Direct Current Stimulation in Cell Culture Systems and Brain Slices—New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art
Abstract
:1. Introduction
- the primary effects of DC stimulation are non-synaptic membrane polarization effects which are dependent on cell and cell-compartment orientation relative to the induced electric fields;
- secondary neuronal effects of DC stimulation on plasticity require initial polarization, spontaneous neuronal activity, and are driven by glutamate, gated by GABA activity reduction, and require BDNF expression;
- long-lasting effects resembling time windows of late phase plasticity require protein synthesis;
- stimulation dosages in animal and cellular studies are often relevantly higher than those used for interventions in humans; and
- tDCS has also non-neuronal effects.
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion Criteria, Literature Screening, and Eligibility
3. Results
3.1. Orientation of the Electric Field in Relation to Neuronal Population Morphology/Alignment, and Location
3.2. Acute, Prolonged, and Chronic DCS
3.3. Molecular Changes—Plasticity and Neuromodulation
4. Discussion
4.1. Localization
4.2. Physiological Mechanisms
4.3. Molecular Mechanisms
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Polanía, R.; Nitsche, M.A.; Ruff, C.C. Studying and Modifying Brain Function with Non-invasive Brain Stimulation. Nat. Neurosci. 2018, 21, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nitsche, M.A.; Paulus, W. Excitability Changes Induced in The Human Motor Cortex by Weak tDCS. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Sustained Excitability Elevations Induced by Transcranial DC Motor Cortex Stimulation in Humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Nitsche, M.S.; Klein, C.C.; Tergau, F.; Rothwell, J.C.; Paulus, W. Level of Action of Cathodal DC Polarisation Induced Inhibition of the Human Motor Cortex. Clin. Neurophysiol. 2003, 114, 600–604. [Google Scholar] [CrossRef]
- Monte-Silva, K.; Kuo, M.F.; Hessenthaler, S.; Fresnoza, S.; Liebetanz, D.; Paulus, W.; Nitsche, M.A. Induction of Late LTP-like Plasticity in the Human Motor Cortex by Repeated Non-invasive Brain Stimulation. Brain Stimul. 2013, 6, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, B.; Reis, J.; Martinowich, K.; Schambra, H.M.; Ji, Y.; Cohen, L.G.; Lu, B. Direct Current Stimulation Promotes BDNF-dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron 2010, 66, 198–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabakov, A.Y.; Muller, P.A.; Pascual-Leone, A.; Jensen, F.E.; Rotenberg, A. Contribution of Axonal Orientation to Pathway-dependent Modulation of Excitatory Transmission by Direct Current Stimulation in Isolated Rat Hippocampus. J. Neurophysiol. 2012, 107, 1881–1889. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Fricke, K.; Henschke, U.; Schlitterlau, A.; Liebetanz, D.; Lang, N.; Henning, S.; Tergau, F.; Paulus, W. Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans. J. Physiol. 2003, 553, 293–301. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Jaussi, W.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Consolidation of Human Motor Cortical Neuroplasticity by D-cycloserine. Neuropsychopharmacology 2004, 29, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
- Stagg, C.J.; Best, J.G.; Stephenson, M.C.; O’Shea, J.; Wylezinska, M.; Kineses, Z.T.; Morris, P.G.; Matthews, P.M.; Johansen-Berg, H. Polarity-sensitive Modulation of Cortical Neurotransmitters by Transcranial Stimulation. J. Neurosci. 2009, 29, 5202–5206. [Google Scholar] [CrossRef] [PubMed]
- Gartside, I.B. Mechanisms of Sustained Increases of Firing Rate of Neurones in the Rat Cerebral Cortex After Polarization: Role of Protein Synthesis. Nature 1968, 220, 383–384. [Google Scholar] [CrossRef]
- Polanía, R.; Nitsche, M.A.; Paulus, W. Modulating Functional Connectivity Patterns and Topological Functional Organization of the Human Brain with Transcranial Direct Current Stimulation. Hum. Brain Mapp. 2011, 32, 1236–1249. [Google Scholar] [CrossRef]
- Shin, Y.I.; Foerster, Á.; Nitsche, M.A. Reprint of: Transcranial Direct Current Stimulation (tDCS)—Application in Neuropsychology. Neuropsychologia 2015, 74, 74–95. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based Guidelines on the Therapeutic Use of Transcranial Direct Current Stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef]
- Stagg, C.J.; Antal, A.; Nitsche, M.A. Physiology of Transcranial Direct Current Stimulation. J. ECT 2018, 34, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Liebetanz, D.; Schlitterlau, A.; Henschke, U.; Fricke, K.; Frommann, K.; Lang, N.; Henning, S.; Paulus, W.; Tergau, F. GABAergic Modulation of DC Stimulation-induced Motor Cortex Excitability Shifts in Humans. Eur. J. Neurosci. 2004, 19, 2720–2726. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Lipton, J.O.; Boyle, L.M.; Madsen, J.R.; Goldenberg, M.C.; Pascual-Leone, A.; Sahin, M.; Rotenberg, A. Direct Current Stimulation Induces mGluR5-dependent Neocortical Plasticity. Ann. Neurol. 2016, 80, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.W.; de Melo Rodrigues, L.C.; Nitsche, M.A.; Nakamura-Palacios, E.M. AMPA Receptors are Involved in Prefrontal Direct Current Stimulation Effects on Long-term Working Memory and GAP-43 Expression. Behav. Brain Res. 2019, 362, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-P.P.; Lu, H.-C.C.; Shyu, B.-C.C. Treatment with Direct-current Stimulation Against Cingulate Seizure-like Activity Induced by 4-aminopyridine and Bicuculline in an in Vitro Mouse Model. Exp. Neurol. 2015, 265, 180–192. [Google Scholar] [CrossRef]
- Kronberg, G.; Rahman, A.; Sharma, M.; Bikson, M.; Parra, L.C. Direct Current Stimulation Boosts Hebbian Plasticity in Vitro. Brain Stimul. 2020, 13, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, S.J.; Lagace, M.; St-Amour, I.; Arsenault, D.; Cisbani, G.; Chabrat, A.; Fecteau, S.; Levsque, M.; Cicchetti, F. The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation. Int. J. Neuropsychopharmacol. 2015, 18, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babona-Pilipos, R.; Droujinine, I.A.; Popovic, M.R.; Morshead, C.M. Adult Subependymal Neural Precursors, but not Differentiated Cells, Undergo Rapid Cathodal Migration in the Presence of Direct Current Electric Fields. PLoS ONE 2011, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Borgens, R.B.; Shi, R.; Mohr, T.J.; Jaeger, C.B. Mammalian Cortical Astrocytes Align Themselves in a Physiological Voltage Gradient. Exp. Neurol. 1994, 128, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Borgens, R. Ben Strict Perpendicular Orientation of Neural Crest-derived Neurons in Vitro is Dependent on an Extracellular Gradient of Voltage. J. Neurosci. Res. 2012, 90, 1335–1346. [Google Scholar] [CrossRef] [PubMed]
- Rajnicek, A.; Gow, N.; McCaig, C. Electric Field-induced Orientation of Rat Hippocampal Neurones in Vitro. Exp. Physiol. 1992, 77, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Agius-Fernandez, A.; Forrester, J.V.; McCaig, C.D. Orientation and Directed Migration of Cultured Corneal Epithelial Cells in Small Electric Fields are Serum Dependent. J. Cell Sci. 1996, 109, 1405–1414. [Google Scholar] [CrossRef]
- Zhao, M.; McCaig, C.D.; Agius-Fernandez, A.; Forrester, J.V.; Araki-Sasaki, K. Human Corneal Epithelial Cells Reorient and Migrate Cathodally in a Small Applied Electric Field. Curr. Eye Res. 1997, 16, 973–984. [Google Scholar] [CrossRef]
- Chao, P.H.G.; Lu, H.H.; Hung, C.T.; Nicoll, S.B.; Bulinski, J.C. Effects of Applied DC Electric Field on Ligament Fibroblast Migration and Wound Healing. Connect. Tissue Res. 2007, 48, 188–197. [Google Scholar] [CrossRef]
- Cooper, M.S.; Keller, R.E. Perpendicular Orientation and Directional Migration of Amphibian Neural Crest Cells in DC Electrical Fields. Proc. Natl. Acad. Sci. USA 1984, 81, 160–164. [Google Scholar] [CrossRef] [Green Version]
- Franke, K.; Gruler, H. Galvanotaxis of Human Granulocytes: Electric Field Jump Studies. Eur. Biophys. J. 1990, 18, 335–346. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, B.; Zhang, G.; Wang, J.; Tian, W.; Ju, G.; Wei, X.; Song, B. Electric Signals Regulate Directional Migration of Ventral Midbrain Derived Dopaminergic Neural Progenitor Cells via Wnt/GSK3β Signaling. Exp. Neurol. 2015, 263, 113–121. [Google Scholar] [CrossRef]
- McCaig, C.D. Studies on the Mechanism of Embryonic Frog Nerve Orientation in a Small Applied Electric Field. J. Cell Sci. 1989, 93, 723–730. [Google Scholar] [CrossRef]
- McCaig, C.D.; Dover, P.J. Factors Influencing Perpendicular Elongation of Embryonic Frog Muscle Cells in a Small Applied Electric Field. J. Cell Sci. 1991, 98, 497–506. [Google Scholar] [CrossRef]
- McCaig, C.D.; Rajnicek, A.M.; Song, B.; Zhao, M. Controlling Cell Behavior Electrically: Current Views and Future Potential. Physiol. Rev. 2005, 85, 943–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orida, N.; Feldman, J.D. Directional Protrusive Pseudopodial Activity and Motility in Macrophages Induced by Extracellular Electric Fields. Cell Motil. 1982, 2, 243–255. [Google Scholar] [CrossRef]
- Palmer, A.M.; Messerli, M.A.; Robinson, K.R. Neuronal Galvanotropism is Independent of External Ca2+ Entry or Internal Ca2+ Gradients. J. Neurobiol. 2000, 45, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Cambiaghi, M.; Velikova, S.; Gonzalez-Rosa, J.J.; Cursi, M.; Comi, G.; Leocani, L. Brain Transcranial Direct Current Stimulation Modulates Motor Excitability in Mice. Eur. J. Neurosci. 2010, 31, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Im, C.H.; Park, J.H.; Shim, M.; Chang, W.H.; Kim, Y.H. Evaluation of Local Electric Fields Generated by Transcranial Direct Current Stimulation with an Extracephalic Reference Electrode Based on Realistic 3D Body Modeling. Phys. Med. Biol. 2012, 57, 2137–2150. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial Direct Current Stimulation: State of the Art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef]
- Terzuolo, C.A.; Bullock, T.H. Measurement of Imposed Voltage Gradient Adequate to Modulate Neuronal Firing. Proc. Natl. Acad. Sci. USA 1956, 42, 687–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peruzzotti-Jametti, L.; Cambiaghi, M.; Bacigaluppi, M.; Gallizioli, M.; Gaude, E.; Mari, S.; Sandrone, S.; Cursi, M.; Teneud, L.; Comi, G.; et al. Safety and Efficacy of Transcranial Direct Current Stimulation in Acute Experimental Ischemic Stroke. Stroke 2013, 44, 3166–3174. [Google Scholar] [CrossRef] [Green Version]
- Koppes, A.N.; Seggio, A.M.; Thompson, D.M. Neurite Outgrowth is Significantly Increased by the Simultaneous Presentation of Schwann Cells and Moderate Exogenous Electric Fields. J. Neural Eng. 2011, 8. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Forrester, J.V.; Zhao, M. DC Electric Stimulation Upregulates Angiogenic Factors in Endothelial Cells through Activation of VEGF Receptors. Cytokine 2011, 55, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating Guidance for Reporting Systematic Reviews: Development of the PRISMA 2020 Statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, S.J.; Cicchetti, F. Cellular and Molecular Mechanisms of Action of Tanscranial Direct Current Stimulation: Evidence from in Vitro and in Vivo Models. Int. J. Neuropsychopharmacol. 2015, 18, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kronberg, G.; Bridi, M.; Abel, T.; Bikson, M.; Parra, L.C. Direct Current Stimulation Modulates LTP and LTD: Activity Dependence and Dendritic Effects. Brain Stimul. 2017, 10, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Lafon, B.; Parra, L.C.; Bikson, M. Direct Current Stimulation Boosts Synaptic Gain and Cooperativity In Vitro. J. Physiol. 2017, 595, 3535–3547. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, D.; Truong, D.Q.; Bikson, M.; Kaphzan, H. Neuromodulation of Axon Terminals. Cereb. Cortex 2018, 28, 2786–2794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latchoumane, C.F.V.; Jackson, L.D.; Eslampanah Sendi, M.S.; Tehrani, K.F.; Mortensen, L.J.; Stice, S.L.; Ghovanloo, M.; Karumbaiah, L. Chronic Electrical Stimulation Promotes the Excitability and Plasticity of ESC-derived Neurons Following Glutamate-Induced Inhibition in Vitro. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, F.; Podda, M.V.; Riccardi, E.; Frisullo, G.; Dileone, M.; Profice, P.; Pilato, F.; di Lazzaro, V.; Grassi, C. Modulation of LTP at Rat Hippocampal CA3-CA1 Synapses by Direct Current Stimulation. J. Neurophysiol. 2012, 107, 1868–1880. [Google Scholar] [CrossRef]
- Sun, Y.; Dhamne, S.C.; Carretero-Guillén, A.; Salvador, R.; Goldenberg, M.C.; Godlewski, B.R.; Pascual-Leone, A.; Madsen, J.R.; Stone, S.S.D.; Ruffini, G.; et al. Drug-Responsive Inhomogeneous Cortical Modulation by Direct Current Stimulation. Ann. Neurol. 2020, 88, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Reato, D.; Bikson, M.; Parra, L.C. Lasting Modulation of in Vitro Oscillatory Activity with Weak Direct Current Stimulation. J. Neurophysiol. 2015, 113, 1334–1341. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Steiger, A.; Nohner, M.; Ye, H. Specific Intensity Direct Current (DC) Electric Field Improves Neural Stem Cell Migration and Enhances Differentiation Towards βIII-tubulin + Neurons. PLoS ONE 2015, 10, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.S.; Kee, N.; Wojtowicz, J.M. Effects of Adult Neurogenesis on Synaptic Plasticity in the Rat Dentate Gyrus. J. Neurophysiol. 2001, 85, 2423–2431. [Google Scholar] [CrossRef] [Green Version]
- Guzowski, J.F.; Setlow, B.; Wagner, E.K.; McGaugh, J.L. Experience-dependent Gene Expression in the Rat Hippocampus after Spatial Learning: A Comparison of the Immediate-early Genes Arc, c-fos, and zif268. J. Neurosci. 2001, 21, 5089–5098. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Liebetanz, D.; Antal, A.; Lang, N.; Tergau, F.; Paulus, W. Chapter 27 Modulation of Cortical Excitability by Weak Direct Current Stimulation—Technical, Safety and Functional Aspects. Suppl. Clin. Neurophysiol. 2003, 56, 255–276. [Google Scholar] [CrossRef]
- Stagg, C.J.; Nitsche, M.A. Physiological Basis of Transcranial Direct Current Stimulation. Neuroscientist 2011, 17, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Knotkova, H.; Nitsche, M.A.; Bikson, M.; Woods, A.J. (Eds.) Practical Guide to Transcranial Direct Current Stimulation: Principles, Procedures and Applications; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-95947-4. [Google Scholar]
- Radman, T.; Ramos, R.L.; Brumberg, J.C.; Bikson, M. Role of Cortical Cell Type and Morphology in Subthreshold and Suprathreshold Uniform Electric Field Stimulation in Vitro. Brain Stimul. 2009, 2, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Roth, A.; Kuo, M.-F.; Fischer, A.K.; Liebetanz, D.; Lang, N.; Tergau, F.; Paulus, W. Timing-dependent Modulation of Associative Plasticity by General Network Excitability in the Human Motor Cortex. J. Neurosci. 2007, 27, 3807–3812. [Google Scholar] [CrossRef] [Green Version]
- Nitsche, M.A.; Schauenburg, A.; Lang, N.; Liebetanz, D.; Exner, C.; Paulus, W.; Tergau, F. Facilitation of Implicit Motor Learning by Weak Transcranial Direct Current Stimulation of the Primary Motor Cortex in the Human. J. Cogn. Neurosci. 2003, 15, 619–626. [Google Scholar] [CrossRef]
- Islam, N.; Aftabuddin, M.; Moriwaki, A.; Hattori, Y.; Hori, Y. Increase in the Calcium Level Following Anodal Polarization in the Rat Brain. Brain Res. 1995, 684, 206–208. [Google Scholar] [CrossRef]
- Liebetanz, D.; Nitsche, M.A.; Tergau, F.; Paulus, W. Pharmacological Approach to the Mechanisms of Transcranial DC-stimulation-induced after-effects of Human Motor Cortex Excitability. Brain 2002, 125, 2238–2247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Dahlhaus, F.; Vlachos, A. Unraveling the Cellular and Molecular Mechanisms of Repetitive Magnetic Stimulation. Front. Mol. Neurosci. 2013, 6, 50. [Google Scholar] [CrossRef] [Green Version]
- Tang, A.; Thickbroom, G.; Rodger, J. Repetitive Transcranial Magnetic Stimulation of the Brain: Mechanisms from Animal and Experimental Models. Neuroscientist 2017, 23, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; del Carmen Vitery, M.; Chen, J.; Osei-Owusu, J.; Chu, J.; Qiu, Z. Glutamate-Releasing SWELL1 Channel in Astrocytes Modulates Synaptic Transmission and Promotes Brain Damage in Stroke. Neuron 2019, 102, 813–827. [Google Scholar] [CrossRef]
- Krause, M.R.; Zanos, T.P.; Csorba, B.A.; Pilly, P.K.; Choe, J.; Phillips, M.E.; Datta, A.; Pack, C.C. Transcranial Direct Current Stimulation Facilitates Associative Learning and Alters Functional Connectivity in the Primate Brain. Curr. Biol. 2017, 27, 3086–3096.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinhart, R.M.G.; Zhu, J.; Park, S.; Woodman, G.F. OSynchronizing Theta Oscillations with Direct-current Stimulation Strengthens Adaptive Control in the Human Brain. Proc. Natl. Acad. Sci. USA 2015, 112, 9448–9453. [Google Scholar] [CrossRef] [Green Version]
- Datta, A.; Krause, M.R.; Pilly, P.K.; Choe, J.; Zanos, T.P.; Thomas, C.; Pack, C.C. On Comparing in Vivo Intracranial Recordings in Non-human Primates to Predictions of Optimized Transcranial Electrical Stimulation. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; Volume 2016, pp. 1774–1777. [Google Scholar]
- Alekseichuk, I.; Mantell, K.; Shirinpour, S.; Opitz, A. Comparative Modeling of Transcranial Magnetic and Electric Stimulation in Mouse, Monkey, and Human. Neuroimage 2019, 194, 136–148. [Google Scholar] [CrossRef]
- Reis, J.; Schambra, H.M.; Cohen, L.G.; Buch, E.R.; Fritsch, B.; Zarahn, E.; Celnik, P.A.; Krakauer, J.W. Noninvasive Cortical Stimulation Enhances Motor skill acquisition Over Multiple Days through an Effect on Consolidation. Proc. Natl. Acad. Sci. USA 2009, 106, 1590–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dockery, C.A.; Liebetanz, D.; Birbaumer, N.; Malinowska, M.; Wesierska, M.J. Cumulative Benefits of Frontal Transcranial Direct Current Stimulation on Visuospatial Working Memory Training and Skill Learning in Rats. Neurobiol. Learn. Mem. 2011, 96, 452–460. [Google Scholar] [CrossRef]
- Márquez-Ruiz, J.; Leal-Campanario, R.; Sańchez-Campusano, R.; Molaee-Ardekani, B.; Wendling, F.; Miranda, P.C.; Ruffini, G.; Gruart, A.; Delgado-Garciá, J.M. Transcranial Direct-current Stimulation Modulates Synaptic Mechanisms Involved in Associative Learning in Behaving Rabbits. Proc. Natl. Acad. Sci. USA 2012, 109, 6710–6715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonenko, D.; Hayek, D.; Netzband, J.; Grittner, U.; Flöel, A. tDCS-induced Episodic Memory Enhancement and its Association with Functional Network Coupling in Older Adults. Sci. Rep. 2019, 9, 2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grainger, A.I.; King, M.C.; Nagel, D.A.; Parri, H.R.; Coleman, M.D.; Hill, E.J. In Vitro Models for Seizure-Liability Testing Using Induced Pluripotent Stem Cells. Front. Neurosci. 2018, 12, 590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tukker, A.M.; Westerink, R.H.S. Novel Test Strategies for in Vitro Seizure Liability Assessment. Expert Opin. Drug Metab. Toxicol. 2021, 17, 923–936. [Google Scholar] [CrossRef] [PubMed]
- Koroleva, A.; Deiwick, A.; El-Tamer, A.; Koch, L.; Shi, Y.; Estévez-Priego, E.; Ludl, A.-A.; Soriano, J.; Guseva, D.; Ponimaskin, E.; et al. In Vitro Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Appl. Mater. Interfaces 2021, 13, 7839–7853. [Google Scholar] [CrossRef] [PubMed]
Reference | Origin | Tissue | Stimulation Duration (min) | Field Strength (mV/mm) | Electrode Size (mm) | Current Strength (µA) | Slice Orientation | Readout | Results/Observations |
---|---|---|---|---|---|---|---|---|---|
Kronberg et al., 2017 [47] | Rat | Hippocampal slices | 0.75, 3, 15 and 30 | 20 | 1 d, 12 l | 100–200 | Parallel to somato-dendritic axis of CA1 pyramidal neurons | Recording of fEPSP before and after plasticity induction with low and high frequency suprathreshold electrical stimuli combined with DCS | Cathodal DCS enhances LTP in apical dendrites; anodal enhances LTP in basal dendrites; both reduce LTD in apical dendrites; no effect in weakly active synapses or during NMDA receptor block |
Rahman et al., 2017 [48] | Rat | Motor cortex slices | 0.05–0.08 | 10–20 | N/A | 10–150 | Orthodromic stimulation of LII/III | Recording of fEPSPs | Presynaptic inputs were delivered with constant or Poisson-distributed stimuli prior to single DCS stimuli; postsynaptic voltage response during DCS and ongoing presynaptic activity results in sustained and cumulative changes in fEPSP; regulated by synaptic efficacy, number of active inputs, and rate of presynaptic activity |
Chakraborty et al., 2018 [49] | Mouse | Coronal pre- frontal cortical slices | 1 | 5 | N/A | 58.3–34.8 | Parallel and orthogonal to dendrito-axonic axis of L-V pyramidal cells | Recording of membrane polarization per V/m of effective electric field | Suprathreshold stimulation (important for e.g., DBS) induces action potentials at terminals; subthreshold stimulation (important for DCS) modulates synaptic efficacy of axon terminal polarization; significant effect after parallel-, no effect after orthogonal orientated polarization |
Kronberg et al., 2020 [21] | Rat | Hippocampal slices | 0.06 | 20 | 1 d, 12 l | 100–200 | Parallel to somato-dendritic axis of CA1 pyramidal neurons | Recording of fEPSPs | Anodal DCS boosts LTP of Hebbian plasticity-dependent pathways during the induction of LTP with TBS |
Latchoumane et al., 2018 [50] | Mouse | ESC-derived neuron and glial cells | 15, (5 days) day 14 cathodal, day 15–19 anodal | N/A | N/A | 10 | / | qRT-PCR analysis after chronic DCS on ESC-derived neurons after L-Glutamate administration | Upregulation of NMDA receptor subunit NR2A, and RAB3A in mouse Hb9 ESC-derived neuronal and glial cells |
Ranieri et al., 2012 [51] | Rat | Hippocampal slices | 20 | N/A | 9 d | 200–250 | Parallel to soma-dendritic axis of CA1 pyramidal cells | Recording of fEPSPs; recordings of gene induction | Anodal DCS up-, while cathodal DCS downregulates LTP induced by TBS; induction of early genes c-fos and Zif268 following neuronal activation |
Chang, Lu, and Shyu, 2015 [20] | Mouse | Thalamocingulate slices | 15 | 4 | N/A | 400 | Parallel and perpendicular to direction of axodendritic fibers in the ACC | EPSCs in MEA and patch recordings | Cathodal DCS induces LTD via an NMDA-dependent mechanism |
Sun et al., 2016 [18] | Mouse, Human | Coronal slices | 10 or 25 | 8.18 or 10.18 | 1 d, 3 l | 300 or 400 | Parallel or orthogonal to the M1 fibers (L V to II/III projections) | Recording of fEPSPs, mGluR5-mTOR signaling as novel pathway in tDCS | Cathodal DCS induces LTD in both human and mouse cortex in vitro |
Sun et al., 2020 [52] | Mouse, Human | Cortical slices | 25 | 2.3 | 1 d, 3 l | 400 | Orthogonal to pia, parallel to vertical interlayer M1 projections; cathode proximal to cortical pia surface; anode beneath subcortical white matter | Recording of fEPSPs; immune-staining; KA-induced seizure model | DCS induced LTD-like plasticity in superficial cortical layers, and LTP-like plasticity in deep cortical layers; regional depression of cortical excitability is NMDA-dependent |
Reato, Bikson, and Parra, 2015 [53] | Rat | Hippocampal slices | 10 | −20 to + 20 | N/A | N/A | Parallel to CA3 pyramidal neurons | Changes in gamma power; MUA measurement | Induction of gamma oscillations by carbachol prior to DCS; altered gamma power and MUA after DCS; acute upregulation of MUA and power at positive fields; acute downregulation at negative fields |
Zhao et al., 2015 [54] | Mouse | NPCs | 90 | 115 | 1 d | 0.25 nA | / | Migration assay | DC electric fields enhance cellular mobility; cell migration to the cathode via a calcium-dependent mechanism |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Euskirchen, N.; Nitsche, M.A.; van Thriel, C. Direct Current Stimulation in Cell Culture Systems and Brain Slices—New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells 2021, 10, 3583. https://doi.org/10.3390/cells10123583
Euskirchen N, Nitsche MA, van Thriel C. Direct Current Stimulation in Cell Culture Systems and Brain Slices—New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells. 2021; 10(12):3583. https://doi.org/10.3390/cells10123583
Chicago/Turabian StyleEuskirchen, Nadine, Michael A. Nitsche, and Christoph van Thriel. 2021. "Direct Current Stimulation in Cell Culture Systems and Brain Slices—New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art" Cells 10, no. 12: 3583. https://doi.org/10.3390/cells10123583
APA StyleEuskirchen, N., Nitsche, M. A., & van Thriel, C. (2021). Direct Current Stimulation in Cell Culture Systems and Brain Slices—New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells, 10(12), 3583. https://doi.org/10.3390/cells10123583