The Effect of the Clenbuterol—β2-Adrenergic Receptor Agonist on the Peripheral Blood Mononuclear Cells Proliferation, Phenotype, Functions, and Reactive Oxygen Species Production in Race Horses In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Blood Sampling
2.2. Clenbuterol
2.3. Cell isolation and Culture
2.4. Cell Staining
2.5. Flow Cytometry Analysis
2.6. ELISA
2.7. Statistical Analysis
3. Results
3.1. Clenbuterol Enhances Lymphocyte Proliferation
3.2. Clenbuterol Influences on T Cell Phenotype
3.3. Clenbuterol Influences on Monocyte Phenotype
3.4. Clenbuterol Decreased ROS Synthesis in Monocytes
3.5. Clenbuterol Modulates Cytokine Production
4. Discussion
4.1. Lymphocytes Phenotype and Proliferation
4.2. Monocytes and Reactive Oxygen Species Production
4.3. Cytokines
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, N.E. Clenbuterol and the horse. Annu. Conv. AAEP 2000, 46, 229–233. [Google Scholar]
- Couet, W.; Girault, J.; Reigner, B.G.; Ingrand, I.; Bizouard, J.; Acerbi, D.; Chiesi, P.; Fourtillan, J.B. Steady-State Bioavailability and Pharmacokinetics of Ambroxol and Clenbuterol Administered Alone and Combined in a New Oral Formulation. Int. J. Clin. Pharmacol. Ther. Toxicol. 1989, 27, 467–472. [Google Scholar] [PubMed]
- Lynch, G.S.; Ryall, J.G. Role of Beta-Adrenoceptor Signaling in Skeletal Muscle: Implications for Muscle Wasting and Disease. Physio.l Rev. 2008, 88, 729–767. [Google Scholar] [CrossRef] [Green Version]
- Törneke, K. β-Adrenoceptors in Equine Trachea and Heart. Vet. Res. Commun. 1999, 23, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Bijman, J.; Quinton, P.M. Predominantly Beta-Adrenergic Control of Equine Sweating. Am. J. Physiol. 1984, 246, R349–R353. [Google Scholar] [CrossRef]
- Sanders, V.M. The Beta2-Adrenergic Receptor on T and B Lymphocytes: Do We Understand It Yet? Brain Behav. Immun. 2012, 26, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Chavan, S.S.; Tracey, K.J. Essential Neuroscience in Immunology. J. Immunol. 2017, 198, 3389–3397. [Google Scholar] [CrossRef]
- Izeboud, C.A.; Monshouwer, M.; van Miert, A.S.; Witkamp, R.F. The Beta-Adrenoceptor Agonist Clenbuterol Is a Potent Inhibitor of the LPS-Induced Production of TNF-Alpha and IL-6 in Vitro and in Vivo. Inflamm. Res. 1999, 48, 497–502. [Google Scholar] [CrossRef]
- Cudmore, L.A.; Muurlink, T.; Whittem, T.; Bailey, S.R. Effects of Oral Clenbuterol on the Clinical and Inflammatory Response to Endotoxaemia in the Horse. Res. Vet. Sci. 2013, 94, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Spiller, H.A.; James, K.J.; Scholzen, S.; Borys, D.J. A Descriptive Study of Adverse Events from Clenbuterol Misuse and Abuse for Weight Loss and Bodybuilding. Subst. Abus. 2013, 34, 306–312. [Google Scholar] [CrossRef]
- Parr, M.K.; Koehler, K.; Geyer, H.; Guddat, S.; Schänzer, W. Clenbuterol Marketed as Dietary Supplement. Biomed. Chromatogr. 2008, 22, 298–300. [Google Scholar] [CrossRef]
- Abdulredha, W.S. Effect of Clenbuterol Using as Weight Loose on Liver Enzymes and Lipids Profile. Iraq Med. J. 2019, 3, 52–55. [Google Scholar]
- Li, C.; Adhikari, B.K.; Gao, L.; Zhang, S.; Liu, Q.; Wang, Y.; Sun, J. Performance-Enhancing Drugs Abuse Caused Cardiomyopathy and Acute Hepatic Injury in a Young Bodybuilder. Am. J. Men’s Health 2018, 12, 1700–1704. [Google Scholar] [CrossRef] [PubMed]
- Cudmore, L.; Whittem, T.; Bailey, S. Anti-Inflammatory Effects of Clenbuterol on Equine Leukocytes Stimulated Ex Vivo with Bacterial Toxins. Aust. Equine Vet. 2015, 34, 38–42. [Google Scholar]
- Malinowski, K.; Kearns, C.F.; Guirnalda, P.D.; Roegner, V.; McKeever, K.H. Effect of Chronic Clenbuterol Administration and Exercise Training on Immune Function in Horses. J. Anim. Sci. 2004, 82, 3500–3507. [Google Scholar] [CrossRef] [PubMed]
- Cavalié, H.; Lac, G.; Lebecque, P.; Chanteranne, B.; Davicco, M.-J.; Barlet, J.-P. Influence of Clenbuterol on Bone Metabolism in Exercised or Sedentary Rats. J. Appl. Physiol. 2002, 93, 2034–2037. [Google Scholar] [CrossRef]
- Momaya, A.; Fawal, M.; Estes, R. Performance-Enhancing Substances in Sports: A Review of the Literature. Sports Med. 2015, 45, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Weiser, B.; Drape, J. More Than Two Dozen Charged in Horse Racing Doping Scheme. The New York Times 2020. Available online: https://www.nytimes.com/2020/03/09/sports/horse-racing-doping.html (accessed on 5 March 2021).
- Economic Impact of the U.S. Horse Industry; American Horse Council Founda-Tion: Washington, DC, USA, 2018.
- Wong, J.K.Y.; Wan, T.S.M. Doping Control Analyses in Horseracing: A Clinician’s Guide. Vet. J. 2014, 200, 8–16. [Google Scholar] [CrossRef]
- Kakanis, M.W.; Peake, J.; Brenu, E.W.; Simmonds, M.; Gray, B.; Hooper, S.L.; Marshall-Gradisnik, S.M. The Open Window of Susceptibility to Infection after Acute Exercise in Healthy Young Male Elite Athletes. Exerc. Immunol. Rev. 2010, 16, 119–137. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.L.N.; Newton, J.R.; Chanter, N.; Mumford, J.A. Association between Respiratory Disease and Bacterial and Viral Infections in British Racehorses. J. Clin. Microbiol. 2005, 43, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Witkowska-Piłaszewicz, O.; Pingwara, R.; Winnicka, A. The Effect of Physical Training on Peripheral Blood Mononuclear Cell Ex Vivo Proliferation, Differentiation, Activity, and Reactive Oxygen Species Production in Racehorses. Antioxidants 2020, 9, 1155. [Google Scholar] [CrossRef]
- Witkowska-Piłaszewicz, O.; Bąska, P.; Czopowicz, M.; Żmigrodzka, M.; Szarska, E.; Szczepaniak, J.; Nowak, Z.; Winnicka, A.; Cywińska, A. Anti-Inflammatory State in Arabian Horses Introduced to the Endurance Training. Animals 2019, 9, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowska-Piłaszewicz, O.; Bąska, P.; Czopowicz, M.; Żmigrodzka, M.; Szczepaniak, J.; Szarska, E.; Winnicka, A.; Cywińska, A. Changes in Serum Amyloid A (SAA) Concentration in Arabian Endurance Horses During First Training Season. Animals 2019, 9, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resolution on the Animals Protection Used for Scientific and Educational Purposes and the European Directive EU/2010/63-Art 1.2 (5) Ust. z Dnia 15 Stycznia 2015 r. o Ochronie Zwierząt Wykorzystywanych Do Celów Naukowych Lub Edukacyjnych, Dz.U.2018.0.1207. Available online: https://sip.lex.pl/akty-prawne/dzienniki-UE/ochrona-zwierzat-wykorzystywanych-do-celow-naukowych-67984065 (accessed on 5 March 2021).
- Kearns, C.F.; McKeever, K.H. Clenbuterol and the Horse Revisited. Vet. J. 2009, 182, 384–391. [Google Scholar] [CrossRef]
- Ventipulmin® Syrup (Clenbuterol Hydrochloride) Freedom of Information Summary; Boehringer Ingelheim Vetmedica, Inc.: St. Joseph, MO, USA, 1998.
- Johnson, M. Effects of Beta2-Agonists on Resident and Infiltrating Inflammatory Cells. J. Allergy Clin. Immunol. 2002, 110, S282–S290. [Google Scholar] [CrossRef]
- Witkowska-Piłaszewicz, O.; Grzędzicka, J.; Seń, J.; Czopowicz, M.; Żmigrodzka, M.; Winnicka, A.; Cywińska, A.; Carter, C. Stress Response after Race and Endurance Training Sessions and Competitions in Arabian Horses. Prev. Vet. Med. 2021, 188, 105265. [Google Scholar] [CrossRef]
- Ross, A.M.; Lee, C.S.; Lutsep, H.; Clark, W.M. The Influence of β-Adrenergic Receptor Kinase-1 on Stroke-Induced Immunodeficiency Syndrome. J. Cardiovasc. Nurs. 2018, 33, E3–E10. [Google Scholar] [CrossRef]
- Grailer, J.J.; Haggadone, M.D.; Sarma, J.V.; Zetoune, F.S.; Ward, P.A. Induction of M2 Regulatory Macrophages through the β-Adrenergic Receptor with Protection during Endotoxemia and Acute Lung Injury. J. Innate Immun. 2014, 6, 607–618. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, B.H.P.; de Oliveira Marchioro, L.; Greco, C.R.; Suchecki, D. Sleep-Deprivation Reduces NK Cell Number and Function Mediated by β-Adrenergic Signalling. Psychoneuroendocrinology 2015, 57, 134–143. [Google Scholar] [CrossRef]
- Tracey, K.J. Lymphocyte Called Home: Β2-Adreneric Neurotransmission Confines T Cells to Lymph Nodes to Suppress Inflammation. J. Exp. Med. 2014, 211, 2483–2484. [Google Scholar] [CrossRef]
- Wu, L.; Tai, Y.; Hu, S.; Zhang, M.; Wang, R.; Zhou, W.; Tao, J.; Han, Y.; Wang, Q.; Wei, W. Bidirectional Role of Β2-Adrenergic Receptor in Autoimmune Diseases. Front. Pharmacol. 2018, 9, 1313. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Miller, A.R.; Henson, D.A.; Warren, B.J.; Gusewitch, G.; Johnson, R.L.; Davis, J.M.; Butterworth, D.E.; Herring, J.L.; Nehlsen-Cannarella, S.L. Effect of High- versus Moderate-Intensity Exercise on Lymphocyte Subpopulations and Proliferative Response. Int. J. Sports Med. 1994, 15, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.J.L.; Béliveau, L.; Seburn, K.L.; Gardiner, P.F. Clenbuterol Has a Greater Influence on Untrained than on Previously Trained Skeletal Muscle in Rats. Eur. J. Appl. Physiol. 1996, 73, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Komici, K.; Corbi, G.; Pagano, G.; Furgi, G.; Rengo, C.; Femminella, G.D.; Leosco, D.; Bonaduce, D. β-Adrenergic Receptor Responsiveness in Aging Heart and Clinical Implications. Front. Physiol. 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grisanti, L.A.; Evanson, J.; Marchus, E.; Jorissen, H.; Woster, A.P.; DeKrey, W.; Sauter, E.R.; Combs, C.K.; Porter, J.E. Pro-Inflammatory Responses in Human Monocytes Are Beta1-Adrenergic Receptor Subtype Dependent. Mol. Immunol. 2010, 47, 1244–1254. [Google Scholar] [CrossRef] [Green Version]
- Willson, C. XPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Sekut, L.; Champion, B.R.; Page, K.; Menius, J.A.; Connolly, K.M. Anti-Inflammatory Activity of Salmeterol: Down-Regulation of Cytokine Production. Clin. Exp. Immunol. 1995, 99, 461–466. [Google Scholar] [CrossRef]
- Katoch, S.S.; Sharma, K. Clenbuterol Treatment Stimulates Cell Proliferation in Denervated Chick Gastrocnemius Muscle. Indian J. Exp. Biol. 2004, 42, 770–775. [Google Scholar]
- McNamee, E.N.; Ryan, K.M.; Griffin, E.W.; González-Reyes, R.E.; Ryan, K.J.; Harkin, A.; Connor, T.J. Noradrenaline Acting at Central Beta-Adrenoceptors Induces Interleukin-10 and Suppressor of Cytokine Signaling-3 Expression in Rat Brain: Implications for Neurodegeneration. Brain Behav. Immun. 2010, 24, 660–671. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiang, J.; Wang, X.; Liu, H.; Hu, B.; Feng, M.; Fu, Q. Β2-Adrenoceptor Agonist Clenbuterol Reduces Infarct Size and Myocardial Apoptosis after Myocardial Ischaemia/Reperfusion in Anaesthetized Rats. Br. J. Pharmacol. 2010, 160, 1561–1572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kline, W.O.; Panaro, F.J.; Yang, H.; Bodine, S.C. Rapamycin Inhibits the Growth and Muscle-Sparing Effects of Clenbuterol. J. Appl. Physiol. 2007, 102, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Milioto, C.; Malena, A.; Maino, E.; Polanco, M.J.; Marchioretti, C.; Borgia, D.; Pereira, M.G.; Blaauw, B.; Lieberman, A.P.; Venturini, R.; et al. Beta-Agonist Stimulation Ameliorates the Phenotype of Spinal and Bulbar Muscular Atrophy Mice and Patient-Derived Myotubes. Sci. Rep. 2017, 7, 41046. [Google Scholar] [CrossRef] [PubMed]
- Sumi, K.; Higashi, S.; Natsume, M.; Kawahata, K.; Nakazato, K. Temporal Changes in ERK Phosphorylation Are Harmonious with 4E-BP1, but Not P70S6K, during Clenbuterol-Induced Hypertrophy in the Rat Gastrocnemius. Appl. Physiol. Nutr. Metab. 2014, 39, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-R.; Dambuza, I.M.; Lee, Y.-J.; Frank, G.M.; Egwuagu, C.E. STAT3 Regulates Proliferation and Survival of CD8+ T Cells: Enhances Effector Responses to HSV-1 Infection, and Inhibits IL-10+ Regulatory CD8+ T Cells in Autoimmune Uveitis. Mediat. Inflamm. 2013, 2013, e359674. [Google Scholar] [CrossRef] [Green Version]
- So, L.; Fruman, D.A. PI3K Signaling in B and T Lymphocytes: New Developments and Therapeutic Advances. Biochem. J. 2012, 442, 465–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.; Chi, H. MTOR and Lymphocyte Cell Metabolism. Curr. Opin. Immunol. 2013, 25, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Chiang, L.; Kang, C.; Winoto, A. The Role of the PI3K-AKT Kinase Pathway in T Cell Development beyond the β Checkpoint. Eur. J. Immunol. 2008, 38, 3200–3207. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, W.N.; Chang, C.-F.; Fischer, A.M.; Li, M.; Hedrick, S.M. The Erk2 MAPK Regulates CD8 T Cell Proliferation and Survival. J. Immunol. 2008, 181, 7617–7629. [Google Scholar] [CrossRef]
- Frellstedt, L.; Waldschmidt, I.; Gosset, P.; Desmet, C.; Pirottin, D.; Bureau, F.; Farnir, F.; Franck, T.; Dupuis-Tricaud, M.-C.; Lekeux, P.; et al. Training Modifies Innate Immune Responses in Blood Monocytes and in Pulmonary Alveolar Macrophages. Am. J. Respir. Cell Mol. Biol. 2014, 51, 135–142. [Google Scholar] [CrossRef]
- Rzepecka, A.; Żmigrodzka, M.; Witkowska-Piłaszewicz, O.; Cywińska, A.; Winnicka, A. CD4 and MHCII Phenotypic Variability of Peripheral Blood Monocytes in Dogs. PLoS ONE 2019, 14, e0219214. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Chen, J.; Song, S.; Yuan, P.; Liu, L.; Zhang, Y.; Zhou, A.; Chang, Y.; Zhang, L.; Wei, W. Β2-Adrenoceptor Signaling Reduction in Dendritic Cells Is Involved in the Inflammatory Response in Adjuvant-Induced Arthritic Rats. Sci. Rep. 2016, 6, 24548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elenkov, I.J.; Wilder, R.L.; Chrousos, G.P.; Vizi, E.S. The Sympathetic Nerve—An Integrative Interface between Two Supersystems: The Brain and the Immune System. Pharmacol. Rev. 2000, 52, 595–638. [Google Scholar] [PubMed]
- Giordani, L.; Cuzziol, N.; Del Pinto, T.; Sanchez, M.; Maccari, S.; Massimi, A.; Pietraforte, D.; Viora, M. Β2-Agonist Clenbuterol Hinders Human Monocyte Differentiation into Dendritic Cells. Exp. Cell Res. 2015, 339, 163–173. [Google Scholar] [CrossRef]
- Condino-Neto, A.; Vilela, M.M.; Cambiucci, E.C.; Ribeiro, J.D.; Guglielmi, A.A.; Magna, L.A.; De Nucci, G. Theophylline Therapy Inhibits Neutrophil and Mononuclear Cell Chemotaxis from Chronic Asthmatic Children. Br. J. Clin. Pharmacol. 1991, 32, 557–561. [Google Scholar] [CrossRef] [Green Version]
- Read, S.A.; Wijaya, R.; Ramezani-Moghadam, M.; Tay, E.; Schibeci, S.; Liddle, C.; Lam, V.W.T.; Yuen, L.; Douglas, M.W.; Booth, D.; et al. Macrophage Coordination of the Interferon Lambda Immune Response. Front. Immunol. 2019, 10, 2674. [Google Scholar] [CrossRef] [Green Version]
- Lorton, D.; Bellinger, D.L. Molecular Mechanisms Underlying β-Adrenergic Receptor-Mediated Cross-Talk between Sympathetic Neurons and Immune Cells. Int. J. Mol. Sci. 2015, 16, 5635–5665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scanzano, A.; Schembri, L.; Rasini, E.; Luini, A.; Dallatorre, J.; Legnaro, M.; Bombelli, R.; Congiu, T.; Cosentino, M.; Marino, F. Adrenergic Modulation of Migration, CD11b and CD18 Expression, ROS and Interleukin-8 Production by Human Polymorphonuclear Leukocytes. Inflamm. Res. 2015, 64, 127–135. [Google Scholar] [CrossRef]
- De Angelis, E.; Pecoraro, M.; Rusciano, M.; Ciccarelli, M.; Popolo, A. Cross-Talk between Neurohormonal Pathways and the Immune System in Heart Failure: A Review of the Literature. Int. J. Mol. Sci. 2019, 20, 1698. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Xiang, J.; Zhao, L.; Yang, L.; Hu, B.; Fu, Q. Effect of Β2-Adrenergic Agonist Clenbuterol on Ischemia/Reperfusion Injury in Isolated Rat Hearts and Cardiomyocyte Apoptosis Induced by Hydrogen Peroxide. Acta Pharmacol. Sin. 2008, 29, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, T.; Kurita, C.; Nagao, T.; Usami, E.; Nakao, T.; Watanabe, S.; Kobayashi, J.; Yamazaki, F.; Tanaka, H.; Inagaki, N.; et al. Inhibition of Tumor Necrosis Factor-Alpha and Interleukin-1-Beta Production by Beta-Adrenoceptor Agonists from Lipopolysaccharide-Stimulated Human Peripheral Blood Mononuclear Cells. Pharmacology 1997, 54, 144–152. [Google Scholar] [CrossRef]
- Manni, M.; Granstein, R.D.; Maestroni, G. Β2-Adrenergic Agonists Bias TLR-2 and NOD2 Activated Dendritic Cells towards Inducing an IL-17 Immune Response. Cytokine 2011, 55, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadullah, K.; Sterry, W.; Volk, H.D. Interleukin-10 Therapy—Review of a New Approach. Pharmacol. Rev. 2003, 55, 241–269. [Google Scholar] [CrossRef] [PubMed]
- Reihmane, D.; Dela, F. Interleukin-6: Possible Biological Roles during Exercise. Eur. J. Sport Sci. 2014, 14, 242–250. [Google Scholar] [CrossRef] [PubMed]
- van den Hoven, R.; Duvigneau, J.C.; Hartl, R.T.; Gemeiner, M. Clenbuterol Affects the Expression of Messenger RNA for Interleukin 10 in Peripheral Leukocytes from Horses Challenged Intrabronchially with Lipopolysaccharides. Vet. Res. Commun. 2006, 30, 921–928. [Google Scholar] [CrossRef] [PubMed]
Antibody | Clone; Dilution | Source | Target Cell |
---|---|---|---|
CD4:PE | CVS4; 1:10 | BioRad, California, USA | Lymphocytes |
CD8:FITC | CVS21; 1:10 | BioRad, California, USA | Lymphocytes |
CD5:PE | CVS5; 1:10 | BioRad, California, USA | Lymphocytes |
CD14:AF405 | 433423; 1:10 | R&D Systems, Minnesota, USA | Monocytes |
MHCII:FITC | CVS20; 1:20 | BioRad, California, USA | Monocytes |
FoxP3:APC | FJK-16s; 1:10 | Life Technologies, Bleiswijk, Netherland; | Lymphocytes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witkowska-Piłaszewicz, O.; Pingwara, R.; Szczepaniak, J.; Winnicka, A. The Effect of the Clenbuterol—β2-Adrenergic Receptor Agonist on the Peripheral Blood Mononuclear Cells Proliferation, Phenotype, Functions, and Reactive Oxygen Species Production in Race Horses In Vitro. Cells 2021, 10, 936. https://doi.org/10.3390/cells10040936
Witkowska-Piłaszewicz O, Pingwara R, Szczepaniak J, Winnicka A. The Effect of the Clenbuterol—β2-Adrenergic Receptor Agonist on the Peripheral Blood Mononuclear Cells Proliferation, Phenotype, Functions, and Reactive Oxygen Species Production in Race Horses In Vitro. Cells. 2021; 10(4):936. https://doi.org/10.3390/cells10040936
Chicago/Turabian StyleWitkowska-Piłaszewicz, Olga, Rafał Pingwara, Jarosław Szczepaniak, and Anna Winnicka. 2021. "The Effect of the Clenbuterol—β2-Adrenergic Receptor Agonist on the Peripheral Blood Mononuclear Cells Proliferation, Phenotype, Functions, and Reactive Oxygen Species Production in Race Horses In Vitro" Cells 10, no. 4: 936. https://doi.org/10.3390/cells10040936
APA StyleWitkowska-Piłaszewicz, O., Pingwara, R., Szczepaniak, J., & Winnicka, A. (2021). The Effect of the Clenbuterol—β2-Adrenergic Receptor Agonist on the Peripheral Blood Mononuclear Cells Proliferation, Phenotype, Functions, and Reactive Oxygen Species Production in Race Horses In Vitro. Cells, 10(4), 936. https://doi.org/10.3390/cells10040936