Functional Ex Vivo Testing of Alveolar Monocytes in Patients with Pneumonia-Related ARDS
Abstract
:1. Introduction
2. Materials and Methods (Additional Methods Can Be Found in the Supplementary Materials)
2.1. Study Design
2.2. Patients and Data Collection
2.3. BAL Fluid and Blood Sampling
2.4. Pretreatment of Monocytes
2.5. Phagocytosis Assay
2.6. Immunophenotyping
2.7. Assessment of TNF Production by Intracellular Staining
2.8. Gating Strategy
2.9. Inflammation and Endothelium/Alveolar Epithelium Injury Biomarkers Quantification in BAL Fluid Supernatants
2.10. Data Presentation and Statistical Analysis
3. Results
3.1. Patients
3.2. HLA-DR Expression on Alveolar and Blood Monocytes
3.3. PD-L1 Expression on Alveolar and Blood Monocytes
3.4. Functional Testing of Alveolar and Blood Monocytes
- Phagocytosis activity of alveolar and circulating monocytes after LPS pretreatment.
- Intracellular TNF quantification in alveolar and circulating monocytes after LPS stimulation.
- Phagocytosis activity and TNF production of alveolar monocytes according to their HLA-DR expression.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [CrossRef]
- Brun-Buisson, C.; Minelli, C.; Bertolini, G.; Brazzi, L.; Pimentel, J.; Lewandowski, K.; Bion, J.; Romand, J.-A.; Villar, J.; Thorsteinsson, A.; et al. Epidemiology and Outcome of Acute Lung Injury in European Intensive Care Units. Results from the ALIVE Study. Intensive Care Med. 2004, 30, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Calfee, C.S.; Delucchi, K.; Parsons, P.E.; Thompson, B.T.; Ware, L.B.; Matthay, M.A. Subphenotypes in Acute Respiratory Distress Syndrome: Latent Class Analysis of Data from Two Randomised Controlled Trials. Lancet Respir. Med. 2014, 2, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Famous, K.R.; Delucchi, K.; Ware, L.B.; Kangelaris, K.N.; Liu, K.D.; Thompson, B.T.; Calfee, C.S. Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. Am. J. Respir. Crit. Care Med. 2017, 195, 331–338. [Google Scholar] [CrossRef]
- Van der Zee, P.; Rietdijk, W.; Somhorst, P.; Endeman, H.; Gommers, D. A Systematic Review of Biomarkers Multivariately Associated with Acute Respiratory Distress Syndrome Development and Mortality. Crit. Care 2020, 24, 243. [Google Scholar] [CrossRef]
- Bendib, I.; Beldi-Ferchiou, A.; Schlemmer, F.; Surenaud, M.; Maitre, B.; Plonquet, A.; Carteaux, G.; Razazi, K.; Godot, V.; Hüe, S.; et al. Alveolar Compartmentalization of Inflammatory and Immune Cell Biomarkers in Pneumonia-Related ARDS. Crit. Care 2021, 25, 23. [Google Scholar] [CrossRef] [PubMed]
- Venet, F.; Lukaszewicz, A.-C.; Payen, D.; Hotchkiss, R.; Monneret, G. Monitoring the Immune Response in Sepsis: A Rational Approach to Administration of Immunoadjuvant Therapies. Curr. Opin. Immunol. 2013, 25, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.-F.; Ma, J.; Chen, J.; Ou-Yang, B.; Chen, M.-Y.; Li, L.-F.; Liu, Y.-J.; Lin, A.-H.; Guan, X.-D. Changes of Monocyte Human Leukocyte Antigen-DR Expression as a Reliable Predictor of Mortality in Severe Sepsis. Crit. Care 2011, 15, R220. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-P.; Shih, C.-C.; Lin, C.-Y.; Hua, C.-C.; Chuang, D.-Y. Serial Increase of IL-12 Response and Human Leukocyte Antigen-DR Expression in Severe Sepsis Survivors. Crit. Care 2011, 15, R224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Jia, Y.; Li, C.; Shao, R.; Fang, Y. Predictive Value of Soluble Programmed Death-1 for Severe Sepsis and Septic Shock During the First Week in an Intensive Care Unit. Shock 2019, 51, 289–297. [Google Scholar] [CrossRef]
- Monneret, G.; Lepape, A.; Venet, F. A Dynamic View of MHLA-DR Expression in Management of Severe Septic Patients. Crit. Care 2011, 15, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Immunosuppression in Sepsis: A Novel Understanding of the Disorder and a New Therapeutic Approach. Lancet Infect. Dis. 2013, 13, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Monneret, G.; Demaret, J.; Gossez, M.; Reverdiau, E.; Malergue, F.; Rimmelé, T.; Venet, F. Novel Approach in Monocyte Intracellular TNF Measurement: Application to Sepsis-Induced Immune Alterations. Shock 2017, 47, 318–322. [Google Scholar] [CrossRef]
- Wolk, K.; Döcke, W.-D.; von Baehr, V.; Volk, H.-D.; Sabat, R. Impaired Antigen Presentation by Human Monocytes during Endotoxin Tolerance. Blood 2000, 96, 218–223. [Google Scholar] [CrossRef]
- Biswas, S.K.; Lopez-Collazo, E. Endotoxin Tolerance: New Mechanisms, Molecules and Clinical Significance. Trends Immunol. 2009, 30, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Landelle, C.; Lepape, A.; Voirin, N.; Tognet, E.; Venet, F.; Bohé, J.; Vanhems, P.; Monneret, G. Low Monocyte Human Leukocyte Antigen-DR Is Independently Associated with Nosocomial Infections after Septic Shock. Intensive Care Med. 2010, 36, 1859–1866. [Google Scholar] [CrossRef]
- Monneret, G.; Lepape, A.; Voirin, N.; Bohé, J.; Venet, F.; Debard, A.-L.; Thizy, H.; Bienvenu, J.; Gueyffier, F.; Vanhems, P. Persisting Low Monocyte Human Leukocyte Antigen-DR Expression Predicts Mortality in Septic Shock. Intensive Care Med. 2006, 32, 1175–1183. [Google Scholar] [CrossRef]
- Cazalis, M.-A.; Friggeri, A.; Cavé, L.; Demaret, J.; Barbalat, V.; Cerrato, E.; Lepape, A.; Pachot, A.; Monneret, G.; Venet, F. Decreased HLA-DR Antigen-Associated Invariant Chain (CD74) MRNA Expression Predicts Mortality after Septic Shock. Crit. Care 2013, 17, R287. [Google Scholar] [CrossRef] [Green Version]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [Google Scholar] [CrossRef]
- Venet, F.; Monneret, G. Advances in the Understanding and Treatment of Sepsis-Induced Immunosuppression. Nat. Rev. Nephrol. 2018, 14, 121–137. [Google Scholar] [CrossRef]
- Gall, J.-R.L.; Lemeshow, S.; Saulnier, F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef]
- Meyer, K.C.; Raghu, G.; Baughman, R.P.; Brown, K.K.; Costabel, U.; du Bois, R.M.; Drent, M.; Haslam, P.L.; Kim, D.S.; Nagai, S.; et al. An Official American Thoracic Society Clinical Practice Guideline: The Clinical Utility of Bronchoalveolar Lavage Cellular Analysis in Interstitial Lung Disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Poujol, F.; Monneret, G.; Pachot, A.; Textoris, J.; Venet, F. Altered T Lymphocyte Proliferation upon Lipopolysaccharide Challenge Ex Vivo. PLoS ONE 2015, 10, e0144375. [Google Scholar] [CrossRef]
- Yu, Y.-R.A.; Hotten, D.F.; Malakhau, Y.; Volker, E.; Ghio, A.J.; Noble, P.W.; Kraft, M.; Hollingsworth, J.W.; Gunn, M.D.; Tighe, R.M. Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues. Am. J. Respir. Cell Mol. Biol. 2016, 54, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, Y.; Lou, J.; Li, J.; Bo, L.; Zhu, K.; Wan, X.; Deng, X.; Cai, Z. PD-L1 Blockade Improves Survival in Experimental Sepsis by Inhibiting Lymphocyte Apoptosis and Reversing Monocyte Dysfunction. Crit. Care 2010, 14, R220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, N.K.; Bohannon, J.K.; Sherwood, E.R. Immunotherapy: A Promising Approach to Reverse Sepsis-Induced Immunosuppression. Pharmacol. Res. 2016, 111, 688–702. [Google Scholar] [CrossRef]
- Venet, F.; Lepape, A.; Monneret, G. Clinical Review: Flow Cytometry Perspectives in the ICU-from Diagnosis of Infection to Monitoring of Injury-Induced Immune Dysfunctions. Crit. Care 2011, 15, 231. [Google Scholar] [CrossRef] [Green Version]
- Skirecki, T.; Mikaszewska-Sokolewicz, M.; Hoser, G.; Zielińska-Borkowska, U. The Early Expression of HLA-DR and CD64 Myeloid Markers Is Specifically Compartmentalized in the Blood and Lungs of Patients with Septic Shock. Mediat. Inflamm. 2016, 2016, 3074902. [Google Scholar] [CrossRef] [Green Version]
- Patera, A.C.; Drewry, A.M.; Chang, K.; Beiter, E.R.; Osborne, D.; Hotchkiss, R.S. Frontline Science: Defects in Immune Function in Patients with Sepsis Are Associated with PD-1 or PD-L1 Expression and Can Be Restored by Antibodies Targeting PD-1 or PD-L1. J. Leukoc. Biol. 2016, 100, 1239–1254. [Google Scholar] [CrossRef]
- Shao, R.; Fang, Y.; Yu, H.; Zhao, L.; Jiang, Z.; Li, C.-S. Monocyte Programmed Death Ligand-1 Expression after 3?4 Days of Sepsis Is Associated with Risk Stratification and Mortality in Septic Patients: A Prospective Cohort Study. Crit. Care 2016, 20, 124. [Google Scholar] [CrossRef] [Green Version]
- Morrell, E.D.; Wiedeman, A.; Long, S.A.; Gharib, S.A.; West, T.E.; Skerrett, S.J.; Wurfel, M.M.; Mikacenic, C. Cytometry TOF Identifies Alveolar Macrophage Subtypes in Acute Respiratory Distress Syndrome. JCI Insight 2018, 3, e99281. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Wang, X.; Xie, J.; Chen, L.; Li, Q.; Wang, X.; Wang, J.; Deng, X. Therapeutic Effect of an Anti-Human Programmed Death-Ligand 1 (PD-L1) Nanobody on Polymicrobial Sepsis in Humanized Mice. Med. Sci. Monit. 2021, 27, e926820-1–e926820-8. [Google Scholar] [CrossRef]
- Monaghan, S.F.; Chung, C.-S.; Chen, Y.; Lomas-Neira, J.; Fairbrother, W.G.; Heffernan, D.S.; Cioffi, W.G.; Ayala, A. Soluble Programmed Cell Death Receptor-1 (SPD-1): A Potential Biomarker with Anti-Inflammatory Properties in Human and Experimental Acute Respiratory Distress Syndrome (ARDS). J. Transl. Med. 2016, 14, 312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Tang, Z.; Xie, M.; Hang, C.; Yu, Y.; Li, C. Association between Elevation of Plasma Biomarkers and Monocyte Dysfunction and Their Combination in Predicting Sepsis: An Observational Single-Centre Cohort Study. Innate Immun. 2020, 26, 514–527. [Google Scholar] [CrossRef]
- Grimaldi, D.; Pradier, O.; Hotchkiss, R.S.; Vincent, J.-L. Nivolumab plus Interferon-γ in the Treatment of Intractable Mucormycosis. Lancet Infect. Dis. 2017, 17, 18. [Google Scholar] [CrossRef] [Green Version]
- Hotchkiss, R.S.; Colston, E.; Yende, S.; Crouser, E.D.; Martin, G.S.; Albertson, T.; Bartz, R.R.; Brakenridge, S.C.; Delano, M.J.; Park, P.K.; et al. Immune Checkpoint Inhibition in Sepsis: A Phase 1b Randomized Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Nivolumab. Intensive Care Med. 2019, 45, 1360–1371. [Google Scholar] [CrossRef]
- Santos, S.S.; Carmo, A.M.; Brunialti, M.K.C.; Machado, F.R.; Azevedo, L.C.; Assunção, M.; Trevelin, S.C.; Cunha, F.Q.; Salomao, R. Modulation of Monocytes in Septic Patients: Preserved Phagocytic Activity, Increased ROS and NO Generation, and Decreased Production of Inflammatory Cytokines. Intensive Care Med. Exp. 2016, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- del Fresno, C.; García-Rio, F.; Gómez-Piña, V.; Soares-Schanoski, A.; Fernández-Ruíz, I.; Jurado, T.; Kajiji, T.; Shu, C.; Marín, E.; Gutierrez del Arroyo, A.; et al. Potent Phagocytic Activity with Impaired Antigen Presentation Identifying Lipopolysaccharide-Tolerant Human Monocytes: Demonstration in Isolated Monocytes from Cystic Fibrosis Patients. J. Immunol. 2009, 182, 6494–6507. [Google Scholar] [CrossRef]
- Monneret, G.; Finck, M.-E.; Venet, F.; Debard, A.-L.; Bohé, J.; Bienvenu, J.; Lepape, A. The Anti-Inflammatory Response Dominates after Septic Shock: Association of Low Monocyte HLA-DR Expression and High Interleukin-10 Concentration. Immunol. Lett. 2004, 95, 193–198. [Google Scholar] [CrossRef]
- Cavaillon, J.-M.; Adib-Conquy, M. Bench-to-Bedside Review: Endotoxin Tolerance as a Model of Leukocyte Reprogramming in Sepsis. Crit. Care 2006, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Monneret, G.; Venet, F.; Pachot, A.; Lepape, A. Monitoring Immune Dysfunctions in the Septic Patient: A New Skin for the Old Ceremony. Mol. Med. 2008, 14, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Fumeaux, T.; Pugin, J. Role of Interleukin-10 in the Intracellular Sequestration of Human Leukocyte Antigen-DR in Monocytes during Septic Shock. Am. J. Respir. Crit. Care Med. 2002, 166, 1475–1482. [Google Scholar] [CrossRef] [PubMed]
- Shalova, I.N.; Lim, J.Y.; Chittezhath, M.; Zinkernagel, A.S.; Beasley, F.; Hernández-Jiménez, E.; Toledano, V.; Cubillos-Zapata, C.; Rapisarda, A.; Chen, J.; et al. Human Monocytes Undergo Functional Re-Programming during Sepsis Mediated by Hypoxia-Inducible Factor-1α. Immunity 2015, 42, 484–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidler, S.; Zimmermann, H.W.; Bartneck, M.; Trautwein, C.; Tacke, F. Age-Dependent Alterations of Monocyte Subsets and Monocyte-Related Chemokine Pathways in Healthy Adults. BMC Immunol. 2010, 11, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All (n = 17) | ARDS (n = 10) | Control Patients (n = 7) | p | |
---|---|---|---|---|
Age (years) | 61 (40–69) | 63.5 (58–76) | 40 (27–53) | 0.11 |
Male gender | 7 (41) | 3 (30) | 4 (57) | 0.95 |
Comorbidities | ||||
Diabetes mellitus | 2 (12) | 1 (10) | 1 (14) | 0.98 |
COPD | 2 (12) | 1 (10) | 1 (14) | 0.98 |
Chronic heart failure | 2 (12) | 2 (20) | 0 (0) | 0.36 |
Chronic renal disease | 2 (12) | 2 (20) | 0 (0) | 0.36 |
Sickle cells disease | 1 6) | 1 (10) | 0 (0) | 0.63 |
Tobacco | 7 (41) | 3 (30) | 4 (57) | 0.58 |
Blood leukocytes | ||||
WBC counts (G/L) | 10.0 (6.0–10.0) | 8.5 (5.9–9.7) | 6.4 (6.0–9.3) | 0.72 |
Neutrophils (G/L) | 7.9 (3.7–12.5) | 9.4 (7.9–14.9) | 3.7 (3.5–6.3) | 0.03 |
Monocytes (G/L) | 0.6 (0.4–0.8) | 0.8 (0.4–0.9) | 0.6 (0.4–0.7) | 0.45 |
Lymphocytes (G/L) | 1.3 (0.9–2.0) | 0.9 (0.7–0.9) | 1.5(1.3–2.3) | 0.02 |
BAL fluid cytology | ||||
Leukocytes (103/mL) | 250.0 (130.0–570.0) | 567.5 (365.0–720.0) | 130.0 (77.0–136.6) | 0.0001 |
Macrophages (%) | 33.0 (15.0–66.0) | 15.5 (8.8–85.5) | 66.0 (66.0–85.5) | 0.0001 |
Neutrophils (%) | 60.0 (1.0–81.0) | 80.5 (61.2–89.5) | 1.0 (0.7–1.0) | 0.0001 |
Lymphocytes (%) | 6.5 (2–29) | 3.2 (2.0–6.1) | 30.0 (12.5–33.0) | 0.012 |
ARDS (n = 10) | N (%) or Median (IQR 25–75) |
---|---|
SAPS II | 60 (43–68) |
SOFA score | 12 (8–14) |
ARDS severity | |
Moderate | 5 (50) |
Severe | 5 (50) |
PaO2/FiO2 (mm Hg) | 96 (72–128) |
CRS (mL/cmH2O) | 26 (22–33) |
Septic shock * | 6 (60) |
Duration of ICU stay (days) | 18 (9–33) |
Live VFD at day-28 (days) | 14 (5–23) |
Ventilator-acquired pneumonia | 4 (40) |
In-hospital mortality | 3 (30) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bendib, I.; Beldi-Ferchiou, A.; Schlemmer, F.; Maitre, B.; Surenaud, M.; Hüe, S.; Carteaux, G.; Razazi, K.; Lelièvre, J.-D.; Lévy, Y.; et al. Functional Ex Vivo Testing of Alveolar Monocytes in Patients with Pneumonia-Related ARDS. Cells 2021, 10, 3546. https://doi.org/10.3390/cells10123546
Bendib I, Beldi-Ferchiou A, Schlemmer F, Maitre B, Surenaud M, Hüe S, Carteaux G, Razazi K, Lelièvre J-D, Lévy Y, et al. Functional Ex Vivo Testing of Alveolar Monocytes in Patients with Pneumonia-Related ARDS. Cells. 2021; 10(12):3546. https://doi.org/10.3390/cells10123546
Chicago/Turabian StyleBendib, Inès, Asma Beldi-Ferchiou, Frédéric Schlemmer, Bernard Maitre, Mathieu Surenaud, Sophie Hüe, Guillaume Carteaux, Keyvan Razazi, Jean-Daniel Lelièvre, Yves Lévy, and et al. 2021. "Functional Ex Vivo Testing of Alveolar Monocytes in Patients with Pneumonia-Related ARDS" Cells 10, no. 12: 3546. https://doi.org/10.3390/cells10123546
APA StyleBendib, I., Beldi-Ferchiou, A., Schlemmer, F., Maitre, B., Surenaud, M., Hüe, S., Carteaux, G., Razazi, K., Lelièvre, J. -D., Lévy, Y., Mekontso Dessap, A., Godot, V., & de Prost, N. (2021). Functional Ex Vivo Testing of Alveolar Monocytes in Patients with Pneumonia-Related ARDS. Cells, 10(12), 3546. https://doi.org/10.3390/cells10123546