Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans
Abstract
:1. Introduction
Diseases | Bypass Site | Host Artery Diameter (mm) | Optimal Graft | Graft Length (cm) | Graft Diameter (mm) | Anastomotic Configuration (Distal) | 1-Year Patency | 3-Year Patency | 10-Year Patency |
---|---|---|---|---|---|---|---|---|---|
Coronary-artery disease (CAD) | Coronary-artery bypass | P: 1.6–7.2 M: 1.0–6.7 D: 0.8–2.5 * [4] | Left internal mammary artery [3] | 14.3–19.5 [4] | 1.5–1.8 [4] | End-to-side | 95% [5] | 93% [5] | 85% [5] |
Peripheral arterial disease (PAD) | Infrainguinal bypass | Femoral: P: 10.2 D: 7.7 Popliteal: 6.9 Tibial: 3.8/4.2 # [14] | Great saphenous vein [15] | 72.4 ± 6.6 [16] | P: 5.2 ± 0.6 M: 3. 3 ± 0.5 D: 1.7 ± 0.3 [16] | End-to-side | 74.4% [9] | 53.7% [9] |
2. SD-TEVGs Evaluated in Humans
Author | Graft Type | Year | Graft | Number of Patients | Recellularization | Follow-Up Time | Primary Patency |
---|---|---|---|---|---|---|---|
CABG | |||||||
Silver [20] | Allogeneic | 1982 | Glutaraldehyde-fixed human umbilical vein grafts | 11 | None | 3 to 13 months | 46% |
Laub [21] | Allogeneic | 1992 | Cryopreserved allograft saphenous vein | 19 | None | 2 to 16 months | 41% |
Mitchell [22] | Xenogeneic | 1993 | Dialdehyde starch-treated bovine internal mammary artery | 18 | None | 3 to 23 months | 16% |
Reddy [23] | Xenogeneic | 2004 | No-React bovine internal mammary artery | 7 | None | 1 to 4.5 years | 57% |
Englberger [24] | Xenogeneic | 2008 | No-React bovine internal mammary artery | 17 | None | 3 to 11 months | 23% |
Laube [25] | Autologous cells on synthetic | 2000 | Autologous endothelial cell-seeded ePTFE graft | 14 | Autologous endothelial cell | 7.5 to 48 months | 91% |
Lamm [26] and Herrmann [27] | Autologous cells on allograft | 2001 and 2019 | Deendothelialized/cryopreserved allograft veins seeded by autologous endothelial cells | 12 | Autologous endothelial cell | 16 to 18 years | 80% (6 months); 50% (9 months); 0% (32 months) |
Bypass grafting below knee | |||||||
Lindsey [29] | Xenogeneic | 2017 | Crosslinked bovine carotid artery | 80 | None | 5 years | 52% to 75% |
Williams [30] | Autologous cells on synthetic | 2017 | Adipose-Derived Stromal Vascular Fraction Cell seeded ePTFE | 5 | Adipose-Derived Stromal Vascular Fraction Cell | 1 year | 60% |
AV shunt for hemodialysis access | |||||||
Kennealey [31] | Xenogeneic | 2011 | Crosslinked bovine carotid artery | 26 | None | 1 year | 61% |
Harlander-Locke [32] | Xenogeneic | 2014 | Crosslinked bovine carotid artery | 17 | None | 18 months | 73% |
Wystrychowski [33] | Allogeneic | 2014 | Allogeneic cell sheet-based TEVG, dehydrated | 3 | None | <11 months | 9.5 patient-month of use |
Lawson [34] | Allogeneic | 2016 | Allogeneic human acellular vessels | 60 | None | >1 year | 28% at 12 months |
L’Heureux [35] | Autologous | 2007 | Autologous cell sheet-based TEVG | 6 | Autologous fibroblast and endothelial cells | <13 months | 24 patient-months of use |
McAllister [36] | Autologous | 2009 | Autologous cell sheet-based TEVG | 10 | Autologous fibroblast and endothelial cells | >6 months | 68 patient-months of use |
Wystrychowski [37] | Autologous | 2011 | Autologous cell sheet-based TEVG, cold-preserved | 1 | Autologous endothelial cells | 8 weeks | 8 patient-weeks of use |
SD-TEVGs: Small-diameter tissue engineered vascular grafts; CABG: coronary-artery bypass grafting; AV shunt: arteriovenous shunt. There might be other similar studies not included here. |
3. SD-TEVG Studies in Large-Animal Models
3.1. Systematic Search
3.2. Tissue Engineering of Small-Diameter Vascular Grafts
Study Group | Model | Graft | Modification | Outcome | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D (mm) | L (cm) | Animal | Implantation site | Anastomosis | Antithro-mbotic therapy | Graft type | Material | Chemical Modification | Biological modification = Recellularization | Luminal cell type | Medial cell type | Mechanical modification = Precondition | Follow-up (day) | Patency | Graft Failure | |
Mahara 2015 [49] 7 days control | 2 | 25 | Pig | Femorale-femoral artery crossover bypass | Proximal: STE Distal: ETE | No | Xenogeneic | Acellular ostrich carotid artery | None | None | None | None | No | 7 | 0 | Thrombus |
Mahara 2015 [49] Peptide-modified | 2 | 25 | Pig | Femorale-femoral artery crossover bypass | Proximal: STE Distal: ETE | No | Xenogeneic | Acellular ostrich carotid artery | POG7G3REDV | None | None | None | No | 20 | 83% | Unstable suturing at proximal anastomotic site |
Fang 2019 [50] dHUA | 4 | 4 | Sheep | Carotid artery | ETS | No | Xenogeneic | Decellularized human umbilical artery | None | None | None | None | No | 28 | 0 | Thrombus |
Fang 2019 [50] dSCA | 4 | 4 | Sheep | Carotid artery | ETS | No | Allogeneic | Decellularized sheep carotid artery | None | None | None | None | No | 28 | 0 | Distal stenosis |
Fang [45] PCL w/o enoxaparin | 4 | 4 | Sheep | Carotid artery | ETS | No | Synthetic | PCL | None | None | None | None | No | 28 | 0 | Thrombus |
Dahl 2011 [51] Dog coronary, 1 month | 3 or 4 | 4–8.5 | Dog | Coronary or carotid artery | ETS * | Yes | Autologous cells on allograft | Decellularized graft from allogeneic canine cells grow on a PGA scaffold | None | Autologous | Vessel-EC | None | Yes | 7–365 | 83% | NR |
Fang [45] PCL w enoxaparin | 4 | 4 | Sheep | Carotid artery | ETS | Yes | Synthetic | PCL | None | None | None | None | No | 28 | 100% | No failure |
Nakayama 2018 [52] Arterial bypass | 4 | 25 | Dog | Carotid artery | ETS | Yes | Allogeneic | Ethanol fixed IBTA | None | None | None | None | No | 30 | 100% | No failure |
Soldani 2010 [53] ePTFE 6 months | 7 | 5 | Sheep | Carotid artery | ETS + carotid resection | Yes | Synthetic | ePTFE | None | None | None | None | No | 180 | 50% | Thrombus |
Soldani 2010 [53] PEtU 24 months | 7 | 5 | Sheep | Carotid artery | Proximal: ETE Distal: ETS | Yes | Synthetic | PU | None | None | None | None | No | 730 | 100% | No failure |
Study Group | Model | Graft | Modification | Outcome | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D (mm) | L (cm) | Animal | Implantation site | Anastomosis | Antithro-mbotic therapy | Graft type | Material | Chemical Modification | Biological modification = Recellularization | Luminal cell type | Medial cell type | Mechanical modification = Precondition | Follow-up (day) | Patency | Graft Failure | |
Aper 2016 [54] 1 month | 5.6 | 9 | Sheep | Carotid artery | ETE | No | Natural (xenogeneic fibrin) | Highly compacted human fibrin matrix | Factor XIII | Autologous | PB-EC | PB-SMC | No | 30 | 33% | Rupture |
Aper 2016 [54] 6 months | 5.6 | 9 | Sheep | Carotid artery | ETE | No | Natural (xenogeneic fibrin) | Highly compacted human fibrin matrix | Factor XIII | Autologous | PB-EC | PB-SMC | No | 180 | 100% | No failure |
Cho 2005 [55] Acellular control | 3 | 4 | Dog | Carotid artery | ETE | No | Allogeneic | Decellularized canine carotid arteries | None | None | None | None | No | 14 | 0 | Thrombus |
Cho 2005 [55] BMC | 3 | 4 | Dog | Carotid artery | ETE | No | Autologous cells on allograft | Decellularized canine carotid arteries | None | Autologous | BMMNC-EC | BMMNC-SMC | No | 56 | 33% | Thrombus |
Dahan 2017 [46] Acellular control | 4 | 4.5 | Pig | Carotid artery | ETE | Not mentioned | Allogeneic | Decellularized porcine carotid artery | None | None | None | None | No | 42 | 100% | Even patent but still very narrowed lumen according to the staining |
Dahan 2017 [46] scaECM | 4 | 4.5 | Pig | Carotid artery | ETE | Not mentioned | Autologous cells on allograft | Decellularized porcine carotid artery | None | Autologous | Vein-EC | Artery-SMC | Yes | 42 | 100% | No failure |
He 2002 [56] Type A, 1 month | 5 | 5 | Dog | Carotid artery | ETE | No | Autologous cells on synthetic and natural graft | Autologous SMCs-inoculated bovine collagen gel layer and an EC monolayer wrapped with PU-nylon mesh | None | Autologous | Vein-EC | Vein-SMC | No | 30 | 100% | No failure, but dilation/ delamination was seen |
He 2002 [56] Type B, 6 months | 5 | 5 | Dog | Carotid artery | ETE | No | Autologous cells on synthetic and natural graft | Autologous SMCs-inoculated bovine collagen gel layer and an EC monolayer wrapped with an excimer laser-directed microporous SPU film | None | Autologous | Vein-EC | Vein-SMC | No | 180 | 100% | No failure |
He 2003 [57] 1 month | 4.5 | 6 | Dog | Carotid artery | ETE | No | Autologous cells on synthetic and natural graft | Bovine collagen type I meshes wrapped with a SPU thin film | None | Autologous | PB-EPCs | None | No | 30 | 83% | Dilation and thrombus |
He 2003 [57] 3 months | 4.5 | 6 | Dog | Carotid artery | ETE | No | Autologous cells on synthetic and natural graft | Bovine collagen type I meshes wrapped with a SPU thin film | None | Autologous | PB-EPCs | None | No | 90 | 100% | No failure |
Narita 2008 [58] Acellular DU control | 3 | 4.5 | Dog | Carotid artery | ETE | No | Allogeneic | Decellularized ureters | None | None | None | None | No | 7 | 20% | NR |
Narita 2008 [58] Acellular DU control | 3 | 4.5 | Dog | Carotid artery | ETE | No | Allogeneic | Decellularized ureters | None | None | None | None | No | 56 | 20% | NR |
Narita 2008 [58] DU + EC + myfibroblasts | 3 | 4.5 | Dog | Carotid artery | ETE | No | Autologous cells on allograft | Decellularized ureters | None | Autologous | Vein-EC | Myofibroblasts | No | 168 | 100% | No failure |
Narita 2008 [58] PTFE control | 3 | 4.5 | Dog | Carotid arterial | ETE | No | Synthetic | PTFE | None | None | None | None | No | 7 | 0 | NR |
Scherner 2014 [59] BC tube | 3.5 | 10 | Sheep | Carotid artery | ETE | No | Microbiological derived | Bacterial cellulose | None | None | None | None | No | 84 | 50% | Thrombus formation next to the proximal anastomosis |
Weber 2017 [44] Non-anti-platelet control | 4.5 | 10 | Sheep | Carotid artery | ETE | No | Microbiological derived | Bacterial nanocellulose | None | None | None | None | No | 56 | 0 | NR |
Ye 2012 [60] PCL + heparin | 2 | 4 | Dog | Femoral artery | ETE | No | Synthetic | PCL | Heparin | None | None | None | No | 28 | 100% | No failure |
Zhao 2010 [61] 2 months | 3 | 4 | Sheep | Carotid artery | ETE | No | Autologous cells on allograft | Decellularized ovine carotid artery | None | Autologous | MSCs differentiated ECs-like cells | MSCs differentiated SMCs-like cells | No | 60 | 100% | No failure |
Zhao 2010 [61] 5 months | 3 | 4 | Sheep | Carotid artery | ETE | No | Autologous cells on allograft | Decellularized ovine carotid artery | None | Autologous | MSCs differentiated ECs-like cells | MSCs differentiated SMCs-like cells | No | 150 | 100% | No failure |
Zhao 2010 [61] Acellular control | 3 | 4 | Sheep | Carotid artery | ETE | No | Allogeneic | Decellularized ovine carotid artery | None | None | None | None | No | 14 | 0 | Thrombus |
Study Group | Model | Graft | Modification | Outcome | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D (mm) | L (cm) | Animal | Implantation site | Anastomosis | Antithro-mbotic therapy | Graft type | Material | Chemical Modification | Biological modification = Recellularization | Luminal cell type | Medial cell type | Mechanical modification = Precondition | Follow-up (day) | Patency | Graft Failure | |
Arts 2002 [62] Transduction 3 weeks | 4 | 5 | Dog | Carotid artery | ETE | Yes | Synthetic | ePTFE | None | Autologous | Fat-derived microvascular endothelial cells | None | No | 21 | 100% | No failure |
Arts 2002 [62] 1 month | 4 | 5 | Dog | Carotid artery | ETE | Yes | Synthetic | ePTFE | None | Autologous | Fat-derived microvascular endothelial cells | None | No | 30 | 83% | Thrombus |
Arts 2002 [62] 1 month control | 4 | 5 | Dog | Carotid artery | ETE | Yes | Synthetic | ePTFE | None | None | None | None | No | 30 | 83% | Thrombus |
Arts 2002 [62] 12 months | 4 | 5 | Dog | Carotid artery | ETE | Yes | Synthetic | ePTFE | None | Autologous | Fat-derived microvascular endothelial cells | None | No | 365 | 100% | No failure |
Arts 2002 [62] 12 months control | 4 | 5 | Dog | Carotid artery | ETE | Yes | Synthetic | ePTFE | None | None | None | None | No | 365 | 0 | Organised thrombus |
Chue 2004 [63] no mesh | 3.75 | 6 | Dog | Femoral artery | ETE | Yes | Autologous cells on autologous ECM | IBTA (from peritoneal and pleural cavities, based on Polyethylene or C-flex) | None | None | None | None | No | 90–195 | 83% | Organized thrombus |
Chue 2004 [63] PGA mesh | 3.75 | 6 | Dog | Femoral artery | ETE | Yes | Autologous cells on autologous ECM and synthetic graft | IBTA with biodegradable PGA mesh (from peritoneal and pleural cavities, based on Polyethylene) | None | None | None | None | No | 90–195 | 75% | Organized thrombus |
Chue 2004 [63] polypropylene mesh | 3.75 | 6 | Dog | Femoral artery | ETE | Yes | Autologous cells on autologous ECM and synthetic graft | IBTA with nonbiodegradable polypropylene mesh (from peritoneal and pleural cavities, based on Polyethylene) | None | None | None | None | No | 90–195 | 0 | Organized thrombus |
Ju 2017 [64] Acellular control | 4.75 | 5 | Sheep | Carotid artery | ETE | Yes | Synthetic and natural | Bilayered blending of PCL and calf type I collagen | None | None | None | None | No | 10 | 0 | Thrombus |
Ju 2017 [64] EC + SMC + flow | 4.75 | 5 | Sheep | Carotid artery | ETE | Yes | Autologous cell on synthetic and natural graft | Bilayered blending of PCL and calf type I collagen | None | Autologous | PB-EC | Artery-SMCs | Yes | 180 | 100% | No failure |
Kaushal 2001 [65] 130 days | 4 | 4.5 | Sheep | Carotid artery | ETE | Yes | Autologous cells on xenograft | Decellularized porcine iliac blood artery | None | Autologous | PB-EC | None | Yes | 130 | 100% | No failure |
Kaushal 2001 [65] Acellular control | 4 | 4.5 | Sheep | Carotid artery | ETE | Yes | Xenogeneic | Decellularized porcine iliac blood artery | None | None | None | None | No | 15 | 25% | Thrombus |
L’Heureux 1998 [66] w/o EC | 3 | 5 | Dog | Femoral artery | ETE (interpreted from figure) | Yes, immunosuppression | Xenogeneic | Dehydrated Human vascular SMC and fibroblasts cells sheet | None | None | None | None | No | 7 | 50% | Thrombus |
Ma 2017 [67] DAFP + EC | 4 (outer diameter) | 6 | Dog | Carotid artery | ETE | Yes | Autologous cells on xenograft | Decellularized aortae of fetal pigs | None | Autologous | Vein-EC | None | Yes | 180 | 100% | No failure |
Mrowczynski 2014 [68] ePTFE control | 4 | 5 | Pig | Carotid artery | ETE | Yes | Synthetic | ePTFE | None | None | None | None | No | 28 | 67% | NR |
Mrowczynski 2014 [68] PCL | 4 | 5 | Pig | Carotid artery | ETE | Yes | Synthetic | PCL | None | None | None | None | No | 28 | 78% | Thrombus from prosthetic kink |
Neff 2011 [69] dsTEBV (EC + SMC) | 5 | 6 | Sheep | Carotid artery or femoral artery | ETE | Yes | Autologous cells on xenograft | Decellularized porcine carotid arterial segments | None | Autologous | PB-EC | Artery-SMC | Yes | 120 | 100% | No failure |
Neff 2011 [69] ecTEBV (EC) | 5 | 6 | Sheep | Carotid artery or femoral artery | ETE | Yes | Autologous cells on xenograft | Decellularized porcine carotid arterial segments | None | Autologous | PB-EC | None | Yes | 120 | 100% | No failure |
Nemcova 2001 [70] Acellular xenograft | 4 | 5 | Dog | Femoral artery | ETE | Yes | Xenogeneic | Acellular porcine small intestinal submucosa | Type I bovine collagen | None | None | None | No | 63 | 89% | Wall thickening |
Rothuizen 2016 [71] Tissue capsule | 4.2 | 4 | Pig | Carotid artery | ETE | Yes | Autologous ECM and synthetic graft | IBTA (from subcutaneous, based on PEOT/PBT) | None | None | None | None | No | 28 | 88% | Peri-anastomotic intimal hyperplasia |
Turner 2006 [72] Collagen coating | 4.5 | 4.5 | Goat | Carotid artery | ETE | Yes | Allogeneic cells on synthetic graft | PU | Alpha-2(VIII) collagen | Allogeneic | Artery-ECs | None | No | 1 | 100% | No failure |
Turner 2006 [72] Fibronectin coating | 4.5 | 4.5 | Goat | Carotid artery | ETE | Yes | Allogeneic cells on synthetic graft | PU | Fibronectin | Allogeneic | Artery-ECs | None | No | 1 | 100% | No failure |
Turner 2006 [72] Uncoated control | 4.5 | 4.5 | Goat | Carotid artery | ETE | Yes | Allogeneic cells on synthetic graft | PU | None | Allogeneic | Artery-ECs | None | No | 1 | 0 | Occlusive red thrombus developed from distal white thrombus |
Wang 2019 [73] IBTA 2 months | 3.9 | 6 | Pig | Carotid artery | ETE | Yes | Autologous ECM | Decellularized IBTA (from subcutaneous, based on PTFE) | Heparin | None | None | None | No | 60 | 67% | Anastomotic stenosis resulting thrombus |
Weber 2017 [44] DAT, 9 months | 4.5 | 10 | Sheep | Carotid artery | ETE | Yes | Microbiological Derived | Bacterial nanocellulose | None | None | None | None | No | 270 | 67% | Thrombus formation next to the proximal anastomosis |
Weber 2017 [44] Smooth + DAT, 2 months | 4.5 | 10 | Sheep | Carotid artery | ETE | Yes | Microbiological derived | Bacterial nanocellulose | None | None | None | None | No | 60 | 80% | NR |
Wulff 2017 [74] SSHS-coated ePTFE | 3.5 | 20 | Sheep | Carotid artery | Interposition | Yes | Synthetic | ePTFE | Semisynthetic heparan sulphate-like on SEPS layer | None | None | None | No | 140 | 25% | Anastomotic neointimal hyperplasia originating from the genuine vessel + delamination SEPS delaminated from the ePTFE graft |
Wulff 2017 [74] Uncoated ePTFE control | 3.5 | 20 | Sheep | Carotid artery | Interposition | Yes | Synthetic | ePTFE | None | None | None | None | No | 140 | 13% | Anastomotic neointimal hyperplasia originating from the genuine vessel |
Zhou 2009 [75] DS control | 3 | 4.5 | Dog | Carotid artery | ETE | Yes | Allogeneic | Decellularized canine carotid arteries | None | None | None | None | No | 180 | 47% | Thrombus |
Zhou 2009 [75] VHDS graft | 3 | 4.5 | Dog | Carotid artery | ETE | Yes | Allogeneic | Decellularized canine carotid arteries | Heparin and VEGF | None | None | None | No | 180 | 93% | Thrombus |
Zhou 2012 [76] Acellular control (DV) | 3 | 4.5 | Dog | Carotid artery | ETE | Yes | Allogeneic | Decellularized canine carotid arteries | None | None | None | None | No | 90 | 60% | Thrombus |
Zhou 2012 [76] Heparin + EPC | 3 | 4.5 | Dog | Carotid artery | ETE | Yes | Autologous cells on allograft | Decellularized canine carotid arteries | Heparin | Autologous | PB-EC | None | Yes | 90 | 95% | Thrombus |
Zhou 2014 [77] Acellular control | 3 | 4.5 | Dog | Carotid arteries | ETE | Yes | Synthetic and natural graft | CS/PCL | None | None | None | None | No | 90 | 17% | Thrombus |
Zhou 2014 [77] CS/PCL + OEC | 3 | 4.5 | Dog | Carotid artery | ETE | Yes | Autologous cells on synthetic and natural graft | CS/PCL | None | Autologous | PB-EC | None | Yes | 90 | 83% | Thrombus |
Study Group | Model | Graft | Modification | Outcome | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D (mm) | L (cm) | Animal | Implantation site | Anastomosis | Antithro-mbotic therapy | Graft type | Material | Chemical Modification | Biological modification = Recellularization | Luminal cell type | Medial cell type | Mechanical modification =Precondition | Follow-up (day) | Patency | Graft Failure | |
Koenneker 2010 [78] 6 months control | 5 or 6 | 7.5 | Sheep | Cervical AV shunts | ETS | No | Xenogeneic | Decellularized bovine internal thoracic arteries | None | None | None | None | No | 180 | 71% | NR |
Koenneker 2010 [78] 6 months | 5 or 6 | 7.5 | Sheep | Cervical AV shunts | ETS | No | Autologous cells on xenograft | Decellularized bovine internal thoracic arteries | None | Autologous | PB-EC | None | Yes | 180 | 86% | NR |
Koenneker 2010 [78] 3 months control | 5 or 6 | 7.5 | Sheep | Cervical AV shunts | ETS | No | Xenogeneic | Decellularized bovine internal thoracic arteries | None | None | None | None | No | 90 | 83% | NR |
Koenneker 2010 [78] 3 months | 5 or 6 | 7.5 | Sheep | Cervical AV shunts | ETS | No | Autologous cells on xenograft | Decellularized bovine internal thoracic arteries | None | Autologous | PB-EC | None | Yes | 90 | 100% | No failure |
Syedain 2017 [79] BAVG in general | 4 | 12.5 | Baboon | Axillary-cephalic or axillarybrachial upper arm, AV shunt | ETS | Yes | Xenogeneic from two origins | Decellularized graft from human fibroblasts and bovine fibrin gel | None | None | None | None | Yes | 180 | 45% | Unexplained rapid, occlusive thrombosis in five cases and rupture in one case |
Dahl 2011 [51] Baboon, 6 months | 6 | 12.5 | Baboon | Axillary artery and the distal brachial vein | ETS (interpreted from figure) | Yes | Xenogeneic | Decellularized graft from human cells on a polymer scaffold | None | None | None | None | No | 180 | 100% | No failure |
Rotmans 2005 [80] 4 weeks control | 5 | 7 | Pig | Carotid artery and internal jugular vein | ETS | Yes | Synthetic | ePTFE | None | None | None | None | No | 28 | 67% | Recent thrombotic occlusion on top of extensive IH in the venous outflow tract |
Rotmans 2005 [80] 4 weeks | 5 | 7 | Pig | Carotid artery and internal jugular vein | ETS | Yes | Synthetic | ePTFE | Anti–human CD34 monoclonal antibodies | None | None | None | No | 28 | 67% | Recent thrombotic occlusion on top of extensive IH in the venous outflow tract |
Tillman 2012 [81] Late, 6 months | 5 | 6 | Sheep | Carotid artery to jugular vein | ETS | Yes | Autologous cells on xenograft | Decellularized porcine carotid artery | None | Autologous | PB-EC | None | Yes | 168 | 0 | Outflow stenosis from intimal hyperplasia at the venous anastomosis |
Tillman 2012 [81] Early, 2 months | 5 | 6 | Sheep | Carotid artery to jugular vein | ETS | Yes | Autologous cells on xenograft | Decellularized porcine carotid artery | None | Autologous | PB-EC | None | Yes | 60 | 71% | Thrombus due to kinking at the graft apex/Not identified |
Li 2005 [47] 4 weeks control | 5 | 6 | Sheep | Femoral artery and vein or the carotid artery and jugular vein | Not mentioned | Not mentioned | Synthetic | ePTFE | None | None | None | None | No | 28 | 100% | No failure |
Li 2005 [47] 4 weeks | 5 | 6 | Sheep | Femoral artery and vein or the carotid artery and jugular vein | Not mentioned | Not mentioned | Synthetic | ePTFE | P15 cell-binding peptide | None | None | None | No | 28 | 100% | No failure |
Ong 2017 [82] ePTFE control | 5 | 5 | Sheep | Carotid artery to external jugular vein | ETS | Yes | Synthetic | ePTFE | None | None | None | None | No | 28 | 100% | No failure |
Ong 2017 [82] Nanofiber TEVG | 5 | 5 | Sheep | Carotid artery to external jugular vein | ETS | Yes | Synthetic | PGA/PLCL | None | None | None | None | No | 28 | 67% | NR |
Furukoshi 2019 [83] Slit patterns with straight or spiral lines | 4 | 5 | Dog | Common carotid artery and the jugular vein | Proximal: STS Distal: ETE | Yes | Autologous cells on autologous ECM | IBTA (from subcutaneous, based on silicone/steel) | None | None | None | None | No | 28 | 100% | No failure |
Furukoshi 2019 [83] Slit patterns with straight or spiral lines | 4 | 5 | Dog | Common carotid artery and the jugular vein | STS | Yes | Autologous cells on autologous ECM | IBTA (from subcutaneous, based on silicone/steel) | None | None | None | None | No | 28 | 100% | No failure |
Furukoshi 2019 [83] Slit patterns with straight or spiral lines | 4 | 5 | Dog | Common carotid artery and the jugular vein | Proximal: STE Distal: ETS | Yes | Autologous cells on autologous ECM | IBTA (from subcutaneous, based on silicone/steel) | None | None | None | None | No | 28 | 100% | No failure |
Nakayama 2018 [52] AV shunt | 5 | 50 | Goat | Carotid artery and jugular vein | ETS | Yes | Allogeneic ECM | Ethanol fixed IBTA (from subcutaneous, based on nylon) | None | None | None | None | No | 30 | 100% | No failure |
AV shunt: arteriovenous shunt; ETS: end-to-side anastomosis; STS: side-to-side anastomosis; ETE: end-to-end anastomosis; STE: side-to-end anastomosis; ECM: extracellular matrix; ePTFE: expanded polytetrafluoroethylene; PGA/PLCL: polyglycolic acid/poly(L-lactide-co-ε-caprolactone); IBTA: in-body tissue architecture; P15 cell-binding peptide: large cell-binding peptide consisting of 15 amino acids, Gly-Thr-Pro-Gly-Pro-Gln-Gly-IIe-Ala-Gly-Gln-Arg-Gly-Val-Val, PB-EC: peripheral blood-endothelial cell; IH: intimal hyperplasia; and NR: not reported. |
Graft Type | Material | Fabrication | Reference |
---|---|---|---|
Synthetic | Dacron, ePTFE, PU, PCL, PLCL, PGA, PLA, PLLA, PLGA, PGS, PEUU | Electrospinning, molding, 3D Printing, laser degradation, hydrogel | [45,47,53,58,60,62,68,72,74,80,82] |
Natural | Collagen, elastin, fibrin, hyaluronic acid, silk fibroin, gelatin, chitosan | Electrospinning, molding, rolling, 3D Printing, laser degradation, hydrogel | [44,54,59] |
Cell-secreted ECM | Hydrogel, rolling, self-assembled cell sheets | [66,79] | |
Native ECM | Decellularization or crosslinking of native tubular organs (vessels, ureters and small intestinal submucosa) | [46,49,50,55,58,61,65,67,69,70,75,76,78,81] | |
Hybrid | Combination of above | Combination of above, e.g., in-body tissue architecture (IBTA)/ in vivo tissue engineering | [51,52,56,57,63,64,71,73,77,83] |
3.2.1. Synthetic SD-TEVGs
3.2.2. Natural SD-TEVGs
3.2.3. Natural Polymer-Based SD-TEVGs
3.2.4. Cell-Secreted ECM-Based SD-TEVGs
3.2.5. Native ECM-Based SD-TEVGs
3.2.6. Hybrid SD-TEVGs
3.2.7. In-Vitro-Developed Hybrid SD-TEVGs
3.2.8. IBTA-Based SD-TEVGs
3.3. Modification on SD-TEVGs
3.4. In Situ SD-TEVGs Recellularization
3.5. In Vivo SD-TEVG Graft Failure
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mendis, S.; Puska, P.; Norrving, B.; World Health Organization. Global Atlas on Cardiovascular Disease Prevention and Control; Mendis, S., Puska, P., Norrving, B., Eds.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Eurostat. Causes of Death Statistics. Available online: https://ec.europa.eu/eurostat/databrowser/view/hlth_cd_asdr2/default/table?lang=en (accessed on 19 January 2021).
- Carrel, T.; Winkler, B. Current Trends in Selection of Conduits for Coronary Artery Bypass Grafting. Gen. Thorac. Cardiovasc. Surg. 2017, 65, 549–556. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, B.; Reyes-Hernandez, C.G.; Quiroga-Garza, A.; Rodriguez-Rodriguez, V.E.; Esparza-Hernandez, C.N.; Elizondo-Omana, R.E.; Guzman-Lopez, S. Conduits Used in Coronary Artery Bypass Grafting: A Review of Morphological Studies. Ann. Thorac. Cardiovasc. Surg. 2017, 23, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Goldman, S.; Zadina, K.; Moritz, T.; Ovitt, T.; Sethi, G.; Copeland, J.G.; Thottapurathu, L.; Krasnicka, B.; Ellis, N.; Anderson, R.J.; et al. Long-Term Patency of Saphenous Vein and Left Internal Mammary Artery Grafts after Coronary Artery Bypass Surgery: Results from a Department of Veterans Affairs Cooperative Study. J. Am. Coll. Cardiol. 2004, 44, 2149–2156. [Google Scholar] [CrossRef] [PubMed]
- Tinica, G.; Chistol, R.O.; Enache, M.; Constantin, M.M.L.; Ciocoiu, M.; Furnica, C. Long-Term Graft Patency after Coronary Artery Bypass Grafting: Effects of Morphological and Pathophysiological Factors. Anatol. J. Cardiol. 2018, 20, 275–282. [Google Scholar] [CrossRef]
- Caliskan, E.; de Souza, D.R.; Boning, A.; Liakopoulos, O.J.; Choi, Y.H.; Pepper, J.; Gibson, C.M.; Perrault, L.P.; Wolf, R.K.; Kim, K.B.; et al. Saphenous Vein Grafts in Contemporary Coronary Artery Bypass Graft Surgery. Nat. Rev. Cardiol. 2019, 17, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Ambler, K.G.; Twine, C.P. Graft Type for Femoro-Popliteal Bypass Surgery. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvela, E.; Venermo, M.; Soderstrom, M.; Alback, A.; Lepantalo, M. Outcome of Infrainguinal Single-Segment Great Saphenous Vein Bypass for Critical Limb Ischemia Is Superior to Alternative Autologous Vein Bypass, Especially in Patients with High Operative Risk. Ann. Vasc. Surg. 2012, 26, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Handa, R.; Sharma, S. Vascular Graft Failure of Leg Arterial Bypasses—A Review. J. Hypertens. Cardiol. 2014, 1, 17–21. [Google Scholar] [CrossRef]
- Spinelli, F.; Benedetto, F.; Passari, G.; la Spada, M.; Carella, G.; Stilo, F.; de Caridi, G.; Lentini, S. Bypass Surgery for the Treatment of Upper Limb Chronic Ischaemia. Eur. J. Vasc. Endovasc. Surg. 2010, 39, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Chandra, P.; Atala, A. Engineering Blood Vessels and Vascularized Tissues: Technology Trends and Potential Clinical Applications. Clin. Sci. 2019, 133, 1115–1135. [Google Scholar] [CrossRef]
- Hoenig, R.M.; Campbell, G.R.; Rolfe, B.E.; Campbell, J.H. Tissue-Engineered Blood Vessels: Alternative to Autologous Grafts? Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1128–1134. [Google Scholar] [CrossRef]
- Lorbeer, R.; Grotz, A.; Dorr, M.; Volzke, H.; Lieb, W.; Kuhn, J.P.; Mensel, B. Reference Values of Vessel Diameters, Stenosis Prevalence, and Arterial Variations of the Lower Limb Arteries in a Male Population Sample Using Contrast-Enhanced Mr Angiography. PLoS ONE 2018, 13, e0197559. [Google Scholar] [CrossRef] [PubMed]
- Vartanian, S.M.; Conte, M.S. Surgical Intervention for Peripheral Arterial Disease. Circ. Res. 2015, 116, 614–628. [Google Scholar] [CrossRef] [PubMed]
- Unlu, Y.; Keles, P.; Keles, S.; Yesilyurt, H.; Kocak, H.; Diyarbakirli, S. An Evaluation of Histomorphometric Properties of Coronary Arteries, Saphenous Vein, and Various Arterial Conduits for Coronary Artery Bypass Grafting. Surg. Today 2003, 33, 725–730. [Google Scholar] [CrossRef]
- Sauvage, R.L.; Schloemer, R.; Wood, S.J.; Logan, G. Successful Interposition Synthetic Graft between Aorta and Right Coronary Artery. Angiographic Follow-up to Sixteen Months. J. Thorac. Cardiovasc. Surg. 1976, 72, 418–421. [Google Scholar] [CrossRef]
- Hallman, L.G.; Cooley, D.A.; McNamara, D.G.; Latson, J.R. Single Left Coronary Artery with Fistula to Right Ventricle: Reconstruction of Two-Coronary System with Dacron Graft. Circulation 1965, 32, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Desai, M.; Seifalian, A.M.; Hamilton, G. Role of Prosthetic Conduits in Coronary Artery Bypass Grafting. Eur. J. Cardiothorac. Surg. 2011, 40, 394–398. [Google Scholar] [CrossRef]
- Silver, M.G.; Katske, G.E.; Stutzman, F.L.; Wood, N.E. Umbilical Vein for Aortocoronary Bypass. Angiology 1982, 33, 450–453. [Google Scholar] [CrossRef]
- Laub, W.G.; Muralidharan, S.; Clancy, R.; Eldredge, W.J.; Chen, C.; Adkins, M.S.; Fernandez, J.; Anderson, W.A.; McGrath, L.B. Cryopreserved Allograft Veins as Alternative Coronary Artery Bypass Conduits: Early Phase Results. Ann. Thorac. Surg. 1992, 54, 826–831. [Google Scholar] [CrossRef]
- Mitchell, M.I.; Essop, A.R.; Scott, P.J.; Martin, P.G.; Gupta, N.K.; Saunders, N.R.; Nair, R.U.; Williams, G.J. Bovine Internal Mammary Artery as a Conduit for Coronary Revascularization: Long-Term Results. Ann. Thorac. Surg. 1993, 55, 120–122. [Google Scholar] [CrossRef]
- Reddy, L.S.; Pillai, J.; Mitchell, L.; Naik, S.; Dark, J.; Hasan, A.; Ledingham, S.; Clark, S.C. First Report of No-React Bovine Internal Mammary Artery Performance and Patency. Heart Surg. Forum 2004, 7, E446–E449. [Google Scholar] [CrossRef] [PubMed]
- Englberger, L.; Noti, J.; Immer, F.F.; Stalder, M.; Eckstein, F.S.; Carrel, T.P. The Shelhigh No-React Bovine Internal Mammary Artery: A Questionable Alternative Conduit in Coronary Bypass Surgery? Eur. J. Cardiothorac. Surg. 2008, 33, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laube, R.H.; Duwe, J.; Rutsch, W.; Konertz, W. Clinical Experience with Autologous Endothelial Cell-Seeded Polytetrafluoroethylene Coronary Artery Bypass Grafts. J. Thorac. Cardiovasc. Surg. 2000, 120, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamm, P.; Juchem, G.; Milz, S.; Schuffenhauer, M.; Reichart, B. Autologous Endothelialized Vein Allograft: A Solution in the Search for Small-Caliber Grafts in Coronary Artery Bypass Graft Operations. Circulation 2001, 104, I108–I114. [Google Scholar] [CrossRef]
- Herrmann, M.F.E.; Lamm, P.; Wellmann, P.; Milz, S.; Hagl, C.; Juchem, G. Autologous Endothelialized Vein Allografts in Coronary Artery Bypass Surgery—Long Term Results. Biomaterials 2019, 212, 87–97. [Google Scholar] [CrossRef]
- Almasri, J.; Adusumalli, J.; Asi, N.; Lakis, S.; Alsawas, M.; Prokop, L.J.; Bradbury, A.; Kolh, P.; Conte, M.S.; Murad, M.H. A Systematic Review and Meta-Analysis of Revascularization Outcomes of Infrainguinal Chronic Limb-Threatening Ischemia. J. Vasc. Surg. 2018, 68, 624–633. [Google Scholar] [CrossRef]
- Lindsey, P.; Echeverria, A.; Cheung, M.; Kfoury, E.; Bechara, C.F.; Lin, P.H. Lower Extremity Bypass Using Bovine Carotid Artery Graft (Artegraft): An Analysis of 124 Cases with Long-Term Results. World J. Surg. 2018, 42, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.K.; Morris, M.E.; Kosnik, P.E.; Lye, K.D.; Gentzkow, G.D.; Ross, C.B.; Dwevidi, A.J.; Kleinert, L.B. Point-of-Care Adipose-Derived Stromal Vascular Fraction Cell Isolation and Expanded Polytetrafluoroethylene Graft Sodding. Tissue Eng. Part C Methods 2017, 23, 497–504. [Google Scholar] [CrossRef]
- Kennealey, P.T.; Elias, N.; Hertl, M.; Ko, D.S.; Saidi, R.F.; Markmann, J.F.; Smoot, E.E.; Schoenfeld, D.A.; Kawai, T. A Prospective, Randomized Comparison of Bovine Carotid Artery and Expanded Polytetrafluoroethylene for Permanent Hemodialysis Vascular Access. J. Vasc. Surg. 2011, 53, 1640–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harlander-Locke, M.; Jimenez, J.C.; Lawrence, P.F.; Gelabert, H.A.; Derubertis, B.G.; Rigberg, D.A.; Farley, S.M. Bovine Carotid Artery (Artegraft) as a Hemodialysis Access Conduit in Patients Who Are Poor Candidates for Native Arteriovenous Fistulae. Vasc. Endovasc. Surg. 2014, 48, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Wystrychowski, W.; McAllister, T.N.; Zagalski, K.; Dusserre, N.; Cierpka, L.; L’Heureux, N. First Human Use of an Allogeneic Tissue-Engineered Vascular Graft for Hemodialysis Access. J. Vasc. Surg. 2014, 60, 1353–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, J.H.; Glickman, M.H.; Ilzecki, M.; Jakimowicz, T.; Jaroszynski, A.; Peden, E.K.; Pilgrim, A.J.; Prichard, H.L.; Guziewicz, M.; Przywara, S.; et al. Bioengineered Human Acellular Vessels for Dialysis Access in Patients with End-Stage Renal Disease: Two Phase 2 Single-Arm Trials. Lancet 2016, 387, 2026–2034. [Google Scholar] [CrossRef] [Green Version]
- L’Heureux, N.; McAllister, T.N.; de la Fuente, L.M. Tissue-Engineered Blood Vessel for Adult Arterial Revascularization. N. Engl. J. Med. 2007, 357, 1451–1453. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.N.; Maruszewski, M.; Garrido, S.A.; Wystrychowski, W.; Dusserre, N.; Marini, A.; Zagalski, K.; Fiorillo, A.; Avila, H.; Manglano, X.; et al. Effectiveness of Haemodialysis Access with an Autologous Tissue-Engineered Vascular Graft: A Multicentre Cohort Study. Lancet 2009, 373, 1440–1446. [Google Scholar] [CrossRef]
- Wystrychowski, W.; Cierpka, L.; Zagalski, K.; Garrido, S.; Dusserre, N.; Radochonski, S.; McAllister, T.N.; L’Heureux, N. Case Study: First Implantation of a Frozen, Devitalized Tissue-Engineered Vascular Graft for Urgent Hemodialysis Access. J. Vasc. Access 2011, 12, 67–70. [Google Scholar] [CrossRef]
- Goodman, S.L. Sheep, Pig, and Human Platelet-Material Interactions with Model Cardiovascular Biomaterials. J. Biomed. Mater. Res. 1999, 45, 240–250. [Google Scholar] [CrossRef]
- Pichler, L. Parameters of Coagulation and Fibrinolysis in Different Animal Species—A Literature Based Comparison. Wien Tierärtzl. Mschr. 2008, 95, 282. [Google Scholar]
- Gui, L.; Muto, A.; Chan, S.A.; Breuer, C.K.; Niklason, L.E. Development of Decellularized Human Umbilical Arteries as Small-Diameter Vascular Grafts. Tissue Eng. Part A 2009, 15, 2665–2676. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, Z.; Song, L.; Zhao, Q.; Zhang, J.; Li, D.; Wang, S.; Han, J.; Zheng, X.L.; Yang, Z.; et al. Endothelialization and Patency of Rgd-Functionalized Vascular Grafts in a Rabbit Carotid Artery Model. Biomaterials 2012, 33, 2880–2891. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.V.; Lekshmi, V.; Nair, P.D. Tissue Engineered Vascular Grafts—Preclinical Aspects. Int. J. Cardiol. 2013, 167, 1091–1100. [Google Scholar] [CrossRef]
- Fukunishi, T.; Best, C.A.; Sugiura, T.; Shoji, T.; Yi, T.; Udelsman, B.; Ohst, D.; Ong, C.S.; Zhang, H.; Shinoka, T.; et al. Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber Pcl/Chitosan Scaffolds in a Sheep Model. PLoS ONE 2016, 11, e0158555. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.; Reinhardt, S.; Eghbalzadeh, K.; Wacker, M.; Guschlbauer, M.; Maul, A.; Sterner-Kock, A.; Wahlers, T.; Wippermann, J.; Scherner, M. Patency and in Vivo Compatibility of Bacterial Nanocellulose Grafts as Small-Diameter Vascular Substitute. J. Vasc. Surg. 2018, 68, 177S–187S. [Google Scholar] [CrossRef]
- Fang, S.; Ahlmann, A.H.; Langhorn, L.; Hussein, K.; Sørensen, J.A.; Guan, X.W.; Sheikh, S.P.; Riber, L.P.; Andersen, D.C. Small Diameter Polycaprolactone Vascular Grafts Are Patent in Sheep Carotid Bypass but Require Anti-Thrombotic Therapy. Regen. Med. In Press.
- Dahan, N.; Sarig, U.; Bronshtein, T.; Baruch, L.; Karram, T.; Hoffman, A.; Machluf, M. Dynamic Autologous Reendothelialization of Small-Caliber Arterial Extracellular Matrix: A Preclinical Large Animal Study. Tissue Eng. Part A 2017, 23, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Hill, A.; Imran, M. In Vitro and in Vivo Studies of Eptfe Vascular Grafts Treated with P15 Peptide. J. Biomater. Sci. Polym. Ed. 2005, 16, 875–891. [Google Scholar] [CrossRef]
- Langer, R.; Vacanti, J.P. Tissue Engineering. Science 1993, 260, 920–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahara, A.; Somekawa, S.; Kobayashi, N.; Hirano, Y.; Kimura, Y.; Fujisato, T.; Yamaoka, T. Tissue-Engineered Acellular Small Diameter Long-Bypass Grafts with Neointima-Inducing Activity. Biomaterials 2015, 58, 54–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, S.; Riber, S.S.; Hussein, K.; Ahlmann, A.H.; Harvald, E.B.; Khan, F.; Beck, H.C.; Weile, L.K.K.; Sorensen, J.A.; Sheikh, S.P.; et al. Decellularized Human Umbilical Artery: Biocompatibility and in Vivo Functionality in Sheep Carotid Bypass Model. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110955. [Google Scholar] [CrossRef] [PubMed]
- Dahl, S.L.; Kypson, A.P.; Lawson, J.H.; Blum, J.L.; Strader, J.T.; Li, Y.; Manson, R.J.; Tente, W.E.; DiBernardo, L.; Hensley, M.T.; et al. Readily Available Tissue-Engineered Vascular Grafts. Sci. Transl. Med. 2011, 3, 68ra9. [Google Scholar] [CrossRef]
- Nakayama, Y.; Furukoshi, M.; Terazawa, T.; Iwai, R. Development of Long in Vivo Tissue-Engineered Biotube Vascular Grafts. Biomaterials 2018, 185, 232–239. [Google Scholar] [CrossRef]
- Soldani, G.; Losi, P.; Bernabei, M.; Burchielli, S.; Chiappino, D.; Kull, S.; Briganti, E.; Spiller, D. Long Term Performance of Small-Diameter Vascular Grafts Made of a Poly(Ether)Urethane-Polydimethylsiloxane Semi-Interpenetrating Polymeric Network. Biomaterials 2010, 31, 2592–2605. [Google Scholar] [CrossRef]
- Aper, T.; Wilhelmi, M.; Gebhardt, C.; Hoeffler, K.; Benecke, N.; Hilfiker, A.; Haverich, A. Novel Method for the Generation of Tissue-Engineered Vascular Grafts Based on a Highly Compacted Fibrin Matrix. Acta Biomater. 2016, 29, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.W.; Lim, S.H.; Kim, I.K.; Hong, Y.S.; Kim, S.S.; Yoo, K.J.; Park, H.Y.; Jang, Y.; Chang, B.C.; Choi, C.Y.; et al. Kim, B.S. Small-Diameter Blood Vessels Engineered with Bone Marrow-Derived Cells. Ann. Surg. 2005, 241, 506–515. [Google Scholar] [CrossRef]
- He, H.; Matsuda, T. Arterial Replacement with Compliant Hierarchic Hybrid Vascular Graft: Biomechanical Adaptation and Failure. Tissue Eng. 2002, 8, 213–224. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Shirota, T.; Yasui, H.; Matsuda, T. Canine Endothelial Progenitor Cell-Lined Hybrid Vascular Graft with Nonthrombogenic Potential. J. Thorac. Cardiovasc. Surg. 2003, 126, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Narita, Y.; Kagami, H.; Matsunuma, H.; Murase, Y.; Ueda, M.; Ueda, Y. Decellularized Ureter for Tissue-Engineered Small-Caliber Vascular Graft. J. Artif. Organs 2008, 11, 91–99. [Google Scholar] [CrossRef]
- Scherner, M.; Reutter, S.; Klemm, D.; Sterner-Kock, A.; Guschlbauer, M.; Richter, T.; Langebartels, G.; Madershahian, N.; Wahlers, T.; Wippermann, J. In Vivo Application of Tissue-Engineered Blood Vessels of Bacterial Cellulose as Small Arterial Substitutes: Proof of Concept? J. Surg. Res. 2014, 189, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Wu, X.; Duan, H.Y.; Geng, X.; Chen, B.; Gu, Y.Q.; Zhang, A.Y.; Zhang, J.; Feng, Z.G. The in Vitro and in Vivo Biocompatibility Evaluation of Heparin-Poly(Epsilon-Caprolactone) Conjugate for Vascular Tissue Engineering Scaffolds. J. Biomed. Mater. Res. A 2012, 100, 3251–3258. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, S.; Zhou, J.; Wang, J.; Zhen, M.; Liu, Y.; Chen, J.; Qi, Z. The Development of a Tissue-Engineered Artery Using Decellularized Scaffold and Autologous Ovine Mesenchymal Stem Cells. Biomaterials 2010, 31, 296–307. [Google Scholar] [CrossRef]
- Arts, C.H.; Hedeman Joosten, P.P.; Blankensteijn, J.D.; Staal, F.J.; Ng, P.Y.; Heijnen-Snyder, G.J.; Sixma, J.J.; Verhagen, H.J.; de Groot, P.G.; Eikelboom, B.C. Contaminants from the Transplant Contribute to Intimal Hyperplasia Associated with Microvascular Endothelial Cell Seeding. Eur. J. Vasc. Endovasc. Surg. 2002, 23, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Chue, W.L.; Campbell, G.R.; Caplice, N.; Muhammed, A.; Berry, C.L.; Thomas, A.C.; Bennett, M.B.; Campbell, J.H. Dog Peritoneal and Pleural Cavities as Bioreactors to Grow Autologous Vascular Grafts. J. Vasc. Surg. 2004, 39, 859–867. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.M.; Ahn, H.; Arenas-Herrera, J.; Kim, C.; Abolbashari, M.; Atala, A.; Yoo, J.J.; Lee, S.J. Electrospun Vascular Scaffold for Cellularized Small Diameter Blood Vessels: A Preclinical Large Animal Study. Acta Biomater. 2017, 59, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.; Amiel, G.E.; Guleserian, K.J.; Shapira, O.M.; Perry, T.; Sutherland, F.W.; Rabkin, E.; Moran, A.M.; Schoen, F.J.; Atala, A.; et al. Functional Small-Diameter Neovessels Created Using Endothelial Progenitor Cells Expanded Ex Vivo. Nat. Med. 2001, 7, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- L’Heureux, N.; Paquet, S.; Labbe, R.; Germain, L.; Auger, F.A. A Completely Biological Tissue-Engineered Human Blood Vessel. FASEB J. 1998, 12, 47–56. [Google Scholar]
- Ma, X.; He, Z.; Li, L.; Liu, G.; Li, Q.; Yang, D.; Zhang, Y.; Li, N. Development and in Vivo Validation of Tissue-Engineered, Small-Diameter Vascular Grafts from Decellularized Aortae of Fetal Pigs and Canine Vascular Endothelial Cells. J. Cardiothorac. Surg. 2017, 12, 101. [Google Scholar] [CrossRef] [Green Version]
- Mrowczynski, W.; Mugnai, D.; de Valence, S.; Tille, J.C.; Khabiri, E.; Cikirikcioglu, M.; Moller, M.; Walpoth, B.H. Porcine Carotid Artery Replacement with Biodegradable Electrospun Poly-E-Caprolactone Vascular Prosthesis. J. Vasc. Surg. 2014, 59, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Neff, L.P.; Tillman, B.W.; Yazdani, S.K.; Machingal, M.A.; Yoo, J.J.; Soker, S.; Bernish, B.W.; Geary, R.L.; Christ, G.J. Vascular Smooth Muscle Enhances Functionality of Tissue-Engineered Blood Vessels in Vivo. J. Vasc. Surg. 2011, 53, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Nemcova, S.; Noel, A.A.; Jost, C.J.; Gloviczki, P.; Miller, V.M.; Brockbank, K.G. Evaluation of a Xenogeneic Acellular Collagen Matrix as a Small-Diameter Vascular Graft in Dogs--Preliminary Observations. J. Investig. Surg. 2001, 14, 321–330. [Google Scholar] [CrossRef]
- Rothuizen, T.C.; Damanik, F.F.R.; Lavrijsen, T.; Visser, M.J.T.; Hamming, J.F.; Lalai, R.A.; Duijs, J.; van Zonneveld, A.J.; Hoefer, I.E.; van Blitterswijk, C.A.; et al. Development and Evaluation of in Vivo Tissue Engineered Blood Vessels in a Porcine Model. Biomaterials 2016, 75, 82–90. [Google Scholar] [CrossRef]
- Turner, N.J.; Murphy, M.O.; Kielty, C.M.; Shuttleworth, C.A.; Black, R.A.; Humphries, M.J.; Walker, M.G.; Canfield, A.E. Alpha2(Viii) Collagen Substrata Enhance Endothelial Cell Retention under Acute Shear Stress Flow Via an Alpha2beta1 Integrin-Dependent Mechanism: An in Vitro and in Vivo Study. Circulation 2006, 114, 820–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Dong, N.; Yan, H.; Wong, S.Y.; Zhao, W.; Xu, K.; Wang, D.; Li, S.; Qiu, X. Regeneration of a Neoartery through a Completely Autologous Acellular Conduit in a Minipig Model: A Pilot Study. J. Transl. Med. 2019, 17, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wulff, B.; Stahlhoff, S.; Vonthein, R.; Schmidt, A.; Sigler, M.; Torsello, G.B.; Herten, M. Biomimetic Heparan Sulfate-Like Coated Eptfe Grafts Reduce in-Graft Neointimal Hyperplasia in Ovine Carotids. Ann. Vasc. Surg. 2017, 40, 274–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Liu, Z.; Wei, Z.; Liu, C.; Qiao, T.; Ran, F.; Bai, Y.; Jiang, X.; Ding, Y. Development and Validation of Small-Diameter Vascular Tissue from a Decellularized Scaffold Coated with Heparin and Vascular Endothelial Growth Factor. Artif. Organs 2009, 33, 230–239. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, Z.; Liu, C.; Jiang, X.; Wei, Z.; Qiao, W.; Ran, F.; Wang, W.; Qiao, T.; Liu, C. Tissue Engineering of Small-Diameter Vascular Grafts by Endothelial Progenitor Cells Seeding Heparin-Coated Decellularized Scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 111–120. [Google Scholar] [CrossRef]
- Zhou, M.; Qiao, W.; Liu, Z.; Shang, T.; Qiao, T.; Mao, C.; Liu, C. Development and in Vivo Evaluation of Small-Diameter Vascular Grafts Engineered by Outgrowth Endothelial Cells and Electrospun Chitosan/Poly(Epsilon-Caprolactone) Nanofibrous Scaffolds. Tissue Eng. Part A 2014, 20, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Koenneker, S.; Teebken, O.E.; Bonehie, M.; Pflaum, M.; Jockenhoevel, S.; Haverich, A.; Wilhelmi, M.H. A Biological Alternative to Alloplastic Grafts in Dialysis Therapy: Evaluation of an Autologised Bioartificial Haemodialysis Shunt Vessel in a Sheep Model. Eur. J. Vasc. Endovasc. Surg. 2010, 40, 810–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syedain, Z.H.; Graham, M.L.; Dunn, T.B.; O’Brien, T.; Johnson, S.L.; Schumacher, R.J.; Tranquillo, R.T. A Completely Biological Off-the-Shelf Arteriovenous Graft That Recellularizes in Baboons. Sci. Transl. Med. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Rotmans, J.I.; Heyligers, J.M.; Verhagen, H.J.; Velema, E.; Nagtegaal, M.M.; de Kleijn, D.P.; de Groot, F.G.; Stroes, E.S.; Pasterkamp, G. In Vivo Cell Seeding with Anti-Cd34 Antibodies Successfully Accelerates Endothelialization but Stimulates Intimal Hyperplasia in Porcine Arteriovenous Expanded Polytetrafluoroethylene Grafts. Circulation 2005, 112, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Tillman, B.W.; Yazdani, S.K.; Neff, L.P.; Corriere, M.A.; Christ, G.J.; Soker, S.; Atala, A.; Geary, R.L.; Yoo, J.J. Bioengineered Vascular Access Maintains Structural Integrity in Response to Arteriovenous Flow and Repeated Needle Puncture. J. Vasc. Surg. 2012, 56, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Ong, C.S.; Fukunishi, T.; Liu, R.H.; Nelson, K.; Zhang, H.; Wieczorek, E.; Palmieri, M.; Ueyama, Y.; Ferris, E.; Geist, G.E.; et al. Bilateral Arteriovenous Shunts as a Method for Evaluating Tissue-Engineered Vascular Grafts in Large Animal Models. Tissue Eng. Part C Methods 2017, 23, 728–735. [Google Scholar] [CrossRef]
- Furukoshi, M.; Tatsumi, E.; Nakayama, Y. Application of in-Body Tissue Architecture-Induced Biotube Vascular Grafts for Vascular Access: Proof of Concept in a Beagle Dog Model. J. Vasc. Access 2019, 21, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Seifalian, A.M.; Salacinski, H.J.; Tiwari, A.; Edwards, A.; Bowald, S.; Hamilton, G. In Vivo Biostability of a Poly(Carbonate-Urea)Urethane Graft. Biomaterials 2003, 24, 2549–2557. [Google Scholar] [CrossRef]
- Zeugolis, D.I.; Khew, S.T.; Yew, E.S.; Ekaputra, A.K.; Tong, Y.W.; Yung, L.Y.; Hutmacher, D.W.; Sheppard, C.; Raghunath, M. Electro-Spinning of Pure Collagen Nano-Fibres—Just an Expensive Way to Make Gelatin? Biomaterials 2008, 29, 2293–2305. [Google Scholar] [CrossRef]
- Nottelet, B.; Pektok, E.; Mandracchia, D.; Tille, J.C.; Walpoth, B.; Gurny, R.; Moller, M. Factorial Design Optimization and in Vivo Feasibility of Poly(Epsilon-Caprolactone)-Micro- and Nanofiber-Based Small Diameter Vascular Grafts. J. Biomed. Mater. Res. A 2009, 89, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.; Carson, R.J.; Bowald, S.; Quist, W.C. Development of a Microporous Compliant Small Bore Vascular Graft. J. Biomater. Appl. 1995, 10, 171–187. [Google Scholar] [CrossRef] [PubMed]
- Hiob, M.A.; She, S.; Muiznieks, L.D.; Weiss, A.S. Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomater. Sci. Eng. 2017, 3, 712–723. [Google Scholar] [CrossRef]
- Sarkar, S.; Sales, K.M.; Hamilton, G.; Seifalian, A.M. Addressing Thrombogenicity in Vascular Graft Construction. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82, 100–108. [Google Scholar] [CrossRef]
- Hsu, S.H.; Tseng, H.J.; Wu, M.S. Comparative in Vitro Evaluation of Two Different Preparations of Small Diameter Polyurethane Vascular Grafts. Artif. Organs 2000, 24, 119–128. [Google Scholar] [CrossRef]
- Tiwari, A.; Salacinski, H.; Seifalian, A.M.; Hamilton, G. New Prostheses for Use in Bypass Grafts with Special Emphasis on Polyurethanes. Cardiovasc. Surg. 2002, 10, 191–197. [Google Scholar] [CrossRef]
- Faturechi, R.; Hashemi, A.; Abolfathi, N.; Solouk, A.; Seifalian, A. Fabrications of Small Diameter Compliance Bypass Conduit Using Electrospinning of Clinical Grade Polyurethane. Vascular 2019, 27, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Beck, L.R.; Pope, V.Z.; Flowers, C.E., Jr.; Cowsar, D.R.; Tice, T.R.; Lewis, D.H.; Dunn, R.L.; Moore, A.B.; Gilley, R.M. Poly(Dl-Lactide-Co-Glycolide)/Norethisterone Microcapsules: An Injectable Biodegradable Contraceptive. Biol. Reprod. 1983, 28, 186–195. [Google Scholar] [CrossRef]
- Bettinger, C.J.; Orrick, B.; Misra, A.; Langer, R.; Borenstein, J.T. Microfabrication of Poly (Glycerol-Sebacate) for Contact Guidance Applications. Biomaterials 2006, 27, 2558–2565. [Google Scholar] [CrossRef]
- Cutright, D.E.; Perez, B.; Beasley, J.D., 3rd; Larson, W.J.; Posey, W.R. Degradation Rates of Polymers and Copolymers of Polylactic and Polyglycolic Acids. Oral Surg. Oral Med. Oral Pathol. 1974, 37, 142–152. [Google Scholar] [CrossRef]
- Marchant, R.E.; Zhao, Q.; Anderson, J.M.; Hiltner, A. Degradation of a Poly(Ether Urethane Urea) Elastomer—Infrared and Xps Studies. Polymer 1987, 28, 2032–2039. [Google Scholar] [CrossRef]
- von Recum, H.A.; Cleek, R.L.; Eskin, S.G.; Mikos, A.G. Degradation of Polydispersed Poly(L-Lactic Acid) to Modulate Lactic Acid Release. Biomaterials 1995, 16, 441–447. [Google Scholar] [CrossRef]
- Tainio, J.; Paakinaho, K.; Ahola, N.; Hannula, M.; Hyttinen, J.; Kellomaki, M.; Massera, J. In Vitro Degradation of Borosilicate Bioactive Glass and Poly(L-Lactide-Co-Epsilon-Caprolactone) Composite Scaffolds. Materials 2017, 10, 1274. [Google Scholar] [CrossRef] [Green Version]
- Awad, N.K.; Niu, H.; Ali, U.; Morsi, Y.S.; Lin, T. Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review. Membranes 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Shin’oka, T.; Imai, Y.; Ikada, Y. Transplantation of a Tissue-Engineered Pulmonary Artery. N. Engl. J. Med. 2001, 344, 532–533. [Google Scholar] [CrossRef]
- Hibino, N.; McGillicuddy, E.; Matsumura, G.; Ichihara, Y.; Naito, Y.; Breuer, C.; Shinoka, T. Late-Term Results of Tissue-Engineered Vascular Grafts in Humans. J. Thorac. Cardiovasc. Surg. 2010, 139, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Shin’oka, T.; Matsumura, G.; Hibino, N.; Naito, Y.; Watanabe, M.; Konuma, T.; Sakamoto, T.; Nagatsu, M.; Kurosawa, H. Midterm Clinical Result of Tissue-Engineered Vascular Autografts Seeded with Autologous Bone Marrow Cells. J. Thorac. Cardiovasc. Surg. 2005, 129, 1330–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bockeria, L.A.; Svanidze, O.; Kim, A.; Shatalov, K.; Makarenko, V.; Cox, M.; Carrel, T. Total Cavopulmonary Connection with a New Bioabsorbable Vascular Graft: First Clinical Experience. J. Thorac. Cardiovasc. Surg. 2017, 153, 1542–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guhathakurta, S.; Galla, S.; Ramesh, B.; Venugopal, J.R.; Ramakrishna, S.; Cherian, K.M. Nanofiber-Reinforced Biological Conduit in Cardiac Surgery: Preliminary Report. Asian Cardiovasc. Thorac. Ann. 2011, 19, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Burkel, W.E. The Challenge of Small Diameter Vascular Grafts. Med Prog Technol 1988, 14, 165–175. [Google Scholar] [PubMed]
- Spanos, H.G. Aspirin Fails to Inhibit Platelet Aggregation in Sheep. Thromb. Res. 1993, 72, 175–182. [Google Scholar] [CrossRef]
- Connell, J.M.; Khalapyan, T.; Al-Mondhiry, H.A.; Wilson, R.P.; Rosenberg, G.; Weiss, W.J. Anticoagulation of Juvenile Sheep and Goats with Heparin, Warfarin, and Clopidogrel. Asaio J. 2007, 53, 29–37. [Google Scholar] [CrossRef]
- Pfeiffer, D.; Stefanitsch, C.; Wankhammer, K.; Muller, M.; Dreyer, L.; Krolitzki, B.; Zernetsch, H.; Glasmacher, B.; Lindner, C.; Lass, A.; et al. Endothelialization of Electrospun Polycaprolactone (Pcl) Small Caliber Vascular Grafts Spun from Different Polymer Blends. J. Biomed. Mater. Res. A 2014, 102, 4500–4509. [Google Scholar] [CrossRef]
- Woodruff, M.A.; Hutmacher, D.W. The Return of a Forgotten Polymer—Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.S.; Khosravi, R.; Breuer, C.K.; Humphrey, J.D. A Hypothesis-Driven Parametric Study of Effects of Polymeric Scaffold Properties on Tissue Engineered Neovessel Formation. Acta Biomater. 2015, 11, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Malafaya, P.B.; Silva, G.A.; Reis, R.L. Natural-Origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications. Adv. Drug Deliv. Rev. 2007, 59, 207–233. [Google Scholar] [CrossRef] [Green Version]
- Nocera, A.D.; Comin, R.; Salvatierra, N.A.; Cid, M.P. Development of 3d Printed Fibrillar Collagen Scaffold for Tissue Engineering. Biomed. Microdevices 2018, 20, 26. [Google Scholar] [CrossRef]
- Ramaswamy, A.K.; Vorp, D.A.; Weinbaum, J.S. Functional Vascular Tissue Engineering Inspired by Matricellular Proteins. Front Cardiovasc. Med. 2019, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Mithieux, S.M.; Weiss, A.S. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv. Healthc. Mater. 2019, 8, e1900742. [Google Scholar] [CrossRef] [PubMed]
- Badylak, S.F. Decellularized Allogeneic and Xenogeneic Tissue as a Bioscaffold for Regenerative Medicine: Factors That Influence the Host Response. Ann. Biomed. Eng. 2014, 42, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Gilpin, A.; Yang, Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed. Res. Int. 2017, 2017, 9831534. [Google Scholar] [CrossRef] [Green Version]
- Raya-Rivera, A.M.; Esquiliano, D.; Fierro-Pastrana, R.; Lopez-Bayghen, E.; Valencia, P.; Ordorica-Flores, R.; Soker, S.; Yoo, J.J.; Atala, A. Tissue-Engineered Autologous Vaginal Organs in Patients: A Pilot Cohort Study. Lancet 2014, 384, 329–336. [Google Scholar] [CrossRef]
- Cebotari, S.; Lichtenberg, A.; Tudorache, I.; Hilfiker, A.; Mertsching, H.; Leyh, R.; Breymann, T.; Kallenbach, K.; Maniuc, L.; Batrinac, A.; et al. Clinical Application of Tissue Engineered Human Heart Valves Using Autologous Progenitor Cells. Circulation 2006, 114, I132–I137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dohmen, P.M.; Lembcke, A.; Holinski, S.; Pruss, A.; Konertz, W. Ten Years of Clinical Results with a Tissue-Engineered Pulmonary Valve. Ann. Thorac. Surg. 2011, 92, 1308–1314. [Google Scholar] [CrossRef]
- Kneib, C.; von Glehn, C.Q.; Costa, F.D.; Costa, M.T.; Susin, M.F. Evaluation of Humoral Immune Response to Donor Hla after Implantation of Cellularized Versus Decellularized Human Heart Valve Allografts. Tissue Antigens 2012, 80, 165–174. [Google Scholar] [CrossRef]
- Kirkton, R.D.; Santiago-Maysonet, M.; Lawson, J.H.; Tente, W.E.; Dahl, S.L.M.; Niklason, L.E.; Prichard, H.L. Bioengineered Human Acellular Vessels Recellularize and Evolve into Living Blood Vessels after Human Implantation. Sci. Transl. Med. 2019, 11. [Google Scholar] [CrossRef]
- Skovrind, I.; Harvald, E.B.; Belling, H.J.; Jorgensen, C.D.; Lindholt, J.S.; Andersen, D.C. Concise Review: Patency of Small-Diameter Tissue-Engineered Vascular Grafts: A Meta-Analysis of Preclinical Trials. Stem. Cells Transl. Med. 2019, 8, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Nagiah, N.; Johnson, R.; Anderson, R.; Elliott, W.; Tan, W. Highly Compliant Vascular Grafts with Gelatin-Sheathed Coaxially Structured Nanofibers. Langmuir 2015, 31, 12993–13002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.H.; Efendy, J.L.; Campbell, G.R. Novel Vascular Graft Grown within Recipient’s Own Peritoneal Cavity. Circ. Res. 1999, 85, 1173–1178. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, H.J.; Heijnen-Snyder, G.J.; Pronk, A.; Vroom, T.M.; van Vroonhoven, T.J.; Eikelboom, B.C.; Sixma, J.J.; de Groot, P.G. Thrombomodulin Activity on Mesothelial Cells: Perspectives for Mesothelial Cells as an Alternative for Endothelial Cells for Cell Seeding on Vascular Grafts. Br. J. Haematol. 1996, 95, 542–549. [Google Scholar] [CrossRef]
- Geelhoed, W.J.; Moroni, L.; Rotmans, J.I. Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo. J. Cardiovasc. Transl. Res. 2017, 10, 167–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furukoshi, M.; Moriwaki, T.; Nakayama, Y. Development of an in Vivo Tissue-Engineered Vascular Graft with Designed Wall Thickness (Biotube Type C) Based on a Novel Caged Mold. J. Artif. Organs 2016, 19, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Li, W.; Dong, X.; Yuan, X.; Midgley, A.C.; Chang, H.; Wang, Y.; Wang, H.; Wang, K.; Ma, P.X.; et al. In Vivo Engineered Extracellular Matrix Scaffolds with Instructive Niches for Oriented Tissue Regeneration. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Furie, B.; Furie, B.C. Mechanisms of Thrombus Formation. N. Engl. J. Med. 2008, 359, 938–949. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, D.Y.; Lu, S.T.; Li, P.W.; Li, S.D. Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Mar. Drugs 2018, 16, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adipurnama, I.; Yang, M.C.; Ciach, T.; Butruk-Raszeja, B. Surface Modification and Endothelialization of Polyurethane for Vascular Tissue Engineering Applications: A Review. Biomater. Sci. 2016, 5, 22–37. [Google Scholar] [CrossRef]
- Tatterton, M.; Wilshaw, S.P.; Ingham, E.; Homer-Vanniasinkam, S. The Use of Antithrombotic Therapies in Reducing Synthetic Small-Diameter Vascular Graft Thrombosis. Vasc. Endovasc. Surg. 2012, 46, 212–222. [Google Scholar] [CrossRef]
- Sanchez, P.F.; Brey, E.M.; Briceno, J.C. Endothelialization Mechanisms in Vascular Grafts. J. Tissue Eng. Regen. Med. 2018, 12, 2164–2178. [Google Scholar] [CrossRef]
- Wadey, K.; Lopes, J.; Bendeck, M.; George, S. Role of Smooth Muscle Cells in Coronary Artery Bypass Grafting Failure. Cardiovasc. Res. 2018, 114, 601–610. [Google Scholar] [CrossRef]
- Liu, J.; Qin, Y.; Wu, Y.; Sun, Z.; Li, B.; Jing, H.; Zhang, C.; Li, C.; Leng, X.; Wang, Z.; et al. The Surrounding Tissue Contributes to Smooth Muscle Cells’ Regeneration and Vascularization of Small Diameter Vascular Grafts. Biomater. Sci. 2019, 7, 914–925. [Google Scholar] [CrossRef]
- Gomes, D.; Louedec, L.; Plissonnier, D.; Dauge, M.C.; Henin, D.; Osborne-Pellegrin, M.; Michel, J.B. Endoluminal Smooth Muscle Cell Seeding Limits Intimal Hyperplasia. J. Vasc. Surg. 2001, 34, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.L.; Hunter, S.A.; Chokalingam, K.; Cordray, M.J.; Shearn, J.; Juncosa-Melvin, N.; Nirmalanandhan, S.; Jain, A. Using Functional Tissue Engineering and Bioreactors to Mechanically Stimulate Tissue-Engineered Constructs. Tissue Eng. Part A 2009, 15, 741–749. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, A.; Bukhari, R.; Togawa, T. Adaptive Regulation of Wall Shear Stress Optimizing Vascular Tree Function. Bull. Math. Biol. 1984, 46, 127–137. [Google Scholar] [CrossRef]
- Luciani, N.; Du, V.; Gazeau, F.; Richert, A.; Letourneur, D.; le Visage, C.; Wilhelm, C. Successful Chondrogenesis within Scaffolds, Using Magnetic Stem Cell Confinement and Bioreactor Maturation. Acta Biomater. 2016, 37, 101–110. [Google Scholar] [CrossRef]
- Zilla, P.; Bezuidenhout, D.; Human, P. Prosthetic Vascular Grafts: Wrong Models, Wrong Questions and No Healing. Biomaterials 2007, 28, 5009–5027. [Google Scholar] [CrossRef] [PubMed]
- Berger, K.; Sauvage, L.R.; Rao, A.M.; Wood, S.J. Healing of Arterial Prostheses in Man: Its Incompleteness. Ann. Surg. 1972, 175, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Pennel, T.; Zilla, P.; Bezuidenhout, D. Differentiating Transmural from Transanastomotic Prosthetic Graft Endothelialization through an Isolation Loop-Graft Model. J. Vasc. Surg. 2013, 58, 1053–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piterina, A.V.; Cloonan, A.J.; Meaney, C.L.; Davis, L.M.; Callanan, A.; Walsh, M.T.; McGloughlin, T.M. Ecm-Based Materials in Cardiovascular Applications: Inherent Healing Potential and Augmentation of Native Regenerative Processes. Int. J. Mol. Sci. 2009, 10, 4375–4417. [Google Scholar] [CrossRef]
- Wu, M.H.; Shi, Q.; Wechezak, A.R.; Clowes, A.W.; Gordon, I.L.; Sauvage, L.R. Definitive Proof of Endothelialization of a Dacron Arterial Prosthesis in a Human Being. J. Vasc. Surg. 1995, 21, 862–867. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Briana, S.; Douville, Y.; Zhao, H.; Gilbert, N. Transmural Communication at a Subcellular Level May Play a Critical Role in the Fallout Based-Endothelialization of Dacron Vascular Prostheses in Canine. J. Biomed. Mater. Res. A 2007, 81, 877–887. [Google Scholar] [CrossRef]
- Melchiorri, A.J.; Hibino, N.; Fisher, J.P. Strategies and Techniques to Enhance the in Situ Endothelialization of Small-Diameter Biodegradable Polymeric Vascular Grafts. Tissue Eng. Part B Rev. 2013, 19, 292–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassiopoulos, A.K.; Greisler, H.P. Angiogenic Mechanisms of Endothelialization of Cardiovascular Implants: A Review of Recent Investigative Strategies. J. Biomater. Sci. Polym. Ed. 2000, 11, 1275–1284. [Google Scholar] [CrossRef]
- Talacua, H.; Smits, A.I.; Muylaert, D.E.; van Rijswijk, J.W.; Vink, A.; Verhaar, M.C.; Driessen-Mol, A.; van Herwerden, L.A.; Bouten, C.V.; Kluin, J.; et al. In Situ Tissue Engineering of Functional Small-Diameter Blood Vessels by Host Circulating Cells Only. Tissue Eng. Part A 2015, 21, 2583–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X.; Feng, Y.; Guo, J.; Wang, H.; Li, Q.; Yang, J.; Hao, X.; Lv, J.; Ma, N.; Li, W. Surface Modification and Endothelialization of Biomaterials as Potential Scaffolds for Vascular Tissue Engineering Applications. Chem. Soc. Rev. 2015, 44, 5680–5742. [Google Scholar] [CrossRef] [Green Version]
- Balistreri, C.R.; Buffa, S.; Pisano, C.; Lio, D.; Ruvolo, G.; Mazzesi, G. Are Endothelial Progenitor Cells the Real Solution for Cardiovascular Diseases? Focus on Controversies and Perspectives. Biomed. Res. Int. 2014, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Hirschi, K.K. Endothelial Cell Development and Its Application to Regenerative Medicine. Circ. Res. 2019, 125, 489–501. [Google Scholar] [CrossRef]
- Basile, P.D.; Yoder, M.C. Circulating and Tissue Resident Endothelial Progenitor Cells. J. Cell. Physiol. 2014, 229, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharn, D.M.; Daamen, W.F.; van Kuppevelt, T.H.; van der Vliet, J.A. Biological Mechanisms Influencing Prosthetic Bypass Graft Patency: Possible Targets for Modern Graft Design. Eur. J. Vasc. Endovasc. Surg. 2012, 43, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Suen, R.; Wertheim, J.A.; Ameer, G.A. Targeting Heparin to Collagen within Extracellular Matrix Significantly Reduces Thrombogenicity and Improves Endothelialization of Decellularized Tissues. Biomacromolecules 2016, 17, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Gao, C.; Shen, J. Surface Modification of Polycaprolactone with Poly(Methacrylic Acid) and Gelatin Covalent Immobilization for Promoting Its Cytocompatibility. Biomaterials 2002, 23, 4889–4895. [Google Scholar] [CrossRef]
- Radke, D.; Jia, W.; Sharma, D.; Fena, K.; Wang, G.; Goldman, J.; Zhao, F. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Adv. Healthc. Mater. 2018, 7, e1701461. [Google Scholar] [CrossRef]
- Collins, M.J.; Li, X.; Lv, W.; Yang, C.; Protack, C.D.; Muto, A.; Jadlowiec, C.C.; Shu, C.; Dardik, A. Therapeutic Strategies to Combat Neointimal Hyperplasia in Vascular Grafts. Expert Rev. Cardiovasc. Ther. 2012, 10, 635–647. [Google Scholar] [CrossRef]
- Fukuda, D.; Aikawa, M. Intimal Smooth Muscle Cells: The Context-Dependent Origin. Circulation 2010, 122, 2005–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokote, K.; Take, A.; Nakaseko, C.; Kobayashi, K.; Fujimoto, M.; Kawamura, H.; Maezawa, Y.; Nishimura, M.; Mori, S.; Saito, Y. Bone Marrow-Derived Vascular Cells in Response to Injury. J. Atheroscler. Thromb. 2003, 10, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Kijani, S.; Vazquez, A.M.; Levin, M.; Boren, J.; Fogelstrand, P. Intimal Hyperplasia Induced by Vascular Intervention Causes Lipoprotein Retention and Accelerated Atherosclerosis. Physiol. Rep. 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.M.; deBlois, D.; O’Brien, E.R. The Intima. Soil for Atherosclerosis and Restenosis. Circ. Res. 1995, 77, 445–465. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.E.J.; Pohan, G.; Raman, J.; Konecny, F.; Yim, E.K.F.; Hinds, M.T. Improving Surgical Methods for Studying Vascular Grafts in Animal Models. Tissue Eng. Part C Methods 2018, 24, 457–464. [Google Scholar] [CrossRef]
- Matthiasson, S.E.; Bergqvist, D.; Lundell, A.; Lindblad, B. Effect of Dexdtran and Enoxaparin on Early Eptfe Graft Thrombogenicity in Sheep. Eur. J. Vasc. Endovasc. Surg. 1995, 9, 284–292. [Google Scholar] [CrossRef] [Green Version]
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
1 | In vivo in large animal (>rabbit) | In vitro or in small animal (≤rabbit) or in human |
2 | Inner diameter ≤ 6 mm | Inner diameter > 6 mm |
3 | Bypass at small-/medium-diameter artery site (E.g.: coronary, carotid or femoral artery) | Bypass at large-diameter artery site or venous system (E.g.: aorta, aortoiliac artery bypass pulmonary vein or artery, cavopulmonary connection, and venous bypass) |
4 | Graft evaluated as arterial bypass graft or arteriovenous shunt | Graft evaluated as microvascular network, microvessels, stent, valve, or patch |
5 | Graft length ≥ 10 times of diameter | Graft length < 10 times of diameter |
SD-TEVG Type | Advantages | Disadvantages |
---|---|---|
Synthetic SD-TEVGs |
|
|
Natural SD-TEVGs |
|
|
Hybrid SD-TEVGs |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.; Ellman, D.G.; Andersen, D.C. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells 2021, 10, 713. https://doi.org/10.3390/cells10030713
Fang S, Ellman DG, Andersen DC. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells. 2021; 10(3):713. https://doi.org/10.3390/cells10030713
Chicago/Turabian StyleFang, Shu, Ditte Gry Ellman, and Ditte Caroline Andersen. 2021. "Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans" Cells 10, no. 3: 713. https://doi.org/10.3390/cells10030713
APA StyleFang, S., Ellman, D. G., & Andersen, D. C. (2021). Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells, 10(3), 713. https://doi.org/10.3390/cells10030713