Differences of Transport Activity of Arginine and Regulation on Neuronal Nitric Oxide Synthase and Oxidative Stress in Amyotrophic Lateral Sclerosis Model Cell Lines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radiolabelled Compounds and Chemicals
2.2. Cell Culture
2.3. [3H]L-Arginine Uptake Study in ALS Model Cell Lines
2.4. Kinetic Analysis of [3H]L-Arginine in ALS Model Cell Lines
2.5. qPCR Analysis of CAT-1(Slc7a1) and nNOS (Nos1) mRNA Expression in NSC-34 Cells
2.6. Statistical Data Analysis
3. Results
3.1. Kinetic Parameters of the [3H]L-Arginine Uptake Is Altered in ALS Cell Lines Model
3.2. Differential Analysis of Arginine Transport Systems in ALS Cell Lines
3.3. Modulation of the [3H]L-Arginine Uptake by Transporter Inhibitors in ALS Cell Lines
3.4. Inhibitory Effect of the [3H]L-Arginine Uptake by Various Drugs in ALS Model Cell Lines
3.5. Effect of Arginine Pretreatment on nNOS mRNA Expression Levels in ALS Cell Lines
3.6. Neuroprotective Effects of Arginine against H2O2 Motor Neuronal Cytotoxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, J.; Ryu, H.; Kowall, N.W. Motor neuronal protection by l-arginine prolongs survival of mutant SOD1 (G93A) ALS mice. Biochem. Biophys. Res. Commun. 2009, 384, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Cunha-Oliveira, T.; Montezinho, L.; Mendes, C.; Firuzi, O.; Saso, L.; Oliveira, P.J.; Silva, F.S.G. Oxidative Stress in amyotrophic lateral sclerosis. Oxid. Med. Cell. Longev. 2020, 2020, 5021694. [Google Scholar] [CrossRef]
- Hoffman, J.M.; Lyu, Y.; Pletcher, S.D.; Promislow, D.E.L. Proteomics and metabolomics in ageing research: From biomarkers to systems biology. Essays Biochem. 2017, 61, 379–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iłzecka, J.; Stelmasiak, Z.; Solski, J.; Wawrzycki, S.; Szpetnar, M. Plasma amino acids concentration in amyotrophic lateral sclerosis patients. Amino Acids 2003, 25, 69–73. [Google Scholar] [CrossRef]
- Jung, M.-K.; Kim, K.Y.; Lee, N.-Y.; Kang, Y.-S.; Hwang, Y.J.; Kim, Y.; Sung, J.-J.; McKee, A.; Kowall, N.; Lee, J.; et al. Expression of taurine transporter (TauT) is modulated by heat shock factor 1 (HSF1) in motor neurons of ALS. Mol. Neurobiol. 2013, 47, 699–710. [Google Scholar] [CrossRef]
- Lee, N.Y.; Kim, Y.; Ryu, H.; Kang, Y.S. The alteration of serine transporter activity in a cell line model of amyotrophic lateral sclerosis (ALS). Biochem. Biophys. Res. Commun. 2017, 483, 135–141. [Google Scholar] [CrossRef]
- Gyawali, A.; Kang, Y.S. Pretreatment effect of inflammatory stimuli and characteristics of tryptophan transport on brain capillary endothelial (Tr-bbb) and motor neuron like (nsc-34) cell lines. Biomedicines 2021, 9, 9. [Google Scholar] [CrossRef]
- Luiking, Y.C.; Ten Have, G.A.M.; Wolfe, R.R.; Deutz, N.E.P. Arginine de novo and nitric oxide production in disease states. Am. J. Physiol.-Endocrinol. Metab. 2012, 303, E1177–E1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, S.; Mi, J.D.; Henderson, R.; McCombe, P.A.; Steyn, F. Exploring targets and therapies for amyotrophic lateral sclerosis: Current insights into dietary interventions. Degener. Neurol. Neuromuscul. Dis. 2017, 7, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Palamiuc, L.; Schlagowski, A.; Ngo, S.T.; Vernay, A.; Dirrig-Grosch, S.; Henriques, A.; Boutillier, A.; Zoll, J.; Echaniz-Laguna, A.; Loeffler, J.; et al. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol. Med. 2015, 7, 526–546. [Google Scholar] [CrossRef] [PubMed]
- Ham, D.J.; Caldow, M.K.; Lynch, G.S.; Koopman, R. Arginine protects muscle cells from wasting in vitro in an mTORC1-dependent and NO-independent manner. Amino Acids 2014, 46, 2643–2652. [Google Scholar] [CrossRef] [PubMed]
- Jungnickel, K.E.J.; Parker, J.L.; Newstead, S. Structural basis for amino acid transport by the CAT family of SLC7 transporters. Nat. Commun. 2018, 9, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomi, M.; Kitade, N.; Hirose, S.; Yokota, N.; Akanuma, S.I.; Tachikawa, M.; Hosoya, K.I. Cationic amino acid transporter 1-mediated l-arginine transport at the inner blood-retinal barrier. J. Neurochem. 2009, 111, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Zakoji, N.; Akanuma, S.I.; Tachikawa, M.; Hosoya, K.I. Involvement of cationic amino acid transporter 1 in L-arginine transport in rat retinal pericytes. Biol. Pharm. Bull. 2015, 38, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Devés, R.; Boyd, C.A.R. Transporters for cationic amino acids in animal cells: Discovery, structure, and function. Physiol. Rev. 1998, 78, 487–545. [Google Scholar] [CrossRef] [PubMed]
- O’Kane, R.L.; Viña, J.R.; Simpson, I.; Zaragozá, R.; Mokashi, A.; Hawkins, R.A. Cationic amino acid transport across the blood-brain barrier is mediated exclusively by system y+. Am. J. Physiol.-Endocrinol. Metab. 2006, 291, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahyaoui, R.; Pérez-Frías, J. Amino acid transport defects in human inherited metabolic disorders. Int. J. Mol. Sci. 2020, 21, 119. [Google Scholar] [CrossRef] [Green Version]
- Van Winkle, L.J.; Iannaccone, P.M.; Campione, A.L.; Garton, R.L. Transport of cationic and zwitterionic amino acids in preimplantation rat conceptuses. Dev. Biol. 1990, 142, 184–193. [Google Scholar] [CrossRef]
- Palacín, M.; Estévez, R.; Bertran, J.; Zorzano, A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 1998, 78, 969–1054. [Google Scholar] [CrossRef]
- Boyd, C.A.R.; Deves, R.; Laynes, R.; Kudo, Y.; Sebastio, G. Cationic amino acid transport through system y+L in erythrocytes of patients with lysinuric protein intolerance. Pflugers Arch. Eur. J. Physiol. 2000, 439, 513–516. [Google Scholar] [CrossRef]
- Wiesinger, H. Arginine metabolism and the synthesis of nitric oxide in the nervous system. Prog. Neurobiol. 2001, 64, 365–391. [Google Scholar] [CrossRef]
- Lee, J.; Ryu, H.; Kowall, N.W. Differential regulation of neuronal and inducible nitric oxide synthase (NOS) in the spinal cord of mutant SOD1 (G93A) ALS mice. Biochem. Biophys. Res. Commun. 2009, 387, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Hyeon, S.J.; Im, H.; Ryu, H.; Kim, Y.; Ryu, H. Astrocytes and Microglia as Non-cell Autonomous Players in the Pathogenesis of ALS. Exp. Neurobiol. 2016, 25, 233–240. [Google Scholar] [CrossRef]
- Fang, Y.Z.; Yang, S.; Wu, G. Free radicals, antioxidants, and nutrition. Nutrition 2002, 18, 872–879. [Google Scholar] [CrossRef]
- Nordberg, J.; Arnér, E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef]
- Cao, Y.; Feng, Y.; Zhang, Y.; Zhu, X.; Jin, F. L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo. BMC Cancer 2016, 16, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, O.; Böhm, J.; Dahm, M.; Brück, S.; Beyer, C.; Johann, S. Differentiated NSC-34 motoneuron-like cells as experimental model for cholinergic neurodegeneration. Neurochem. Int. 2013, 62, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, A.; Gautam, S.; Hyeon, S.J.; Ryu, H.; Kang, Y.S. L-Citrulline level and transporter activity are altered in experimental models of amyotrophic lateral sclerosis. Mol. Neurobiol. 2021, 58, 647–657. [Google Scholar] [CrossRef]
- Lee, K.E.; Kang, Y.S. L-Citrulline restores nitric oxide level and cellular uptake at the brain capillary endothelial cell line (TR-BBB cells) with glutamate cytotoxicity. Microvasc. Res. 2018, 120, 29–35. [Google Scholar] [CrossRef]
- Bae, S.Y.; Xu, Q.; Hutchinson, D.; Colton, C.A. Y+ and y+L arginine transporters in neuronal cells expressing tyrosine hydroxylase. Biochim. Biophys. Acta-Mol. Cell Res. 2005, 1745, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyawali, A.; Kang, Y.S. Blood-to-Retina transport of imperatorin involves the carrier-mediated transporter system at the inner blood-retinal barrier. J. Pharm. Sci. 2019, 108, 1619–1626. [Google Scholar] [CrossRef]
- Gyawali, A.; Kang, Y.S. Transport alteration of 4-phenyl butyric acid mediated by a sodium- and proton-coupled monocarboxylic acid transporter system in ALS model cell lines (NSC-34) under inflammatory states. J. Pharm. Sci. 2021, 110, 1374–1384. [Google Scholar] [CrossRef]
- Shima, Y.; Maeda, T.; Aizawa, S.; Tsuboi, I.; Kobayashi, D.; Kato, R.; Tamai, I. L-arginine import via cationic amino acid transporter CAT1 is essential for both differentiation and proliferation of erythrocytes. Blood 2006, 107, 1352–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, K.E.; Rasmussen, A.L.; Bennett, W.; King, A.; West, A.K.; Chung, R.S.; Chuah, M.I. Microglia and motor neurons during disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis: Changes in arginase1 and inducible nitric oxide synthase. J. Neuroinflammation 2014, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Gomes, C.; Keller, S.; Altevogt, P.; Costa, J. Evidence for secretion of Cu,Zn superoxide dismutase via exosomes from a cell model of amyotrophic lateral sclerosis. Neurosci. Lett. 2007, 428, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Westergaard, N.; Beart, P.M.; Schousboe, A. Transport of l-[3H]arginine in cultured neurons: Characteristics and inhibition by nitric oxide synthase inhibitors. J. Neurochem. 1993, 61, 364–367. [Google Scholar] [CrossRef]
- Verrey, F.; Closs, E.I.; Wagner, C.A.; Palacin, M.; Endou, H.; Kanai, Y. CATs and HATs: The SLC7 family of amino acid transporters. Pflug. Arch. Eur. J. Physiol. 2004, 447, 532–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deves, R.; Angelo, S.; Rojas, A. System y+L: The broad scope and cation modulated amino acid transporter. Exp. Physiol. 1998, 83, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Latif, S.; Kang, Y. Change in cationic amino acid transport system and effect of lysine pretreatment on inflammatory state in amyotrophic lateral sclerosis cell model. Biomol. Ther. 2021, 29, 498–505. [Google Scholar] [CrossRef]
- Arancibia-Garavilla, Y.; Toledo, F.; Casanello, P.; Sobrevia, L. Nitric oxide synthesis requires activity of the cationic and neutral amino acid transport system y+L in human umbilical vein endothelium. Exp. Physiol. 2003, 88, 699–710. [Google Scholar] [CrossRef]
- Törnquist, P.; Alm, A. Carrier-mediated transport of amino acids through the blood-retinal and the blood-brain barriers. Graefe’s Arch. Clin. Exp. Ophthalmol. 1986, 224, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Closs, E.I.; Boissel, J.-P.; Habermeier, A.; Rotmann, A. Structure and function of cationic amino acid transporters (CATs). J. Membr. Biol. 2006, 213, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.P.H.; Deeks, E.D. Dextromethorphan/Quinidine: A Review of Its Use in Adults with Pseudobulbar Affect. Drugs 2015, 75, 83–90. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Lu, K.; Wang, F.; Deng, J.; Xu, Z.; Wang, X.; Zhou, Q.; Le, W.; Zhao, Y. Verapamil ameliorates motor neuron degeneration and improves lifespan in the SOD1G93A mouse model of als by enhancing autophagic flux. Aging Dis. 2019, 10, 1159–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, T.-Z.; Lunney, E.; Campbell, G.; Oxender, D.L. Transport of gabapentin, a γ-amino acid drug, by system L α-amino acid transporters: A comparative study in astrocytes, synaptosomes, and CHO cells. J. Neurochem. 1995, 64, 2125–2131. [Google Scholar] [CrossRef]
- Urushitani, M.; Shimohama, S. The role of nitric oxide in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2001, 2, 71–81. [Google Scholar] [CrossRef]
- Wileman, S.M.; Mann, G.E.; Pearson, J.D.; Baydoun, A.R. Role of L-citrulline transport in nitric oxide synthesis in rat aortic smooth muscle cells activated with LPS and interferon-γ. Br. J. Pharmacol. 2003, 140, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Olsen, I.; Singhrao, S.K.; Potempa, J. Citrullination as a plausible link to periodontitis, rheumatoid arthritis, atherosclerosis and Alzheimer’s disease. J. Oral Microbiol. 2018, 10, 1487742. [Google Scholar] [CrossRef] [Green Version]
- Sorarù, G.; Vergani, L.; Fedrizzi, L.; D’Ascenzo, C.; Polo, A.; Bernazzi, B.; Angelini, C. Activities of mitochondrial complexes correlate with nNOS amount in muscle from ALS patients. Neuropathol. Appl. Neurobiol. 2007, 33, 204–211. [Google Scholar] [CrossRef]
Parameters | WT | MT |
---|---|---|
Km1 (mM) | 0.013 ± 0.005 | 0.30 ± 0.11 *** |
Km2 (mM) | 3.51 ± 1.73 | 1.98 ± 1.10 |
Vmax1(nmol/mg protein/min) | 0.012 ± 0.006 | 0.47 ± 0.15 ** |
Vmax2(nmol/mg protein/min) | 3.30 ± 1.62 | 1.42 ± 1.30 |
Treatment | Relative Uptake (% of Control) | |
---|---|---|
WT | MT | |
Control | 100 ± 5 | 100 ± 1 |
Na+ replacement | ||
Lithium chloride | 97.1 ± 0.4 | 90.0 ± 5.3 |
Chlorine Chloride | 122 ± 10 | 97.9 ± 6.0 |
Membrane potential | ||
Potassium chloride | 71.2 ± 7.9 * | 89.9 ± 1.9 * |
Treatment | Transport Systems | L-Arginine Uptake (Cell/Medium Ratio) (µL/mg Protein) | Detection of Transport System | Relative Contribution (Cell/Medium Ratio) (µL/mg Protein) | ||
---|---|---|---|---|---|---|
WT | MT | WT | MT | |||
(a) Na+-containing | y+; y+L, Bo,+ bo,+ | 13.9 ± 0.31 | 8.33 ± 0.01 | (a) − (b) = Bo,+ | - | 1.0 ± 0.1 (9.8%) |
(b) Na+ free | y+; y+L, bo,+ | 14.6 ± 0.4 | 7.4 ± 0.8 | (b) − (c) = bo,+ | 3.3 ± 0.4 (23%) | 2.3 ± 0.71 (23%) |
(c) Na+ free plus alanine | y+; y+L | 11.3 ± 0.1 | 5.1 ± 0.4 | (c) − (d) = y+L | 0.49 ± 0.06 (3.4%) | - |
(d) Na+-containing plus leucine | y+ | 10.8 ± 1.3 | 6.9 ± 0.3 | (d) = y+ | 11 ± 1 (74%) | 6.9 ± 0.3 (68%) |
Substrate | Conc.(mM) | Uptake of [3H]L-Arginine (% of Control) | |
---|---|---|---|
WT | MT | ||
Control | 100 ± 5 | 100 ± 7 | |
+Arginine | 2 | 33.9 ± 3.8 *** | 37.2 ± 5.9 *** |
+Lysine | 2 | 65.9 ± 3.7 ** | 52.9 ± 3.8 *** |
+Histidine | 2 | 75.5 ± 0.2 ** | 69.7 ± 6.8 ** |
+Ornithine | 2 | 72.0 ± 6.3 ** | 79.0 ± 1.5 ** |
+Leucine | 2 | 68.2 ± 1.7 ** | 43.9 ± 4.7 *** |
+Alanine | 2 | 72.7 ± 4.5 * | 78.9 ± 6.2 * |
+Glutamine | 2 | 104 ± 8 | 113 ± 4 |
+Choline | 2 | 119 ± 7 | 116 ± 4 |
+NMMA | 2 | 32.1 ± 1.9 *** | 50.0 ± 2.0 ** |
+Homoarginine | 2 | 41.6 ± 1.4 *** | 65.7 ± 6.3 *** |
+Harmaline | 2 | 76.3 ± 10.0 * | 65.2 ± 3.4 * |
+NMM | 2 | 63.6 ± 9.3 ** | 69.7 ± 7.2 ** |
+NEM | 2 | 79.3 ± 5.7 ** | 68.5 ± 1.0 *** |
+BCH | 2 | 93.5 ± 5.3 | 85.2 ± 5.5 |
Substrates | Conc. (mM) | [3H]L-Arginine Uptake (% of Control) | |
---|---|---|---|
WT | MT | ||
Control | 100 ± 6 | 100 ± 5 | |
+Quinidine | 2 | 76.8 ± 5.1 ** | 52.8 ± 6.1 *** |
+Verapamil | 0.5 | 73.6 ± 9.5 * | 67.1 ± 3.0 ** |
+Gabapentin | 2 | 56.8 ± 1.2 *** | 58.9 ± 7.4 ** |
+Clonidine | 2 | 81.2 ± 5.9 | 109 ± 9 |
+Donepezil | 2 | 97.5 ± 2.9 | 109 ± 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latif, S.; Kang, Y.-S. Differences of Transport Activity of Arginine and Regulation on Neuronal Nitric Oxide Synthase and Oxidative Stress in Amyotrophic Lateral Sclerosis Model Cell Lines. Cells 2021, 10, 3554. https://doi.org/10.3390/cells10123554
Latif S, Kang Y-S. Differences of Transport Activity of Arginine and Regulation on Neuronal Nitric Oxide Synthase and Oxidative Stress in Amyotrophic Lateral Sclerosis Model Cell Lines. Cells. 2021; 10(12):3554. https://doi.org/10.3390/cells10123554
Chicago/Turabian StyleLatif, Sana, and Young-Sook Kang. 2021. "Differences of Transport Activity of Arginine and Regulation on Neuronal Nitric Oxide Synthase and Oxidative Stress in Amyotrophic Lateral Sclerosis Model Cell Lines" Cells 10, no. 12: 3554. https://doi.org/10.3390/cells10123554
APA StyleLatif, S., & Kang, Y. -S. (2021). Differences of Transport Activity of Arginine and Regulation on Neuronal Nitric Oxide Synthase and Oxidative Stress in Amyotrophic Lateral Sclerosis Model Cell Lines. Cells, 10(12), 3554. https://doi.org/10.3390/cells10123554