Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture of hiPSC-Derived Cardiomyocytes
2.2. Singularizing hiPSC-Derived Cardiomyocytes
2.3. Procurement of Donor Hearts
2.4. Isolation and Storage of Primary Human Cardiomyocytes
2.5. Electrophysiological Recordings and Cell Harvesting
2.6. Single-Cell RT-qPCR
2.7. Statistics
3. Results
3.1. iCell Cardiomyocytes Do Not Represent Primary Cardiomyocyte Subtypes
3.2. A Trend towards Chamber Specificity for hiPSC-Derived Pluricyte Cardiomyocytes
Capacitance [pF] | Spontaneous Beat Rate [bpm] | Fast Inward Current Amplitude [nA] | Fast Inward Current Density [pA/pF] | ||
---|---|---|---|---|---|
iCell CMs | mean | 25.15 | 43.75 | −16.12 | −700.48 |
± SD | 16.94 | 29.60 | 13.74 | 423.26 | |
n | 72 | 72 | 71 | 71 | |
Ventr. PCs | mean | 23.00 | 19.75 | −17.17 | −791.36 |
± SD | 11.44 | 20.04 | 8.85 | 385.25 | |
n | 32 | 32 | 29 | 29 | |
Atr. PCs | mean | 20.36 | 37.58 | −7.55 | −447.24 |
± SD | 12.91 | 35.30 | 5.41 | 366.18 | |
n | 33 | 33 | 27 | 27 |
HCN4 | CACNA1G | CACNA1D | KCNA5 | KCNJ4 | SCN5A | KCNJ2 | CACNA1C | KCNH2 | TNNT2 | GAPDH | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
iCell CMs | % pos. cells | 100 | 40 | 29 | 29 | 65 | 100 | 31 | 98 | 98 | 100 | 98 |
ø CT | 27.94 | 29.88 | 31.56 | 32.05 | 30.99 | 27.44 | 31.77 | 27.43 | 27.34 | 20.38 | 24.06 | |
ø ΔCT | 5.59 | 7.53 | 9.22 | 9.70 | 8.64 | 5.10 | 9.42 | 5.08 | 4.99 | |||
± SD | 1.49 | 1.89 | 1.56 | 1.46 | 1.29 | 1.61 | 1.26 | 1.81 | 1.47 | 1.02 | 1.17 | |
n | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 | 55 | |
Ventr. PCs | % pos. cells | 93 | 24 | 24 | 45 | 62 | 100 | 93 | 100 | 97 | 100 | 100 |
ø CT | 28.78 | 30.95 | 30.66 | 31.87 | 31.61 | 26.27 | 30.63 | 27.03 | 25.91 | 20.59 | 23.19 | |
ø ΔCT | 6.89 | 9.06 | 8.77 | 9.99 | 9.72 | 4.39 | 8.74 | 5.14 | 4.02 | |||
± SD | 1.19 | 1.20 | 1.45 | 0.85 | 1.38 | 1.62 | 1.98 | 1.60 | 1.49 | 1.11 | 1.20 | |
n | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | 29 | |
Atr. PCs | % pos. cells | 100 | 63 | 67 | 96 | 42 | 100 | 58 | 92 | 100 | 100 | 100 |
ø CT | 26.52 | 29.43 | 30.34 | 28.72 | 31.82 | 26.80 | 30.15 | 27.27 | 26.23 | 19.67 | 23.44 | |
mean ΔCT | 4.97 | 7.87 | 8.79 | 7.17 | 10.27 | 5.25 | 8.59 | 5.71 | 4.68 | |||
± SD | 2.19 | 2.34 | 2.18 | 2.72 | 1.16 | 1.98 | 2.07 | 2.33 | 2.31 | 1.81 | 2.27 | |
n | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | |
Prim. ventr. CMs | % pos. cells | 94 | 9 | 14 | 88 | 91 | 100 | 97 | 100 | 100 | 100 | 100 |
ø CT | 28.58 | 29.84 | 29.48 | 29.01 | 28.95 | 24.05 | 27.18 | 25.68 | 24.48 | 16.69 | 20.91 | |
ø ΔCT | 9.78 | 11.04 | 10.68 | 10.21 | 10.16 | 5.25 | 8.38 | 6.88 | 5.68 | |||
± SD | 1.73 | 1.60 | 2.19 | 1.85 | 1.80 | 1.93 | 1.73 | 2.25 | 1.80 | 1.41 | 1.32 | |
n | 66 | 66 | 66 | 66 | 66 | 66 | 66 | 66 | 66 | 66 | 66 | |
Prim. atr. CMs | % pos. cells | 95 | 53 | 65 | 100 | 95 | 100 | 80 | 98 | 100 | 100 | 100 |
ø CT | 28.11 | 30.35 | 30.43 | 27.11 | 29.72 | 24.85 | 29.98 | 25.95 | 25.75 | 17.93 | 21.25 | |
ø ΔCT | 8.52 | 10.76 | 10.84 | 7.52 | 10.13 | 5.25 | 10.39 | 6.35 | 6.16 | |||
± SD | 2.02 | 1.39 | 1.84 | 1.85 | 1.73 | 1.44 | 1.93 | 1.63 | 1.67 | 1.37 | 1.32 | |
n | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 | 40 |
3.3. Single-Cell Correlations between Ion Channel Expression and Electrophysiological Parameters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CACNA1C/D/G | calcium voltage-gated channel subunit alpha1 C/D/G |
CaV1.2/1.3 | voltage-gated L-type calcium channel subunit alpha 1.2/1.3 |
CaV3.1 | voltage-gated T-type calcium channel subunit alpha 3.1 |
cDNA | complementary deoxyribonucleic acid |
CiPA | Comprehensive in vitro Proarrhythmia Assay |
DNA | deoxyribonucleic acid |
CT | cycle threshold |
ΔCT | normalized cycle threshold |
D-PBS | Dulbecco´s phosphate buffered saline |
EC solution | extracellular solution |
GAPDH | glyceraldehyde-3-phosphate dehydrogenase |
HCN4 | hyperpolarization activated cyclic nucleotide gated potassium channel 4 |
hERG channel | human ether-a-go-go related gene channel |
hiPSC-CM | human induced pluripotent stem cell derived cardiomyocytes |
IC solution | intracellular solution |
ICaL | L-type calcium current |
ICaT | T-type calcium current |
If | funny current |
IK1 | inward rectifier potassium current |
IKr | rapid component of the delayed rectifier potassium current |
IKur | ultra-rapid delayed rectifier potassium current |
INa | cardiac sodium current |
KCNA5 | potassium voltage-gated channel subfamily A member 5 |
KCNH2 | potassium voltage-gated channel subfamily H member 2 |
KCNJ2/4 | potassium inwardly rectifying channel subfamily J member 2/4 |
Kir2.1/2.3 | inward-rectifier potassium ion channel subunit 2.1/2.3 |
KV 1.5/1.11 | voltage-gated potassium channel subunit 1.5/1.11 |
mRNA | messenger ribonucleic acid |
RNA | ribonucleic acid |
RNase | ribonuclease |
rt | room temperature |
RT | reverse transcription |
SCN5A | sodium voltage-gated channel alpha subunit 5 |
SD | standard deviation |
RT-qPCR | reverse transcription quantitative polymerase chain reaction |
TdP | Torsade de Pointes |
TNNT2 | troponin T2, cardiac type |
TTX | tetrodotoxin |
References
- Yoshida, Y.; Yamanaka, S. Induced Pluripotent Stem Cells 10 Years Later. Circ. Res. 2017, 120, 1958–1968. [Google Scholar] [CrossRef] [PubMed]
- Kane, C.; Terracciano, C.M.N. Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells 2017, 35, 1881–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmeliet, E. Pacemaking in Cardiac Tissue. From IK2 to a Coupled-Clock System. Physiol. Rep. 2019, 7, e13862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesirca, P.; Torrente, A.G.; Mangoni, M.E. T-Type Channels in the Sino-Atrial and Atrioventricular Pacemaker Mechanism. Pflügers Arch. Eur. J. Physiol. 2014, 466, 791–799. [Google Scholar] [CrossRef]
- Baig, S.M.; Koschak, A.; Lieb, A.; Gebhart, M.; Dafinger, C.; Nürnberg, G.; Ali, A.; Ahmad, I.; Sinnegger-Brauns, M.J.; Brandt, N.; et al. Loss of Cav1.3 (CACNA1D) Function in a Human Channelopathy with Bradycardia and Congenital Deafness. Nat. Neurosci. 2011, 14, 77–84. [Google Scholar] [CrossRef]
- Bartos, D.C.; Grandi, E.; Ripplinger, C.M. Ion Channels in the Heart. In Comprehensive Physiology; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2015; Volume 5, pp. 1423–1464. [Google Scholar] [CrossRef] [Green Version]
- Verkerk, A.O.; Wilders, R.; van Borren, M.M.G.J.; Peters, R.J.G.; Broekhuis, E.; Lam, K.; Coronel, R.; de Bakker, J.M.T.; Tan, H.L. Pacemaker Current (If) in the Human Sinoatrial Node. Eur. Heart J. 2007, 28, 2472–2478. [Google Scholar] [CrossRef] [Green Version]
- Dhamoon, A.S.; Jalife, J. The Inward Rectifier Current (IK1) Controls Cardiac Excitability and Is Involved in Arrhythmogenesis. Heart Rhythm 2005, 2, 316–324. [Google Scholar] [CrossRef]
- Chandler, N.J.; Greener, I.D.; Tellez, J.O.; Inada, S.; Musa, H.; Molenaar, P.; DiFrancesco, D.; Baruscotti, M.; Longhi, R.; Anderson, R.H.; et al. Molecular Architecture of the Human Sinus Node. Circulation 2009, 119, 1562–1575. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.-T.; Shao, N.-Y.; Garg, V. Subtype-Specific Cardiomyocytes for Precision Medicine: Where Are We Now? Stem Cells 2020, 38, 822–833. [Google Scholar] [CrossRef] [Green Version]
- Pluricyte Cardiomyocyte Manual Version 2.1. 2018. Available online: https://www.ncardia.com/files/documents/manuals/PluricyteCardiomyocyte_Manual_v2.pdf (accessed on 22 October 2021).
- Wallis, R.; Benson, C.; Darpo, B.; Gintant, G.; Kanda, Y.; Prasad, K.; Strauss, D.G.; Valentin, J.P. CiPA Challenges and Opportunities from a Non-Clinical, Clinical and Regulatory Perspectives. An Overview of the Safety Pharmacology Scientific Discussion. J. Pharmacol. Toxicol. Methods 2018, 93, 15–25. [Google Scholar] [CrossRef]
- Blinova, K.; Stohlman, J.; Vicente, J.; Chan, D.; Johannesen, L.; Hortigon-Vinagre, M.P.; Zamora, V.; Smith, G.; Crumb, W.J.; Pang, L.; et al. Comprehensive Translational Assessment of Human- Induced Pluripotent Stem Cell Derived Cardiomyocytes for Evaluating Drug-Induced Arrhythmias. Toxicol. Sci. 2017, 155, 234–247. [Google Scholar] [CrossRef]
- iCell Cardiomyocytes User´s Guide. 2017. Available online: https://cdn.stemcell.com/media/files/manual/MADX1000-iCell_Cardiomyocytes_Kit.pdf (accessed on 3 March 2020).
- Ma, J.; Guo, L.; Fiene, S.J.; Anson, B.D.; Thomson, J.A.; Kamp, T.J.; Kolaja, K.L.; Swanson, B.J.; January, C.T. High Purity Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Electrophysiological Properties of Action Potentials and Ionic Currents. Am. J. Physiol.-Heart Circ. Physiol. 2011, 301, H2006–H2017. [Google Scholar] [CrossRef]
- Karakikes, I.; Ameen, M.; Termglinchan, V.; Wu, J.C. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Insights Into Molecular, Cellular, and Functional Phenotypes. Circ. Res. 2015, 117, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Barbuti, A.; Benzoni, P.; Campostrini, G.; Dell’Era, P. Human Derived Cardiomyocytes: A Decade of Knowledge after the Discovery of Induced Pluripotent Stem Cells. Dev. Dyn. 2016, 245, 1145–1158. [Google Scholar] [CrossRef] [Green Version]
- Altrocchi, C.; de Korte, T.; Bernardi, J.; Spätjens, R.L.H.M.G.; Braam, S.R.; Heijman, J.; Zaza, A.; Volders, P.G.A. Repolarization Instability and Arrhythmia by IKr Block in Single Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes and 2D Monolayers. Europace 2020, 22, 1431–1441. [Google Scholar] [CrossRef]
- Schmid, C.; Wohnhaas, C.T.; Hildebrandt, T.; Baum, P.; Rast, G. Characterization of iCell Cardiomyocytes Using Single-Cell RNA-Sequencing Methods. J. Pharmacol. Toxicol. Methods 2020, 106, 106915. [Google Scholar] [CrossRef]
- Schmid, C.; Abi-gerges, N.; Zellner, D.; Rast, G. Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell Derived) Cardiomyocytes. bioRxiv 2021. [Google Scholar] [CrossRef]
- Page, G.; Ratchada, P.; Miron, Y.; Steiner, G.; Ghetti, A.; Miller, P.E.; Reynolds, J.A.; Wang, K.; Greiter-Wilke, A.; Polonchuk, L.; et al. Human Ex-Vivo Action Potential Model for pro-Arrhythmia Risk Assessment HHS Public Access. J. Pharmacol. Toxicol. Methods 2016, 81, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.; Nguyen, W.; Nguyenton, B.; Ratchada, P.; Page, G.; Miller, P.E.; Ghetti, A.; Abi-Gerges, N. Adult Human Primary Cardiomyocyte-Based Model for the Simultaneous Prediction of Drug-Induced Inotropic and Pro-Arrhythmia Risk. Front. Physiol. 2017, 8, 1073. [Google Scholar] [CrossRef] [Green Version]
- Ståhlberg, A.; Rusnakova, V.; Forootan, A.; Anderova, M.; Kubista, M. RT-qPCR Work-Flow for Single-Cell Data Analysis. Methods 2013, 59, 80–88. [Google Scholar] [CrossRef]
- FAQ Single Cell-to-CT qRT-PCR Kit. Available online: https://www.thermofisher.com/order/catalog/product/4458236#/4458236 (accessed on 7 December 2020).
- Ördög, B.; Brutyó, E.; Puskás, L.G.; Papp, J.G.; Varró, A.; Szabad, J.; Boldogkoi, Z. Gene Expression Profiling of Human Cardiac Potassium and Sodium Channels. Int. J. Cardiol. 2006, 111, 386–393. [Google Scholar] [CrossRef]
- Mays, D.J.; Foose, J.M.; Philipson, L.H.; Tamkun, M.M. Localization of the Kv1.5 K+ Channel Protein in Explanted Cardiac Tissue. J. Clin. Investig. 1995, 96, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Townsend, C.; Brown, B.S. Predicting Drug-Induced QT Prolongation and Torsades de Pointes: A Review of Preclinical Endpoint Measures. Curr. Protoc. Pharmacol. 2013, 61, 10–16. [Google Scholar] [CrossRef]
- Yonemizu, S.; Masuda, K.; Kurata, Y.; Notsu, T.; Higashi, Y.; Fukumura, K.; Li, P.; Ninomiya, H.; Miake, J.; Tsuneto, M.; et al. Inhibitory Effects of Class I Antiarrhythmic Agents on Na+ and Ca2+ Currents of Human iPS Cell-Derived Cardiomyocytes. Regen. Ther. 2019, 10, 104–111. [Google Scholar] [CrossRef]
- Gorospe, G.; Zhu, R.; Millrod, M.A.; Zambidis, E.T.; Tung, L.; Vidal, R. Automated Grouping of Action Potentials of Human Embryonic Stem Cell-Derived Cardiomyocytes. IEEE Trans. Biomed. Eng. 2014, 61, 2389–2395. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ari, M.; Naor, S.; Zeevi-Levin, N.; Schick, R.; Jehuda, R.B.; Reiter, I.; Raveh, A.; Grijnevitch, I.; Barak, O.; Rosen, M.R.; et al. Developmental Changes in Electrophysiological Characteristics of Human-Induced Pluripotent Stem Cell–derived Cardiomyocytes. Heart Rhythm 2016, 13, 2379–2387. [Google Scholar] [CrossRef] [Green Version]
- Du, D.T.M.; Nicola, H.; Kane, C.; Terracciano, C.M.N. Action Potential Morphology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Does Not Predict Cardiac Chamber Specificity and Is Dependent on Cell Density. Biophys. J. 2005, 108, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Kane, C.; Du, D.T.M.; Hellen, N.; Terracciano, C.M. The Fallacy of Assigning Chamber Specificity to iPSC Cardiac Myocytes from Action Potential Morphology. Biophys. J. 2016, 110, 281–283. [Google Scholar] [CrossRef] [Green Version]
- Biendarra-Tiegs, S.M.; Li, X.; Ye, D.; Brandt, E.B.; Ackerman, M.J.; Nelson, T.J. Single-Cell RNA-Sequencing and Optical Electrophysiology of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveal Discordance Between Cardiac Subtype-Associated Gene Expression Patterns and Electrophysiological Phenotypes. Stem Cells Dev. 2019, 28, 659–673. [Google Scholar] [CrossRef] [Green Version]
- Friedman, C.E.; Nguyen, Q.; Lukowski, S.W.; Helfer, A.; Chiu, H.S.; Miklas, J.; Levy, S.; Suo, S.; Han, J.-D.J.; Osteil, P.; et al. Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell 2018, 23, 586–598.e8. [Google Scholar] [CrossRef] [Green Version]
- Churko, J.M.; Garg, P.; Treutlein, B.; Venkatasubramanian, M.; Wu, H.; Lee, J.; Wessells, Q.N.; Chen, S.; Chen, W.; Chetal, K.; et al. Defining Human Cardiac Transcription Factor Hierarchies Using Integrated Single-Cell Heterogeneity Analysis. Nat. Commun. 2018, 9, 4906. [Google Scholar] [CrossRef]
- Yechikov, S.; Copaciu, R.; Gluck, J.M.; Deng, W.; Chiamvimonvat, N.; Chan, J.W.; Lieu, D.K. Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology HHS Public Access. Stem Cells 2016, 34, 2670–2680. [Google Scholar] [CrossRef] [Green Version]
- Cerbai, E.; Sartiani, L.; DePaoli, P.; Pino, R.; Maccherini, M.; Bizzarri, F.; DiCiolla, F.; Davoli, G.; Sani, G.; Mugelli, A. The Properties of the Pacemaker Current IF in Human Ventricular Myocytes Are Modulated by Cardiac Disease. J. Mol. Cell. Cardiol. 2021, 33, 441–448. [Google Scholar] [CrossRef]
- Malan, D.; Friedrichs, S.; Fleischmann, B.K.; Sasse, P. Cardiomyocytes Obtained From Induced Pluripotent Stem Cells With Long-QT Syndrome 3 Recapitulate Typical Disease-Specific Features In Vitro. Circ. Res. 2011, 109, 841–847. [Google Scholar] [CrossRef]
- Verkerk, A.O.; Wilders, R.; van Borren, M.M.G.J.; Tan, H.L. Is Sodium Current Present in Human Sinoatrial Node Cells? Int. J. Biol. Sci. 2009, 5, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Satin, J.; Kehat, I.; Caspi, O.; Huber, I.; Arbel, G.; Itzhaki, I.; Magyar, J.; Schroder, E.A.; Perlman, I.; Gepstein, L. Mechanism of Spontaneous Excitability in Human Embryonic Stem Cell Derived Cardiomyocytes. J. Physiol. 2004, 559, 479–496. [Google Scholar] [CrossRef]
- Wallace, E.; Howard, L.; Liu, M.; O’Brien, T.; Ward, D.; Shen, S.; Prendiville, T. Long QT Syndrome: Genetics and Future Perspective. Pediatr. Cardiol. 2019, 40, 1419–1430. [Google Scholar] [CrossRef] [Green Version]
- Mladěnka, P.; Applová, L.; Patočka, J.; Costa, V.M.; Remiao, F.; Pourová, J.; Mladěnka, A.; Karlíčková, J.; Jahodář, L.; Vopršalová, M.; et al. Comprehensive Review of Cardiovascular Toxicity of Drugs and Related Agents. Med. Res. Rev. 2018, 38, 1332–1403. [Google Scholar] [CrossRef]
- Ravens, U.; Odening, K.E. Atrial Fibrillation: Therapeutic Potential of Atrial K + Channel Blockers. Pharmacol. Ther. 2017, 176, 13–21. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, M.; Chen, R.; Liu, F.; Zhou, P.; Bu, L.; Xu, Y.; Zheng, L. Action Potential Response of Human Induced-Pluripotent Stem Cell Derived Cardiomyocytes to the 28 CiPA Compounds: A Non-Core Site Data Report of the CiPA Study. J. Pharmacol. Toxicol. Methods 2019, 98, 106577. [Google Scholar] [CrossRef]
- Hortigon-Vinagre, M.P.; Zamora, V.; Burton, F.L.; Green, J.; Gintant, G.A.; Smith, G.L. The Use of Ratiometric Fluorescence Measurements of the Voltage Sensitive Dye Di-4-ANEPPS to Examine Action Potential Characteristics and Drug Effects on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Toxicol. Sci. 2016, 154, 320–331. [Google Scholar] [CrossRef] [Green Version]
- Rast, G.; Kraushaar, U.; Buckenmaier, S.; Ittrich, C.; Guth, B.D. Influence of Field Potential Duration on Spontaneous Beating Rate of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Implications for Data Analysis and Test System Selection. J. Pharmacol. Toxicol. Methods 2016, 82, 74–82. [Google Scholar] [CrossRef]
- Bedut, S.; Seminatore-Nole, C.; Lamamy, V.; Caignard, S.; Boutin, J.A.; Nosjean, O.; Stephan, J.; Coge, F. High-Throughput Drug Profiling with Voltage-and Calcium-Sensitive Fluorescent Probes in Human iPSC-Derived Cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Burridge, P.W.; Li, Y.F.; Matsa, E.; Wu, H.; Ong, S.; Sharma, A.; Holmström, A.; Chang, A.C.; Coronado, M.J.; Ebert, A.D.; et al. Human Induced Pluripotent Stem Cell–derived Cardiomyocytes Recapitulate the Predilection of Breast Cancer Patients to Doxorubicin-Induced Cardiotoxicity. Nat. Med. 2016, 22, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Magdy, T.; Jiang, Z.; Jouni, M.; Fonoudi, H.; Lyra-Leite, D.; Jung, G.; Romero-Tejeda, M.; Hu, K.; Fetterman, K.A.; Gharib, M.; et al. RARG Variant Predictive of Doxorubicin-Induced Cardiotoxicity Identifies a Cardioprotective Therapy. Cell Stem Cell 2021, in press. [Google Scholar] [CrossRef]
iCell Cardiomyocytes | |||
---|---|---|---|
Spontaneous Beat Rate (n Cells) | =0 (8) | >0 (47) | |
HCN4 | % pos. cells ø CT ± SD | 100 27.8 ± 0.6 | 100 28.0 ± 0.2 |
CACNA1G | % pos. cells ø CT ± SD | 25 30.1 ± 0.1 | 43 29.9 ± 0.4 |
CACNA1D | % pos. cells ø CT ± SD | 13 29.5 ± 0.03 | 32 31.7 ± 0.4 *** |
KCNA5 | % pos. cells ø CT ± SD | 38 32.6 ± 0.4 | 28 31.9 ± 0.4 |
KCNJ4 | % pos. cells ø CT ± SD | 75 30.8 ± 0.6 | 64 31.0 ± 0.2 |
SCN5A | % pos. cells ø CT ± SD | 100 27.9 ± 0.4 | 100 27.4 ± 0.2 |
KCNJ2 | % pos. cells ø CT ± SD | 25 31.6 ± 1.2 | 32 31.8 ± 0.3 |
CACNA1C | % pos. cells ø CT ± SD | 100 27.7 ± 0.9 | 98 27.4 ± 0.3 |
KCNH2 | % pos. cells ø CT ± SD | 100 27.9 ± 0.7 | 98 27.2 ± 0.2 |
ø Capacitance [pF] ± SD | 14.68 ± 1.80 | 27.25 ± 2.28 *** | |
ø Fast inward current amplitude [nA] ± SD | −10.36 ± 2.33 | −17.30 ± 1.87 * | |
ø Fast inward current density [pA/pF] ± SD | −686.1 ± 125.8 | 703.4 ± 55.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmid, C.; Abi-Gerges, N.; Leitner, M.G.; Zellner, D.; Rast, G. Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes. Cells 2021, 10, 3370. https://doi.org/10.3390/cells10123370
Schmid C, Abi-Gerges N, Leitner MG, Zellner D, Rast G. Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes. Cells. 2021; 10(12):3370. https://doi.org/10.3390/cells10123370
Chicago/Turabian StyleSchmid, Christina, Najah Abi-Gerges, Michael Georg Leitner, Dietmar Zellner, and Georg Rast. 2021. "Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes" Cells 10, no. 12: 3370. https://doi.org/10.3390/cells10123370
APA StyleSchmid, C., Abi-Gerges, N., Leitner, M. G., Zellner, D., & Rast, G. (2021). Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes. Cells, 10(12), 3370. https://doi.org/10.3390/cells10123370