarget 2016, 7, 75585–75602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Mei, Y.; Li, K.; Huang, X.; Yang, H. Downregulation of miR-17-92a cluster promotes autophagy induction in response to celastrol treatment in prostate cancer cells. Biochem. Biophys. Res. Commun. 2016, 478, 804–810. [Google Scholar] [CrossRef]
- Rokhlin, O.W.; Scheinker, V.S.; Taghiyev, A.F.; Bumcrot, D.; Glover, R.A.; Cohen, M.B. MicroRNA-34 mediates AR-dependent p53-induced apoptosis in prostate cancer. Cancer Biol. Ther. 2008, 7, 1288–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Pu, H.; Huang, W.; Yang, S.; Zhang, Y.; Kong, Z.; Yang, Z.; Zhao, P.; Li, T. Androgen-induced miR-135a acts as a tumor suppressor through downregulating RBAK and MMP11, and mediates resistance to androgen deprivation therapy. Oncotarget 2016, 7, 51284–51300. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Liu, H.; Zhang, L.; Chang, H.; Liu, Y.; Du, S.; Yang, Y.; Wang, P. Computational identification of mutually exclusive transcriptional drivers dysregulating metastatic microRNAs in prostate cancer. Nat. Commun. 2017, 8, 14917. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Huang, X.; Wang, H.; Yang, H. Celastrol induces autophagy by targeting AR/miR-101 in prostate cancer cells. PLoS ONE 2015, 10, e0140745. [Google Scholar] [CrossRef]
- Wan, X.; Huang, W.; Yang, S.; Zhang, Y.; Zhang, P.; Kong, Z.; Li, T.; Wu, H.; Jing, F.; Li, Y. Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression. Int. J. Biochem. Cell Biol. 2016, 79, 249–260. [Google Scholar] [CrossRef]
- Chen, Z.; Song, X.; Li, Q.; Xie, L.; Guo, T.; Su, T.; Tang, C.; Chang, X.; Liang, B.; Huang, D.; et al. Androgen Receptor-Activated enhancers simultaneously regulate oncogene TMPRSS2 and lncRNA PRCAT38 in prostate cancer. Cells 2019, 8, 864. [Google Scholar] [CrossRef] [Green Version]
- Ozgur, E.; Gezer, U. Investigation of lncRNA H19 in prostate cancer cells and secreted exosomes upon androgen stimulation or androgen receptor blockage. Bratisl. Med. J. 2020, 121, 362–365. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Deng, J.; Cao, R.; Xiong, S.; Guo, J. LncRNA GAS5 participates in the regulation of dexamethasone on androgen recep-tor-negative and-positive prostate cancer cell proliferation. Mol. Cell. Probes 2020, 53, 101607. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wang, K.; Yeh, S.; Sun, Y.; Liang, L.; Xiao, Y.; Xu, W.; Niu, Y.; Cheng, L.; Maity, S.-N.; et al. LncRNA-p21 alters the antiandrogen enzalutamide-induced prostate cancer neuroendocrine differentiation via modulating the EZH2/STAT3 signaling. Nat. Commun. 2019, 10, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Su, X.; Kong, Z.; Fu, F.; Zhang, P.; Wang, D.; Wu, H.; Wan, X.; Li, Y. An androgen reduced transcript of LncRNA GAS5 promoted prostate cancer proliferation. PLoS ONE 2017, 12, e0182305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parolia, A.; Crea, F.; Xue, H.; Wang, Y.; Mo, F.; Ramnarine, V.R.; Liu, H.H.; Lin, D.; Saidy, N.R.N.; Clermont, P.-L.; et al. The long non-coding RNA PCGEM1 is regulated by androgen receptor activity in vivo. Mol. Cancer 2015, 14, 46. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, K.; Reon, B.J.; Anaya, J.; Dutta, A. The lncRNA DRAIC/PCAT29 locus constitutes a Tumor-Suppressive nexus. Mol. Cancer Res. 2015, 13, 828–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohvakka, A.; Sattari, M.; Shcherban, A.; Annala, M.; Urbanucci, A.; Kesseli, J.; Tammela, T.L.J.; Kivinummi, K.; Latonen, L.; Nykter, M.; et al. AR and ERG drive the expression of prostate cancer specific long noncoding RNAs. Oncogene 2020, 39, 5241–5251. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Patel, L.; Prensner, J.R.; Shi, Y.; Iyer, M.K.; Subramaniyan, S.; Carley, A.; Niknafs, Y.-S.; Sahu, A.; Han, S.; et al. The lncRNA PCAT29 inhibits oncogenic phenotypes in prostate cancer. Mol. Cancer Res. 2014, 12, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Takayama, K.I.; Horie-Inoue, K.; Katayama, S.; Suzuki, T.; Tsutsumi, S.; Ikeda, K.; Urano, T.; Fujimura, T.; Takagi, K.; Takahashi, S.; et al. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. EMBO J. 2013, 32, 1665–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Wang, S.; Li, Q.; Zhao, Q.; Shao, M. Identification of 10 differently expressed lncRNAs as prognostic biomarkers for pros-tate adenocarcinoma. Math. Biosci. Eng. 2020, 17, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ahmed, M.; Zhang, F.; Yao, C.Q.; Li, S.; Liang, Y.; Hua, J.; Soares, F.; Sun, Y.; Langstein, J.; et al. Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nat. Genet. 2016, 48, 1142–1150. [Google Scholar] [CrossRef]
- Liu, B.; Qian, D.; Zhou, W.; Jiang, H.; Xiang, Z.; Wu, D. A novel androgen-induced lncRNA FAM83H-AS1 promotes prostate cancer progression via the miR-15a/CCNE2 axis. Front. Oncol. 2021, 10, 2943. [Google Scholar] [CrossRef]
- Jia, J.; Li, F.; Tang, X.-S.; Xu, S.; Gao, Y.; Shi, Q.; Guo, W.; Wang, X.; He, D.; Guo, P. Long noncoding RNA DANCR promotes invasion of prostate cancer through epigenetically silencing expression of TIMP2/3. Oncotarget 2016, 7, 37868. [Google Scholar] [CrossRef] [Green Version]
- Crea, F.; Watahiki, A.; Quagliata, L.; Xue, H.; Pikor, L.; Parolia, A.; Wang, Y.; Lin, D.; Lam, W.-L.; Farrar, W.-L.; et al. Identification of a long non-coding RNA as a novel bi-omarker and potential therapeutic target for metastatic prostate cancer. Oncotarget 2014, 5, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Huang, W.; Yang, S.; Zhang, Y.; Pu, H.; Fu, F.; Huang, Y.; Wu, H.; Li, T.; Li, Y. Identification of androgen-responsive lncRNAs as diagnostic and prognostic markers for prostate cancer. Oncotarget 2016, 7, 60503–60518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Su, X.; Yan, W.; Kong, Z.; Wang, D.; Huang, Y.; Zhai, Q.; Zhang, X.; Wu, H.; Li, Y.; et al. Overexpression of AR-regulated lncRNA TMPO-AS1 correlates with tumor progression and poor prognosis in prostate cancer. Prostate 2018, 78, 1248–1261. [Google Scholar] [CrossRef]
- Wang, H.-X.; Kang, L.-J.; Qin, X.; Xu, J.; Fei, J.-W. LINC00460 promotes proliferation and inhibits apoptosis of non-small cell lung cancer cells through targeted regulation of miR-539. Eur Rev. Med. Pharm. Sci 2020, 24, 6752–6758. [Google Scholar]
- Deng, G.; Wang, R.; Sun, Y.; Huang, C.-P.; Yeh, S.; You, B.; Feng, C.; Li, G.; Ma, S.; Chang, C. Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARγ/MMP-9 signals. Cell Death Differ. 2021, 28, 2145–2159. [Google Scholar] [CrossRef] [PubMed]
- Casaburi, I.; Cesario, M.G.; Donà, A.; Rizza, P.; Aquila, S.; Avena, P.; Lanzino, M.; Pellegrino, M.; Vivacqua, A.; Tucci, P.; et al. Androgens downregulate miR-21 expression in breast cancer cells underlining the protective role of androgen receptor. Oncotarget 2016, 7, 12651–12661. [Google Scholar] [CrossRef] [Green Version]
- Teng, Y.; Litchfield, L.M.; Ivanova, M.M.; Prough, R.A.; Clark, B.J.; Klinge, C.M. Dehydroepiandrosterone-induces miR-21 transcrip-tion in HepG2 cells through estrogen receptor β and androgen receptor. Mol. Cell. Endocrinol. 2014, 392, 23–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.-Z.; Wang, W.-J.; Chen, Y.-X.; Fan, Z.-W.; Xie, X.-F.; Yang, L.-Y.; Chang, C.; Cai, Y.; Hao, J.-J.; Wang, M.-R.; et al. The miR-1224-5p/TNS4/EGFR axis inhibits tumour progres-sion in oesophageal squamous cell carcinoma. Cell Death Dis. 2020, 11, 597. [Google Scholar] [CrossRef]
- Lyu, S.; Yu, Q.; Ying, G.; Wang, S.; Wang, Y.; Zhang, J.; Niu, Y. Androgen receptor decreases CMYC and KRAS expression by upregu-lating let-7a expression in ER-, PR-, AR+ breast cancer. Int. J. Oncol. 2014, 44, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Shen, Y.; Zhang, W.; Jin, J.; Huang, D.; Fang, H.; Ji, W.; Shi, Y.; Tang, L.; Chen, W.; et al. An androgen receptor negatively induced long non-coding RNA ARNILA binding to miR-204 promotes the invasion and metastasis of triple-negative breast cancer. Cell Death Differ. 2018, 25, 2209–2220. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-J.; Yeh, S.-H.; Liu, W.-H.; Lin, C.-C.; Huang, H.-C.; Chen, C.-L.; Chen, D.-S.; Chen, P.-J. Androgen pathway stimulates MicroRNA-216a transcription to suppress the tumor suppressor in lung cancer-1 gene in early hepatocarcinogenesis. Hepatology 2012, 56, 632–643. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, Y.; Lin, H.; Chou, F.; Xiao, Y.; Jin, R.A.; Cai, X.; Chang, C. Olaparib and enzalutamide synergistically suppress HCC progression via the AR-mediated miR-146a-5p/BRCA1 signaling. FASEB J. 2020, 34, 5877–5891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, S.; Jin, S.; Wang, C.; Tu, P.; Hu, K.; Lu, J. Androgen receptor suppresses vasculogenic mimicry in hepatocellular carcinoma via circRNA7/miRNA7-5p/VE-cadherin/Notch4 signalling. J. Cell. Mol. Med. 2020, 24, 14110–14120. [Google Scholar] [CrossRef]
- Ouyang, X.; Yao, L.; Liu, G.; Liu, S.; Gong, L.; Xiao, Y. Loss of androgen receptor promotes HCC invasion and metastasis via acti-vating circ-LNPEP/miR-532–3p/RAB9A signal under hypoxia. Biochem. Biophys. Res. Commun. 2021, 557, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Yan, P.; Liang, Y.; Sun, Y.; Shen, J.; Zhou, S.; Lin, H.; Liang, X.; Cai, X. Circular RNA expression is suppressed by androgen receptor (AR)-regulated adenosine deaminase that acts on RNA (ADAR1) in human hepatocellular carcinoma. Cell Death Dis. 2017, 8, e3171. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ou, Z.; Sun, Y.; Yeh, S.; Wang, X.; Long, J.; Chang, C. Androgen receptor promotes melanoma metastasis via altering the miRNA-539-3p/USP13/MITF/AXL signals. Oncogene 2016, 36, 1644–1654. [Google Scholar] [CrossRef]
- Schmidt, K.; Carroll, J.S.; Yee, E.; Thomas, D.D.; Wert-Lamas, L.; Neier, S.C.; Sheynkman, G.; Ritz, J.; Novina, C.D. The lncRNA SLNCR Recruits the Androgen Receptor to EGR1-Bound Genes in Melanoma and Inhibits Expression of Tumor Suppressor p21. Cell Rep. 2019, 27, 2493–2507.e4. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Li, J.; Wang, W.; Hu, Z.; Guan, C.; Zhao, Y.; Li, W.; Cui, Y. AR-induced ZEB1-AS1 represents poor prognosis in cholangiocarcinoma and facilitates tumor stemness, proliferation and invasion through mediating miR-133b/HOXB8. Aging 2020, 12, 1237–1255. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Wang, S.; Meng, J.; Lyu, G.; Ding, G.; Hu, Y.; Wang, L.; Wu, L.; Yang, W.; Lv, Y.; et al. Long noncoding RNA PART1 restrains aggressive gastric cancer through the epigenetic silencing of PDGFB via the PLZF-mediated recruitment of EZH2. Oncogene 2020, 39, 6513–6528. [Google Scholar] [CrossRef] [PubMed]
- You, B.; Sun, Y.; Luo, J.; Wang, K.; Liu, Q.; Fang, R.; Liu, B.; Chou, F.; Wang, R.; Meng, J.; et al. Androgen receptor promotes renal cell carcinoma (RCC) vasculogenic mimicry (VM) via altering TWIST1 nonsense-mediated decay through lncRNA-TANAR. Oncogene 2021, 40, 1674–1689. [Google Scholar] [CrossRef]
- Wang, K.; Sun, Y.; Tao, W.; Fei, X.; Chang, C. Androgen receptor (AR) promotes clear cell renal cell carcinoma (ccRCC) migration and invasion via altering the circHIAT1/miR-195-5p/29a-3p/29c-3p/CDC42 signals. Cancer Lett. 2017, 394, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Sun, Y.; Guo, C.; Sheu, T.; Zhai, W.; Zheng, J.; Chang, C. Androgen receptor decreases renal cell carcinoma bone metastases via suppressing the osteolytic formation through altering a novel circEXOC7 regulatory axis. Clin. Transl. Med. 2021, 11, e353. [Google Scholar] [CrossRef]
- Hu, R.; Dunn, T.A.; Wei, S.; Isharwal, S.; Veltri, R.W.; Humphreys, E.; Han, M.; Partin, A.W.; Vessella, R.L.; Isaacs, W.B.; et al. Ligand-Independent Androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 2009, 69, 16–22. [Google Scholar] [CrossRef] [Green Version]
Cancer Types | MiRNAs | Expression of miRNAs in Different Cancer Types | Target Region of AR mRNA/How microRNAs Affect AR | Molecular Mechanisms | Cell Line/Samples/Animal Models | Function of miRNAs in Cancer Cells | References |
---|---|---|---|---|---|---|---|
Bladder cancer | miR-449a | _ | ↓ | _ | UMUC3 and TCCSUP | ABDHFA treatment: ↑ miR-449a: ↓ proliferation, viability, ↑ cell cycle arrest | [58] |
Breast cancer | miR-9-5p | ↓ | ↓ 3′-UTR | _ | MDA-MB-453, MCF-7, T-47D/11 pairs of tumor tissues and ANCTs | ↓ proliferation and cell growth | [59] |
Cervical cancer | miR-130a-3p | ↑ | ↓ 3′UTR | _ | 20 CIN I, 20 CIN II, 30 CIN III tissue and 20 healthy tissue samples | ↑ proliferation and invasion | [60] |
Hepatocellular carcinoma | miR-135b-5p | ↓ | ↓ 3′-UTR | HIF-2α, c-Myc, p27 | SK-hep1, HepG2, SNK, Huh7 and HA22T | ↓ proliferation, colony formation | [61] |
miR-92a-2-5p | ↑ | ↓ 3′UTR | PHLPP/p-AKT/β-catenin signaling | SK-HEP-1, Hep G2, HEK 293 T, THP-1, Hepa 1-6, HA22T/male nude mice | ↑ invasion | [62] | |
miR-367-3p | ↓ | ↑ indirectly by regulating MDM2 | MDM2/FKBP5/PHLPP/(pAKT and pERK) signals | SKhep1 and HA22T/126 HCC samples | ↑ Sorafenib chemotherapy efficacy, ↓ invasion and metastasis | [63] | |
Glioma | miR-599 | ↓ | ↓ 3′UTR | circ-ASPH, SOCS2-AS1 | U251, U87MG, LN229 | ↓ proliferation, migration and invasion | [64] |
LncRNAs | Expression of lncRNAs in PCa | Target Region of AR mRNA/How lncRNAs Affect AR | Molecular Mechanisms | Cell Lines/Samples/Animal Models | Function of lncRNAs in Cancer Cells | References |
---|---|---|---|---|---|---|
ARLNC1 | ↑ | stabilizing AR transcript | _ | VCaP and LNCaP/11 benign prostate samples, 85 localized prostate cancer samples, and 37 from metastatic PCa samples/athymic nude mice | ↑ Proliferation and cell growth, ↓ apoptosis | [74] |
PRNCR1 and PCGEM1 | ↑ | interact with, and increase its ligand-independent activation | DOT1L | LNCaP, RWPE, WPE, CWR22Rv1/BPH and PCa tissues male athymic Nu/Nu mice | ↑ Proliferation and cell growth | [75] |
HOTAIR | ↑ | ↑ By preventing AR ubiquitination and blocking its interaction with MDM2 | _ | LNCaP, C4-2B/GEO analysis: GSE35988 and GSE21034 | ↑ cell growth and invasion | [71] |
MALAT1 | ↑ | ↑ indirectly by inhibiting miR-320 | miR-320 | DU145, 22Rv1, PC3, LNCaP/BALB/cA-nu mice | DHT treatment: ↑ proliferation and cell cycle progression | [72] |
LINC00844 | ↓ | modulated AR binding to chromatin | NDRG1 | LNCaP, VCaP, and 22Rv1/GEO database: GSE109336 | ↓ migration and invasion | [73] |
LINC00675 | ↑ | directly modulate AR interaction with MDM2, inhibited AR’s ubiquitination, ↑ indirectly by regulating the co-activator of AR | MDM2, GATA2 | LNCaP-SF, LNCaP-JP, LNCaP, LNCaP-C4-2b, 293T/male BALB/c nude mice | ↑ tumor formation, tumor growth and Enz resistance | [76] |
CCAT1 | ↑ | ↑ by binding to P68 | DDX5 (P68), mir-28-5P | PC3, Du145, and LNCaP/8 ADPC tissues and 4 CRPC samples/BALB/C nude mice | ↑ proliferation, colony formation, and cell cycle progression, ↓ apoptosis | [77] |
PCGEM1 | ↑ in AD | ↑ AR3 by interacting with U2AF65, ↓ AR3 by interacting with hnRNP A1 | U2AF65, hnRNP A1 | LNCaP, CWR22Rv1, LNCaP95, HECK293T/male SCID mice | ↑ castration resistance | [65] |
SOCS2-AS1 | ↑ Castration-resistant Prostate Cancer Cells | ↑ by regulating cofactor recruitment for epigenetic controls | TNFSF10 | LNCaP, VCaP, LTAD | ↑ castration-resistant and cell growth, ↓ apoptosis | [78] |
HORAS5 | ↑ | ↑ post-transcriptional maintenance of AR mRNA stability | _ | LNCaP and C4-2 male, immunocompromised NOD/SCID mice | ↑ proliferation and survival | [66] |
PCLN16 | ↑ | ↑ indirectly by regulating HIP1 | HIP1 | NCaP and VCaP/tumor tissues and ANCTs | ↑ proliferation, migration and cell growth | [79] |
HOTAIR | ↑ in PCa cells after co-culture with HMC-1 cells | ↓ at the transcriptional level | PRC2, MMP9 | LNCaP, CWR22Rv1, C4-2, C4-2B and HMC-1/male nude mice | recruitment of mast cells: ↑ invasion and stem/progenitor cell population | [80] |
PlncRNA-1 | ↑ | ↑ by sponging AR-targeting microRNAs | miR-34c and miR-297 | RWPE-1, 22RV1, LNCaP, PC3 and DU145/16 PCa tissue samples, 35 biopsy-negative and 37 biopsy-positive blood samples/male nude mice | ↑ proliferation, migration and viability, ↓ apoptosis | [69] |
PCAL7 | ↑ | ↑ indirectly by regulating HIP1 | HIP1 | 104 tumor tissues and ANCTs | ↑ proliferation, migration | [70] |
Malat1 | ↑ | ↑ AR-v7 indirectly by interacting with SF2 to splice the AR transcript | SF2 | VCaP and EnzR-PCa C4-2/ 10 CRPC samples before (Pre-Enz) and after (Post-Enz) Enz treatment/nude mice | ↑ Enz resistance | [81] |
PlncRNA-1 | ↑ | ↑ | NKX3-1 | LNCaP, LNCaP-AI, PC-3, C4-2, RWPE-1 and PWR-1E/16 pairs of PCa tissues and ANCTs, 14 pairs of PCa tissues and BPH tissues | ↑ proliferation and viability, ↓ apoptosis | [82] |
LBCS | ↓ | ↓ 5′ UTR | hnRNPK | LNCaP, LNCaP-Bic, and LNCaP-AI/130 PCa tissues and 32 BPH tissues plus 70 PCa tissues and 10 BPH | ↓ castration resistance | [83] |
PCGEM1 | ↑ | upregulation of PCGEM1 by SAM: ↑ AR3 | p54/nrb | LNCaP and CWR22Rv1/male SCID mice | ↑ tumor growth and castration resistance, ↓ apoptosis DIM: ↓ PCGEM1-mediated castration resistance | [84] |
PCGEM1 | ↑ | facilitating AR binding to some promoters | c-Myc | LNCaP, | ↑ glucose uptake and glycolysis, ell-cycle progression, proliferation, and survival | [85] |
LOC283070 | ↑ | ↑ indirectly by inhibiting PHB2 | PHB2 | LNCaP and LNCaP-AI | ↑ proliferation and migration | [86] |
lnc-OPHN1-5 | _ | ↓ 3′UTR | hnRNPA1 | C4-2R, C4-2BR, C4-2B/75 PCa samples/male NOD CRISPR Prkdc Il2r Gamma triple-immunodeficient mice | ↑ Enz sensitivity | [87] |
GAS5 | ↓ | ↓ directly by interacting with LBD of AR | _ | C4-2, DU145, 293T/GSE6919 | ↓ proliferation, ↑ apoptosis | [88] |
GHSROS | ↑ | ↓ | PPP2R2C | PC3, LNCaP, DU145, DUCaP | ↑ proliferation, growth, migration, survival, and resistance to the cytotoxic drug docetaxel | [89] |
PCA3 | ↑ | PCA3 knock down→ ↑ regulation of AR cofactors | _ | LNCaP | modulating the expression of EMT markers and AR cofactors ∆ PCA3: ↓ cell viability | [90] |
PRNCR1 | ↑ | ↑ | _ | LNCaP and C4-2 | ↑ proliferation and invasion, ↓ apoptosis | [91] |
Cancer Types | LncRNAs | Expression of LncRNAs in Different Cancer Types | Target Region of AR mRNA/How lncRNAs Affect AR | Molecular Mechanisms | Cell Lines/Samples/Animal Models | Function of lncRNAs in Cancer Cells | References |
---|---|---|---|---|---|---|---|
Bladder cancer | XIST | ↑ | ↑ by sponging AR-targeting microRNA | miR-124 | TCC-SUP, EJ, SW780 and UM-UC-3, SV-HUC-1 67 pairs of tumor tissues and ANCTs | ↑ proliferation, migration and invasion | [92] |
LINC00460 | ↑ | ↓ | _ | 5637, T24, J82, TCCSUP, UM-UC-3 and SV-HUC-1/TCGA database | ↑ proliferation and migration | [93] | |
Esophageal squamous cell carcinoma | LINC00278 | ↓ | indirectly inhibited interaction between YY1 and AR | YY1, eEF2K, YY1BM | DMEM, RPMI1640, FBS, Eca-109, TE-1, and KYSE-30/281 pairs of ESCC tissues and ANCTs, | ND treatment: ↑ LINC00278: ↓ survival, ↑apoptosis | [94] |
Melanoma | SLNCR1 | ↑ | SLNCR1 binds to AR-binding motifs 1 and 2 | _ | A375, HEK293T, WM1976, | ↓ binding SLNCR1 to AR: ↓ SLNCR1-mediated invasion | [95] |
SLNCR1 | ↑ | ↑ AR binding to the MMP9 promoter | Brn3a, MMP9 | A375, HEK293T, CY and WM | ↑ invasion | [96] | |
Renal cell carcinoma | SARCC | ↓ | destabilizing AR protein | miR-143-3p, AKT, MMP-13, K-RAS and P-ERK | SW839, OSRC-2, A498, 769-P, 786-O, Caki-1, Caki-2, HK2/66 ccRCC tissues and 8 metastatic ccRCC tissues/male athymic nude mice | ↓ proliferation, invasion, migration and resistance to Sunitinib | [97] |
SARCC | Differentially expressed by hypoxia in a VHL-dependent manner | ↓ binding and destablizing AR protein | HIF-2α, C-MYC signals | SW839, OSRC-2, A498, 769-P, and 786-O, Caki-1, Caki-2, HK-2 and 293T/16 ccRCC samples/male athymic nude mice | Differentially modulates proliferation under hypoxia | [98] | |
HOTAIR | ↑ | ↑ | GLI2 | HK-2, 786-O, ACHN, 769-P, SW839, OSRC-2, HUVEC/male nude mice | ↑ angiogenic phenotype and stemness | [99] |
circRNAs | Expression of circRNAs in PCa | Target Region of AR mRNA/How circRNAs Affect AR | Regulated Pathway | Cell Lines/Samples/Animal Models | Function of circRNAs in Cancer Cells | References |
---|---|---|---|---|---|---|
circZMIZ1 | ↑ | ↑ AR and AR-V7 | _ | DU145, C4-2, LNCaP, 22RV1, RWPE-1, 14 PCa samples, and 14 HCs | ↑ proliferation, ↓ G1 arrest | [100] |
circ-ITCH | ↓ | ↓ indirectly by regulating the coactivator of AR | miR-17, Wnt/β-Catenin, and PI3K/AKT/ mTOR Signaling Pathways | RWPE-1, LNCaP, PC-3/10 pairs of tumor tissues and ANCTs | ↓ migration and invasion | [101] |
hsa_circ_0004870 | ↓ | ↓ AR-V7 indirectly through U2AF65 | RBM39, U2AF65 | LNCaP, BPH1, 22Rv1 | ↓ Enz resistance | [102] |
circRNA17 | ↓ | ↓ AR-v7 indirectly by regulating miR-181c-5p | miR-181c-5p | C4–2, CWR22Rv1, and 293T/13 BPH samples, and 14 PCa samples/male nude mice | ↓ Enz resistance and invasion | [103] |
ncRNAs | Regulation by AR | Molecular Mechanisms | Cell Line/Samples/Animal Models | Function of ncRNAs in Cancer Cells | References |
---|---|---|---|---|---|
miR-203 | ↑ | SRC | _ | ↓ migration, growth, and metastasis | [104] |
miR-221/-222 | ↓ | FOXA1 | LNCaP and C4-2B/LuCaP 35 and LuCaP 35CR xenografts | ↑ proliferation and development of CRPC | [105] |
miR-182-5p | ↑ | ARRDC3, ITGB4 | RWPE-1, 22RV1, LNCaP, DU145/65, pairs of tumor tissues and ANCTs, and 18 pairs of tumor tissues and ANCTs/male nude mice | ↑ proliferation, invasion, migration and growth, ↓ apoptosis | [106] |
miR-1 | ↑ | TCF7 | PC3, LNCaP/111 PCa samples/nude mice | ↓ proliferation | [107] |
miR-525-5p | ↑ | SLPI, NFIX | _ | ↓ PCa metastasis | [108] |
miR-21 | ↑ | TGFBR2, Smad2/3 | RWPE-1, MDA-PCa-2b, 22Rv1, PC-3, and LNCaP/male athymic nude mice | ↓ tumor-suppressive activity of TGFβ pathway | [18] |
miR-21 | ↑ | _ | LNCaP, LAPC-4, C4-2, CWR22Rv1/10 PCa samples/male athymic Nu/Nu mice | ↑ androgen-dependent and -independent proliferation, tumor growth, and castration resistance | [114] |
miR-193a-3p | ↑ | AJUBA | LNCaP, C4-2B | ↑ migration and metastasis | [115] |
miR-4496 | ↑ | β-catenin signals | C4-2 and PC3 | ↓ invasion | [116] |
miR-135a | ↑ | ROCK1 and ROCK2 | LNCaP, PC-3/56 pairs of tumor tissues, and ANCTs/chick embryos and adult male mice | ↓ invasion | [117] |
miR-31 | ↓ | EZH2 | RWPE-1, VCaP, LNCaP, 22Rv1, PC3, DU145, and HEK293 | ↓ proliferation, cell growth and colony formation, ↑ cell cycle arrest | [22] |
miR-421 | ↓ | NRAS, PRAME, CUL4B, and PFKFB2 | LNCaP, 22Rv1, PC-3 and DU 145/microarray data: GSE21036, GSE45604, GSE38241, and 13 PCa samples 11 samples without PCa | ↓ viability, glycolysis and migration, ↑ cell cycle arrest | [118] |
miR-1 | ↑ | SRC | LNCaP, DU145RasV12G37, DU145/RasB1/28 HCs, 98 primary tumor, and 13 distant metastasis samples/male nude mice | ↓ proliferation, invasion, and metastasis | [119] |
miR-32 | ↓ | NSE | RWPE1, LNCaP, and CWR22Rv1/male nude mice | enzalutamide treatment (mast cells) → suppression of AR: ↑ miRNA32: ↑ NE differentiation | [120] |
miR-21 promoter | ↑ | PDCD4 | LNCaP and HEK 293, LAPC4/male athymic nu/nu mice | ↑ androgen-dependent and -independent growth and castration resistance, ↓ apoptosis | [121] |
miR-22 | ↓ | LAMC1 | LNCaP, PC3, DU145, VCaP, CWR22RV1, DUCaP, BPH-1, PC3-AR, LAPC-4, RWPE-1, and EP156T/ 41 pairs of tumor tissues and ANCTs, TCGA analysis: 52 pairs of tumor tissues and ANCTs | ↓ migration | [122] |
miR-29a | ↓ | MCL1 | LNCaP, PC3, DU145, VCaP, CWR22RV1, DUCaP, BPH-1, PC3-AR, LAPC-4, RWPE-1, and EP156T/ 41 pairs of tumor tissues and ANCTs, TCGA analysis: 52 pairs of tumor tissues and ANCTs | ↓ migration and viability, ↑ apoptosis | |
miR-99a/let7c/125b-2 cluster | ↓ | IGF1R | LNCaP, C4-2, and PC3 | ↓ proliferation | [123] |
miR-2909 | ↑ | TGFBR2, TGFβ signaling, PSA | PC3 and LNCaP | ↑ cell growth | [43] |
miR-32 | ↑ | BTG2 | LNCaP/ 5 BPH and 28 PCs, plus 7 BPH and 14 CRPCs | ↑ cell growth | [124] |
miR-148a | ↑ | PIK3IP1 | LNCaP/ 5 BPH and 28 PCs, plus 7 BPH and 14 CRPCs | ↑ cell growth and the number of cells in the S phase | |
miR-194 | ↓ | FOXA1, ERK Signaling | LNCaP, PC3, and 22RV1 | ↑ EMT process, migration, invasion and epithelial-neuroendocrine transdifferentiation | [125] |
miR-27a (miR-23a27a24-2cluster) | ↑ | PHB | HeLa, Cos-1, LNCaP, DuCaP, VCaP, C42, DU145, PC3, and PC3wtAR | ↑ cell growth | [126] |
miR-200b | ↑ | _ | PC3/male athymic mice | ↓ proliferation, invasion, cell growth, EMT process and metastasis | [127] |
miR-19a | ↑ | SUZ12, RAB13, SC4MOL, PSAP, and ABCA1 | LNCaP | ↑ cell viability | [128] |
miR-27a | ↑ | ABCA1 and PDS5B | LNCaP | ↑ cell viability | |
miR-133b | ↑ | CDC2L5, PTPRK, RB1CC1, and CPNE3 | LNCaP | ↑ cell viability | |
miR-22 | ↑ and ↓ during two different mechanisms | IL-6, AR c-MYC, miR-22, PHF8, KDM3A (↑) and AR c-MYC, miR-22, PHF8, KDM3A (↓) | LNCaP-Abl, LNCaP-IL-6, LNCaP/male mice | ↑ sensitivity LNCaP-Abl cells to the enzalutamide treatment, ↓ proliferation | [129] |
miR-17-92a | ↑ | ATG7 | NCaP, 22Rv1, DU145, and PC-3 | ↓ autophagy induced by celastrol treatment | [130] |
miR-204 | ↓ | XRN1, PSA, miR-34a | LNCaP, 22Rv1, PC-3, and CL1/171, BPH, plus PCa samples/nude mice and rats | ↓ growth and colony formation of LNCaP and 22Rv1 cells but ↑ growth and colony formation of CL1 and PC-3 cells | [52] |
miR-34 | miR-34a ↑ after DOX, but did not change with si-AR, miR-34c↑ after DOX, but to a small extent changed with si-AR | p53, SPAK, MDC1, and CaMKII | LNCaP, C4-2b, PC3, and DU145 | ↑ caspase activity and apoptosis | [131] |
miR-135a | ↑ | MMP11, RBAK, PI3K/AKT pathway | LNCaP, 22RV1, DU145, PC-3, and WPMY-1 | ↓ proliferation and migration, ↑ cell cycle arrest, and apoptosis | [132] |
the miR-200 family, miR-17-92 cluster, and miR-99a/let-7c/miR-125b-2 family | ↓ | HOXC6 and NKX2-2 | RWPE-1 and LNCAP | ↓ metastasis and EMT process | [133] |
miR-101 | ↑ | _ | LNCaP, 22Rv1, DU145, and PC-3 | ↓ celastrol-induced autophagy | [134] |
miR-27a | ↓ | MAP2K4, PI3K signalingpathways | TCGA database: GSE45604 andGSE21036 | ↓ proliferation and migration, ↑ apoptosis | [135] |
miR-190a | ↓ | YB-1 | LNCaP, C4-2, PC-3, DU-145, 22Rv1/mal nude mice | ↓ proliferation and cell growth | [57] |
ARLNC1 | ↑ | _ | VCaP and LNCaP/11 benign prostate samples, 85 localized prostate cancer samples, and 37 from metastatic PCa samples/athymic nude mice | ↑ Proliferation and cell growth, ↓ apoptosis | [74] |
PRCAT38 | ↑ | TMPRSS2, FOXA1 | LNCaP, DU145, and VCaP/20 samples (HCs and PCa) | ↑ cell growth and migration | [136] |
H19 | ↓ | _ | LNCaP | Enzalutamide treatment: ↑ H19 | [137] |
GAS5 | ↓ | _ | PC3 and 22Rv1 | dexamethasone treatment in AR- PCa cell line PC3: ↑ GAS5: ↓ proliferation, ↑ G0/G1 cell arrest | [138] |
p21 | ↓ AR binding to the ARE5, ↑ AR binding to the AGRE | EZH2, STAT3 | C4-2, CWR22RV1, NE1.8, NCI-H660, and DU145 | Enz treatment: ↓ AR binding to the ARE5 region of p21: ↑ p21: ↑ NED, NE-like structure | [139] |
LINC00304 | ↓ | CCNA1 | LNCaP, 22RV1, DU145, PC-3, and WPMY-1/GEO database: GSE38241: 18 PCa samples and 21 HCs | ↑ proliferation and cell cycle progression | [109] |
POTEF-AS1 | ↑ | TLR signaling pathway | LNCaP, VCaP, LTAD, and VCaP-LTAD | ↑ cell growth, ↓ apoptosis | [110] |
PLSNR | ↓ | p53 signaling pathway | LNCaP, 22RV1, DU145, PC-3, and WPMY-1/GEO database: GSE55909, 3 pairs of tumor tissues and ANCTs, 13 tumor tissues and ANCTs, plus 20 pairs of PCa sample | ↑ proliferation and cell-cycle progression, ↓ apoptosis | [111] |
PART1 | ↑ | TLR pathways | LNCaP and PC3/30 pairs of tumor tissues and ANCTs | ↑ proliferation, ↓ apoptosis | [112] |
GAS5 | ↓ | _ | LNCaP, 22RV1, DU145, PC3, WPMY-1 14 tumor tissues, and 11 normal tissues | ↑ proliferation, ↓ apoptosis | [140] |
PCLN16 | ↑ | HIP1 | NCaP and VCaP/tumor tissues and ANCTs | ↑ proliferation, migration, and cell growth | [79] |
PlncRNA-1 | ↑ | miR-34c and miR-297 | RWPE-1, 22RV1, LNCaP, PC3 and DU145/16 PCa tissue samples, 35 biopsy-negative and 37 biopsy-positive blood samples/male nude mice | ↑ proliferation, migration and viability, ↓ apoptosis | [69] |
PCAL7 | ↑ | HIP1 | 104 tumor tissues and ANCTs | ↑ proliferation, migration | [70] |
PCGEM1 | ↑ | _ | 131 primary PCa, 19 metastasized PCa, and 29 normal prostatic tissue samples/intact mice | ↑ PCGEM1 in primary PCa Androgen receptor regulated PCGEM1 in vivo. | [141] |
DRAIC | ↓ | _ | VCap, PC3M-luc | ↓ transformation of cuboidal epithelial cells to fibroblast-like morphology, migration, and invasion | [142] |
PCAT29 | ↓ | _ | VCap, PC3M-luc | ↓ migration and metastasis | |
a subset of TPCATs, most notably EPCART | ↑ | ERG | LNCaP, VCaP, and DuCaP/87 prostatectomy-treated samples | ↑ proliferation, migration | [143] |
PCAT29 | ↓ | _ | VCaP, LNCaP, and DU145/GEO database: GSE58397/male nude athymic BALB/c nu/nu mice | ↓ proliferation, migration | [144] |
Malat1 | ↓ | _ | VCaP and EnzR-PCa C4-2/ 10 CRPC samples, before (Pre-Enz) and after (Post-Enz) Enz treatment/nude mice | Enz treatment: ↑ Malat1 | [81] |
PlncRNA-1 | ↑ | NKX3-1 | LNCaP, LNCaP-AI, PC-3, C4-2, RWPE-1 and PWR-1E/16 pairs of PCa tissues and ANCTs, 14 pairs of PCa tissues and BPH tissues | ↑ proliferation and viability, ↓ apoptosis | [82] |
CTBP1-AS | ↑ | PSF, CTBP1 | VCaP, LNCaP, DU145, RWPE and PrEC/105 PCa samples | ↑ castration-resistant tumour growth | [145] |
RP11-783K16.13, RP11-228B15.4, and CTD-2228K2.7 | ↑ | _ | GEPIA dataset | Higher expression of the lncRNAs were significantly correlated with shorter DFS time in PRAD. | [146] |
PCAT1 | ↑ rs7463708 increases binding ONECUT2 and AR to the PCAT1 promoter | ONECUT2, LSD1, GNMT, and DHCR24 | LNCaP, LNCaP/shPCGEM1/TCGA dataset | ↑ proliferation and tumor growth | [147] |
FAM83H-AS1 | ↑ | miR-15a, CCNE2 | LNCaP, LNCaP-AI, and DU145/GEPIA data sets: GSE513217 and GSE55062, plus 20PCa and 8 normal samples | ↑ proliferation, migration, and cell cycle progression | [148] |
DANCR | ↓ | TIMP2/3 | CWR22Rv1, PC-3, and C4-2B/nude mice | ↑ migration and invasion | [149] |
GAS5 | ↓ | _ | LNCaP/GSE22606 | ↓ proliferation, ↑ apoptosis | [88] |
PCAT18 | ↑ | PES | LNCaP, C4-2, BPH/131 PCa, and 29 normal samples/NOD/SCID mice | ↑ proliferation, migration, and invasion | [150] |
RP1-4514.2, LINC01138, and SUZ12P1 | ↓ | _ | 22RV1, DU145, PC-3 and LNCaP, WMPY-1/3 tumor tissues and 11 ANCTs, plus 14 tumor tissues, and 11 ANCTs and TCGA database | _ | [151] |
KLKP1 | ↑ | _ | 22RV1, DU145, PC-3 and LNCaP, WMPY-1/3 tumor tissues, 11 ANCTs plus 14 tumor tissues, and 11 ANCTs and TCGA database | _ | |
TMPO-AS1 | ↓ | _ | LNCaP, DU145, 22Rv1, PC-3, and WPMY-1/54 pairs of PCa samples and TCGA data | ↑ proliferation and migration, ↓ apoptosis | [152] |
circRNA-51217 | ↓ | R-2HG, miRNA-646, TGFβ1/p-Smad2/3 signaling, ADAR2 | C4-2, PC3, DU145, LNCaP, and HEK293T/TCGA database | IDH1 mutation And R-2HG: ↑ circRNA-51217: ↑ invasion | [153] |
circRNA-ARC1 | ↓ | miR-125b-2-3p/miR-4736/PPARγ/MMP-9 signals | CWR22Rv1 and C4-2 | Enz treatment: ↑ invasion | [154] |
circZMIZ1 | ↑ | _ | DU145, C4-2, LNCaP, 22RV1, RWPE-1, 14 PCa samples, and 14 HCs | ↑ proliferation, ↓ G1 arrest | [100] |
Cancer Types | ncRNAs | Regulation by AR | Molecular Mechanisms | Cell Line/Samples/Animal Models | Function of ncRNAs in Cancer Cells | References |
---|---|---|---|---|---|---|
Bladder cancer | miR-525-5p | ↓ | SLPI, HDAC2 | _ | ↑ metastasis | [108] |
circFNTA | ↑ | ADAR2, miR-370-3p, FNTA pathway, KRAS signaling | SVHUC, T24, J82, 5637, and UMUC3/male athymic BALB/c nude mice | ↑ invasion, metastases, and cisplatin chemo-resistance | [157] | |
circRNA-ARC1 | ↑ | miR-125b-2-3p/miR-4736/PPARγ/MMP-9 signals | T24 and UMUC3 | Enz treatment: ↓ invasion | [154] | |
Breast cancer | let-7a | ↑ | CMYC and KRAS | MCF-7, MDA-MB-453, and MDA-MB-231/24 breast cancer samples | ↓ proliferation, cell growth | [158] |
miR-21 | ↓ | _ | MCF-7, ZR-75-1, MDA-MB-231, SKBR3, and LNCap | ↑ proliferation (miboleron: ↓ miR-21: ↓ proliferation) | [155] | |
Triple-negative breast cancer | ARNILA | ↓ | miR-204, Sox4 | MDA-MB-231 and Hs578T, MDA-MB-436/88 TNBC samples/female BALB/c nude mice | ↑ migration, invasion, and EMT process | [159] |
Early Hepatocarcinogenesis | miR-216a | ↑ | TSLC1 | HepG2/48tumor tissues and 13 non-tumor tissues/male athymic nude mice | ↑ proliferation and migration | [160] |
Hepatocellular carcinoma | miR-21 | ↑ | PDCD4, ERβ | HepG2, HBEC2-KT/male C57BL/6 mice | DHEA: ↑ miR-21: ↑ proliferation | [156] |
miR-146a-5p | ↓ | BRCA1 and BCL2 | SK-HEP-1 and HepG2/TCGA database analysis/male nude mice | Enz plus Olaparib treatment: ↑ miR-146a-5p: ↓ proliferation, cell growth, and viability | [161] | |
circRNA7 | ↓ | miR-7-5p, VE-Cadherin, Notch4 | SKhep1, HA22T | ↑ formation of VM | [162] | |
circ-LNPEP | ↓ | miR-532-3p, RAB9A | HA22T, SK-HEP-1, and 293/male nude mice | ↑ invasion and metastasis | [163] | |
circARSP91 | ↓ | ADAR1 | MHCC-97h, LM3 and LO2, HEK-293T/83 pairs of tumor tissues, and ANCTs/nude mice | ↓ tumor growth | [164] | |
Melanoma | miR-539-3p | ↑ | MITF-AXL signals, USP13 | A375 and WM115 and C32/102 melanoma tissue samples/male nude mice | ↑ invasion and metastasis | [165] |
SLNCR | SLNCR and AR cooperatively regulate several growth-regulatory genes. | p21, EGR1, MMP9 | WM1976 or A375, SK-MEL-28, WM858 | ↑ proliferation and invasion | [166] | |
SLNCR1 | ↑ | Brn3a, MMP9 | A375, HEK293T, CY and WM | ↑ invasion | [96] | |
Cholangiocarcinoma | ZEB1-AS1 | ↑ | miR-133b, HOXB8 | HIBEC, QBC939, CCLP-1, RBE, TFK-1/54 pairs of tumor tissues, and ANCTs/female BALB/c nude mice | ↑ migration, invasion, EMT process, viability, and stemness | [167] |
Gastric cancer | PART1 | AR interacts with PART1 to stimulatePLZF expression | PLZF, EZH2, PDGFRβ/PI3K/Akt signaling pathway | GES-1, MGC-803, BGC-823, and SGC-7901/GEOdatabase: GSE27342, GSE33335, andGSE3072, plus 136 GC samples | ↓ migration, invasion, and metastasis | [168] |
Clear cell renal cell carcinoma | TANAR | ↑ | TWIST1 | 786O, SW839, HEK293T/51 ccRCC tissues, and 23 ANCTs/male athymic BALB/c nude mice | ↑ VM formation | [169] |
circHIAT1 | ↓ | HIAT1, miR-195-5p/29a-3p/29c-3p, and CDC42 | SRC-2, VHL(þ) Caki-1, SW-839, and ACHN | ↓ migration and invasion | [170] | |
circEXOC7 | ↓ | DHX9, miR-149-3p, CSF1 | SW839, 786-O, Caki-1, ACHN, HEK293T/4 RCC samples with RBM, and 10 RCC samples without RBM/Balb/c nude mice | ↑ RBM and osteolytic formation | [171] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taheri, M.; Khoshbakht, T.; Jamali, E.; Kallenbach, J.; Ghafouri-Fard, S.; Baniahmad, A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells 2021, 10, 3198. https://doi.org/10.3390/cells10113198
Taheri M, Khoshbakht T, Jamali E, Kallenbach J, Ghafouri-Fard S, Baniahmad A. Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells. 2021; 10(11):3198. https://doi.org/10.3390/cells10113198
Chicago/Turabian StyleTaheri, Mohammad, Tayyebeh Khoshbakht, Elena Jamali, Julia Kallenbach, Soudeh Ghafouri-Fard, and Aria Baniahmad. 2021. "Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer" Cells 10, no. 11: 3198. https://doi.org/10.3390/cells10113198
APA StyleTaheri, M., Khoshbakht, T., Jamali, E., Kallenbach, J., Ghafouri-Fard, S., & Baniahmad, A. (2021). Interaction between Non-Coding RNAs and Androgen Receptor with an Especial Focus on Prostate Cancer. Cells, 10(11), 3198. https://doi.org/10.3390/cells10113198