Transcriptome Analysis of Hypoxic Lymphatic Endothelial Cells Indicates Their Potential to Contribute to Extracellular Matrix Rearrangement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Immunocytology
2.3. Real-Time RT-PCR (qPCR)
2.4. Transcriptome and Bioinformatic Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADAMTS6/15 | ADAM metallopeptidase with thrombospondin type 1 motif 6/15 |
ANGPTL4 | Angiopoietin-like 4 |
BEC | Blood vascular endothelial cell |
CDT | Comprehensive decongestive therapy |
CEMIP2 | Cell migration inducing hyaluronidase 2; also known as: transmembrane protein 2 |
CHST2 | Carbohydrate sulfotransferase 2 |
CP | Ceruloplasmin |
ECM | Extracellular matrix |
EGLN3 | Egl-9 family hypoxia inducible factor 3 (=PHD3) |
ELN | Elastin |
FBLN5 | Fibulin 5 |
FMOD | Fibromodulin |
H19 | Long non-coding RNA H19 |
HA | Hyaluronic acid |
HD-LEC | Human dermal lymphatic endothelial cells |
HIF | Hypoxia-inducible factor |
HMVEC | Human microvascular endothelial cell |
HTRA3 | HtrA serine peptidase 3 |
ITIH5 | Inter-alpha-trypsin inhibitor heavy chain family member 5 |
LE | Lymphedema |
LEC | Lymphatic endothelial cell |
lncRNA | Long non-coding RNA |
LOX | Lysyl-oxidase |
MMP1 | Matrix metalloproteinase 1 |
P4HA1 | Prolyl 4-hydroxylase subunit alpha 1 |
PHD | Prolyl hydroxylase |
PLOD2 | Procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 |
SLC2A3 | Solute carrier family 2 member 3 (= GLUT3) |
TGFB1/2/3 | Transforming growth factor-β1/2/3 |
TNS1 | Tensin-1 |
TNXB | Tenascin-XB |
VEGF-A | Vascular endothelial growth factor-A |
VWA1 | von Willebrand factor A domain containing 1 |
References
- Executive Committee. S2k Guideline ‘Diagnostic and Therapy of Lymphoedema’; AWMF Online Portal Wiss. Med. Registry No. 058-001 of the Association of the Scientific Medical Societies in Germany; AWMF: Frankfurt am Main, Germany, 2017. [Google Scholar]
- Gordon, K.; Varney, R.; Keeley, V.; Riches, K.; Jeffery, S.; Van Zanten, M.; Mortimer, P.; Ostergaard, P.; Mansour, S. Update and audit of the St George’s classification algorithm of primary lymphatic anomalies: a clinical and molecular approach to diagnosis. J. Med Genet. 2020, 57, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Executive Committee. The Diagnosis and Treatment of Peripheral Lymphedema: 2016 Consensus Document of the Interna-tional Society of Lymphology. Lymphology 2016, 49, 170–184. [Google Scholar]
- Brorson, H. Liposuction gives complete reduction of chronic large arm lymphedema after breast cancer. Acta Oncol. 2000, 39, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.L.; Srinivasan, R.S.; Dillard, M.E.; Johnson, N.C.; Witte, M.H.; Boyd, K.; Sleeman, M.W.; Oliver, G. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat. Genet. 2005, 37, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.F.; Zhang, L.R. Changes of tissue fluid hyaluronan (hyaluronic acid) in peripheral lymphedema. Lymphology 1998, 31, 173–179. [Google Scholar]
- Prevo, R.; Banerji, S.; Ferguson, D.J.P.; Clasper, S.; Jackson, D.G. Mouse LYVE-1 Is an Endocytic Receptor for Hyaluronan in Lymphatic Endothelium. J. Biol. Chem. 2001, 276, 19420–19430. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.G. The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc. Med. 2003, 13, 1–7. [Google Scholar] [CrossRef]
- Laurent, U.B.; Reed, R.K. Turnover of hyaluronan in the tissues. Adv. Drug Deliv. Rev. 1991, 7, 237–256. [Google Scholar] [CrossRef]
- Kaiserling, E. Morphologische Befunde beim Lymphödem. In Lehrbuch Lymphologie; Földi, M., Földi, E., Eds.; Urban und Fischer Elsevier: Munich, Germany, 2010; pp. 266–320. [Google Scholar]
- Khurana, P.; Sugadev, R.; Jain, J.; Singh, S.B. HypoxiaDB: a database of hypoxia-regulated proteins. Database 2013, 2013, bat074. [Google Scholar] [CrossRef] [Green Version]
- Zampell, J.C.; Yan, A.; Avraham, T.; Daluvoy, S.; Weitman, E.S.; Mehrara, B.J. HIF-1α: coordinates lymphangiogenesis during wound healing and in response to inflammation. FASEB J. 2011, 26, 1027–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Tian, W.; Granucci, E.J.; Tu, A.B.; Kim, D.; Dahms, P.; Pasupneti, S.; Peng, G.; Kim, Y.; Lim, A.H.; et al. Decreased lymphatic HIF-2α accentuates lymphatic remodeling in lymphedema. J. Clin. Investig. 2020, 130, 5562–5575. [Google Scholar] [CrossRef] [PubMed]
- Irigoyen, M.; Ansó, E.; Martinez, E.; Garayoa, M.; Martínez-Irujo, J.; Rouzaut, A. Hypoxia alters the adhesive properties of lymphatic endothelial cells. A transcriptional and functional study. Biochim. Biophys. Acta (BBA) Bioenerg. 2007, 1773, 880–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilting, J.; Papoutsi, M.; Christ, B.; Nicolaides, K.H.; Von Kaisenberg, C.S.; Borges, J.; Stark, G.B.; Alitalo, K.; Tomarev, S.I.; Niemeyer, C.; et al. The transcription factor Prox1 is a marker for lymphatic endothelial cells in normal and diseased human tissues. FASEB J. 2002, 16, 1271–1273. [Google Scholar] [CrossRef] [PubMed]
- Blesinger, H.; Kaulfuß, S.; Aung, T.; Schwoch, S.; Prantl, L.; Rößler, J.; Wilting, J.; Becker, J. PIK3CA mutations are specifically localized to lymphatic endothelial cells of lymphatic malformations. PLoS ONE 2018, 13, e0200343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, J.; Fröhlich, J.; Perske, C.; Pavlakovic, H.; Wilting, J.; Becker, J. Reelin signalling in neuroblastoma: Migratory switch in metastatic stages. Int. J. Oncol. 2012, 41, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Stegmann, K.M.; Dickmanns, A.; Gerber, S.; Nikolova, V.; Klemke, L.; Manzini, V.; Schlösser, D.; Bierwirth Freund, J.; Sitte, M.; Lugert, R.; et al. The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models. bioRxiv 2020. [Google Scholar] [CrossRef]
- Witte, K.; Jürchott, K.; Christou, D.; Hecht, J.; Salinas, G.; Krüger, U.; Klein, O.; Kokolakis, G.; Witte-Händel, E.; Mössner, R.; et al. Increased presence and differential molecular imprinting of transit amplifying cells in psoriasis. J. Mol. Med. 2020, 98, 111–122. [Google Scholar] [CrossRef]
- Köditz, J.; Nesper, J.; Wottawa, M.; Stiehl, D.P.; Camenisch, G.; Franke, C.; Myllyharju, J.; Wenger, R.H.; Katschinski, D.M. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 2007, 110, 3610–3617. [Google Scholar] [CrossRef] [Green Version]
- Rumsey, S.C.; Kwon, O.; Xu, G.W.; Burant, C.F.; Simpson, I.; Levine, M. Glucose Transporter Isoforms GLUT1 and GLUT3 Transport Dehydroascorbic Acid. J. Biol. Chem. 1997, 272, 18982–18989. [Google Scholar] [CrossRef] [Green Version]
- Himmelfarb, M.; Klopocki, E.; Grube, S.; Staub, E.; Klaman, I.; Hinzmann, B.; Kristiansen, G.; Rosenthal, A.; Dürst, M.; Dahl, E. ITIH5, a novel member of the inter-α-trypsin inhibitor heavy chain family is downregulated in breast cancer. Cancer Lett. 2004, 204, 69–77. [Google Scholar] [CrossRef]
- Huth, S.; Huth, L.; Marquardt, Y.; Fietkau, K.; Dahl, E.; Esser, P.R.; Martin, S.F.; Heise, R.; Merk, H.F.; Baron, J.M. Inter-α-Trypsin Inhibitor Heavy Chain 5 (ITIH5) Is a Natural Stabilizer of Hyaluronan That Modulates Biological Processes in the Skin. Ski. Pharmacol. Physiol. 2020, 33, 1–9. [Google Scholar] [CrossRef]
- Anveden, Å.; Sjöholm, K.; Jacobson, P.; Palsdottir, V.; Walley, A.J.; Froguel, P.; Al-Daghri, N.; McTernan, P.G.; Mejhert, N.; Arner, P.; et al. ITIH-5 Expression in Human Adipose Tissue Is Increased in Obesity. Obesity 2012, 20, 708–714. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Midgley, A.; Meran, S.; Woods, E.; Bowen, T.; Phillips, A.O.; Steadman, R. Tumor Necrosis Factor-stimulated Gene 6 (TSG-6)-mediated Interactions with the Inter-α-inhibitor Heavy Chain 5 Facilitate Tumor Growth Factor β1 (TGFβ1)-dependent Fibroblast to Myofibroblast Differentiation. J. Biol. Chem. 2016, 291, 13789–13801. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Ruiz-Lozano, P.; Lindner, V.; Yabe, D.; Taniwaki, M.; Furukawa, Y.; Kobuke, K.; Tashiro, K.; Lu, Z.; Andon, N.L.; et al. DANCE, a Novel Secreted RGD Protein Expressed in Developing, Atherosclerotic, and Balloon-injured Arteries. J. Biol. Chem. 1999, 274, 22476–22483. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; LeMaire, S.A.; Chen, L.; Carter, S.A.; Shen, Y.H.; Gan, Y.; Bartsch, H.; Wilks, J.A.; Utama, B.; Ou, H.; et al. Decreased expression of fibulin-5 correlates with reduced elastin in thoracic aortic dissection. Surgery 2005, 138, 352–359. [Google Scholar] [CrossRef]
- Mégarbané, H.; Florence, J.; Ouml Sass, R.O.; Schwonbeck, S.; Foglio, M.; De Cid, R.; Cure, S.; Saker, S. An Autosomal-Recessive Form of Cutis Laxa Is Due to Homozygous Elastin Mutations, and the Phenotype May Be Modified by a Heterozygous Fibulin 5 Polymorphism. J. Investig. Dermatol. 2009, 129, 1650–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekedereli, I.; Demiral, E.; Gokce, I.K.; Esener, Z.; Camtosun, E.; Akinci, A. Autosomal recessive cutis laxa: a novel mutation in the FBLN5 gene in a family. Clin. Dysmorphol. 2019, 28, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, H.; Davis, E.C.; Starcher, B.C.; Ouchi, T.; Yanagisawa, M.; Richardson, J.A.; Olson, E.N. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nat. Cell Biol. 2002, 415, 168–171. [Google Scholar] [CrossRef]
- Guadall, A.; Orriols, M.; Rodríguez-Calvo, R.; Calvayrac, O.; Crespo, J.; Aledo, R.; Martínez-González, J.; Rodríguez, C. Fibulin-5 Is Up-regulated by Hypoxia in Endothelial Cells through a Hypoxia-inducible Factor-1 (HIF-1α)-dependent Mechanism. J. Biol. Chem. 2011, 286, 7093–7103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalamajski, S.; Bihan, D.; Bonna, A.; Rubin, K.; Farndale, R.W. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase. J. Biol. Chem. 2016, 291, 7951–7960. [Google Scholar] [CrossRef] [Green Version]
- Daroczy, J.; Wolfe, J.; Mentzel, T. Diseases of the Lymphatics. In Pathology; Oxford University Press: New York, NY, USA; Arnold, London, UK, 2003. [Google Scholar]
- Mormone, E.; Lu, Y.; Ge, X.; Fiel, M.I.; Nieto, N. Fibromodulin, an oxidative stress-sensitive proteoglycan, regulates the fibro-genic response to liver injury in mice. Gastroenterology 2012, 142, 612–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, W.; Zhu, J.-W.; Jiang, F.; Jiang, H.; Zhao, J.-L.; Liu, M.-Y.; Li, G.-X.; Shi, X.-G.; Sun, C.; Li, Z.-S. Fibromodulin is upregulated by oxidative stress through the MAPK/AP-1 pathway to promote pancreatic stellate cell activation. Pancreatol. 2020, 20, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Honardoust, D.; Varkey, M.; Hori, K.; Ding, J.; Rn, H.A.S.; Tredget, E.E. Small leucine-rich proteoglycans, decorin and fibromodulin, are reduced in postburn hypertrophic scar. Wound Repair Regen. 2011, 19, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.E.; Rayton, J.K.; Balthrrop, J.E.; Di Silvestro, R.A.; Garcia-de-Quevedo, M. Copper and the Synthesis of Elastin and Collagen. In Biological Roles of Copper; Evered, D., Lawrenson, G., Eds.; Wiley: Hoboken, NJ, USA, 1980. [Google Scholar]
- Hellman, N.E.; Gitlin, J.D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 2002, 22, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Pajunen, L.; Jones, T.T.; Helaakoski, T.; Pihlajaniemi, T.; Solomon, E.; Sheer, D.; I Kivirikko, K. Assignment of the gene coding for the alpha-subunit of prolyl 4-hydroxylase to human chromosome region 10q21.3-23.1. Am. J. Hum. Genet. 1989, 45, 829–834. [Google Scholar] [PubMed]
- Zou, Y.; Donkervoort, S.; Salo, A.M.; Foley, A.R.; Barnes, A.M.; Hu, Y.; Makareeva, E.; Leach, M.E.; Mohassel, P.; Dastgir, J.; et al. P4HA1 mutations cause a unique congenital disorder of connective tissue involving tendon, bone, muscle and the eye. Hum. Mol. Genet. 2017, 26, 2207–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Lee, K.S.; Zhang, X.; Nguyen, C.; Hsu, C.; Wang, J.Z.; Rackohn, T.M.; Enjamuri, D.R.; Murphy, M.; Ting, K.; et al. Fibromodulin-Deficiency Alters Temporospatial Expression Patterns of Transforming Growth Factor-β Ligands and Receptors during Adult Mouse Skin Wound Healing. PLOS ONE 2014, 9, e90817. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.-M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Ma, T.-T.; Meng, X.-M. TGF-β/Smad and Renal Fibrosis. Adv. Exp. Med. Biol. 2019, 1165, 347–364. [Google Scholar]
- Wordinger, R.J.; Fleenor, D.L.; Hellberg, P.E.; Pang, I.-H.; Tovar, T.O.; Zode, G.S.; Fuller, J.A.; Clark, A.F. Effects of TGF-β2, BMP-4, and Gremlin in the Trabecular Meshwork: Implications for Glaucoma. Investig. Opthalmology Vis. Sci. 2007, 48, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, M.E.; Schepers, D.; Bolar, N.A.; Doyle, J.J.; Gallo, E.; Fert-Bober, J.; Kempers, M.J.; Fishman, E.K.; Chen, Y.; Myers, L.; et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat. Genet. 2012, 44, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Gago-Díaz, M.; Blanco-Verea, A.; Teixidó-Turà, G.; Valenzuela, I.; Del Campo, M.; Borregan, M.; Sobrino, B.; Amigo, J.; García-Dorado, D.; Evangelista, A.; et al. Whole exome sequencing for the identification of a new mutation in TGFB2 involved in a familial case of non-syndromic aortic disease. Clin. Chim. Acta 2014, 437, 88–92. [Google Scholar] [CrossRef]
- Rienhoff, H.Y.; Yeo, C.-Y.; Morissette, R.; Khrebtukova, I.; Melnick, J.; Luo, S.; Leng, N.; Kim, Y.-J.; Schroth, G.; Westwick, J.; et al. A mutation in TGFB3 associated with a syndrome of low muscle mass, growth retardation, distal ar-throgryposis and clinical features overlapping with Marfan and Loeys-Dietz syndrome. Am. J. Med. Genet. Part A 2013, 161, 2040–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Luo, Z.; Pan, Y.; Zheng, W.; Li, W.; Zhang, Z.; Xiong, P.; Xu, D.; Du, M.; Wang, B.; et al. H19/miR-148a/USP4 axis facilitates liver fibrosis by enhancing TGF-β signaling in both hepatic stellate cells and hepatocytes. J. Cell. Physiol. 2019, 234, 9698–9710. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, X.; Kai, J.; Wang, F.; Wang, Z.; Shao, J.; Tan, S.; Chen, A.; Zhang, F.; Wang, S.; et al. HIF-1α-upregulated lncRNA-H19 regulates lipid droplet metabolism through the AMPKα pathway in hepatic stellate cells. Life Sci. 2020, 255, 117818. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Xue, J.-D.; Chao, F.; Jin, Y.-F.; Fu, Q. Long non-coding RNA-H19 antagonism protects against renal fibrosis. Oncotarget 2016, 7, 51473–51481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaza, P.; Osipiuk, J.; Wenta, T.; Zurawa-Janicka, R.; Jarzab, M.; Lesner, A.; Banecki, B.; Skorko-Glonek, J.; Joachimiak, A.; Lipinska, B. Structural and Functional Analysis of Human HtrA3 Protease and Its Subdomains. PLoS ONE 2015, 10, e0131142. [Google Scholar] [CrossRef] [PubMed]
- Schönherr, E.; Broszat, M.; Brandan, E.; Bruckner, P.; Kresse, H. Decorin Core Protein Fragment Leu155-Val260 Interacts with TGF-β but Does Not Compete for Decorin Binding to Type I Collagen. Arch. Biochem. Biophys. 1998, 355, 241–248. [Google Scholar] [CrossRef]
- Goldberg, G.I.; Wilhelm, S.M.; Kronberger, A.; Bauer, E.A.; Grant, G.A.; Eisen, A.Z. Human fibroblast collagenase: Complete primary structure and homology to an oncogene transfor-mation-induced rat protein. J. Biol. Chem. 1986, 261, 6600–6605. [Google Scholar]
- Giannandrea, M.; Parks, W.C. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model. Mech. 2014, 7, 193–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balbín, M.; Fueyo, A.; Knäuper, V.; López, J.M.; Álvarez, J.; Sánchez, L.M.; Quesada, V.; Bordallo, J.; Murphy, G.; López-Otín, C. Identification and Enzymatic Characterization of Two Diverging Murine Counterparts of Human Interstitial Collagenase (MMP-1) Expressed at Sites of Embryo Implantation. J. Biol. Chem. 2001, 276, 10253–10262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhard, G.S.; Davis, B.; Wu, X.; Hanson, A.; Wilhelmsen, D.; Piras, I.S.; Still, C.D.; Chu, X.; Petrick, A.T.; Distefano, J.K. Differentially expressed mRNAs and lncRNAs shared between activated human hepatic stellate cells and nash fibrosis. Biochem. Biophys. Rep. 2020, 22, 100753. [Google Scholar] [CrossRef] [PubMed]
- Kelwick, R.; Desanlis, I.; Wheeler, G.N.; Edwards, D.R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombos-pondin motifs) family. Genome Biol. 2015, 16, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevitt, D.J.; Li, Z.; Lindrop, J.L.; Barker, M.D.; Clarke, M.P.; McKie, N. Analysis of full length ADAMTS6 transcript reveals alternative splicing and a role for the 5′ untranslated region in translational control. Gene 2005, 359, 99–110. [Google Scholar] [CrossRef]
- Li, X.; Tedder, T.F. CHST1 and CHST2 Sulfotransferases Expressed by Human Vascular Endothelial Cells: cDNA Cloning, Expression, and Chromosomal Localization. Genom. 1999, 55, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Pénisson-Besnier, I.; Allamand, V.; Beurrier, P.; Martin, L.; Schalkwijk, J.; Van Vlijmen-Willems, I.; Gartioux, C.; Malfait, F.; Syx, D.; Macchi, L.; et al. Compound heterozygous mutations of the TNXB gene cause primary myopathy. Neuromuscul. Disord. 2013, 23, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Burch, G.H.; Gong, Y.; Curry, C.; Miller, W.; Bristow, J.D. Human tenascin-X deficiency causes an Ehlers-Danlos-like pheno-type. Am. J. Hum. Genet. 1996, 59, A16. [Google Scholar]
- Valtavaara, M.; Papponen, H.; Pirttilä, A.-M.; Hiltunen, K.; Helander, H.; Myllylä, R. Cloning and Characterization of a Novel Human Lysyl Hydroxylase Isoform Highly Expressed in Pancreas and Muscle. J. Biol. Chem. 1997, 272, 6831–6834. [Google Scholar] [CrossRef] [Green Version]
- Ha-Vinh, R.; Alanay, Y.; Bank, R.A.; Campos-Xavier, A.B.; Zankl, A.; Superti-Furga, A.; Bonafé, L. Phenotypic and molecular characterization of Bruck syndrome (osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutation inPLOD2. Am. J. Med Genet. Part A 2004, 131, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ishii, A.; Wong, W.K.; Chen, L.B.; Lo, S.H. Molecular characterization of human tensin. Biochem. J. 2000, 2, 403–411. [Google Scholar] [CrossRef]
- Katz, B.-Z.; Zohar, M.; Teramoto, H.; Matsumoto, K.; Gutkind, J.; Lin, D.C.; Lin, S.; Yamada, K.M. Tensin Can Induce JNK and p38 Activation. Biochem. Biophys. Res. Commun. 2000, 272, 717–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, M.; Horikoshi, S.; Asanuma, K.; Takahara, H.; Shirato, I.; Tomino, Y. Tensin is potentially involved in extracellular matrix production in mesangial cells. Histochem. Cell Biol. 2004, 121, 245–254. [Google Scholar] [CrossRef]
- Bernau, K.; Torr, E.E.; Evans, M.D.; Aoki, J.K.; Ngam, C.R.; Sandbo, N. Tensin 1 Is Essential for Myofibroblast Differentiation and Extracellular Matrix Formation. Am. J. Respir. Cell Mol. Biol. 2017, 56, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Rodriguez, L.; Jones, L.; Chen, K.M.; Datta, I.; Divine, G.; Worsham, M.J. Causal network analysis of head and neck keloid tissue identifies potential master regulators. Laryngoscope 2016, 126, E319–E324. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Yamamoto, H.; Tobisawa, Y.; Irie, F. TMEM2: A missing link in hyaluronan catabolism identified? Matrix Biol. 2019, 78–79, 139–146. [Google Scholar] [CrossRef]
- De Angelis, J.E.; Lagendijk, A.K.; Chen, H.; Tromp, A.; Bower, N.I.; Tunny, K.A.; Brooks, A.J.; Bakkers, J.; Francois, M.; Yap, A.S.; et al. Tmem2 Regulates Embryonic Vegf Signaling by Controlling Hyaluronic Acid Turnover. Dev. Cell 2017, 40, 123–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzgerald, J. WARP: A Unique Extracellular Matrix Component of Cartilage, Muscle, and Endothelial Cell Basement Membranes. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2020, 303, 1619–1623. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.M.; Zamurs, L.; Brachvogel, B.; Schlötzer-Schrehardt, U.; Hansen, U.; Lamandé, S.R.; Rowley, L.; Fitzgerald, J.; Bateman, J.F. Mice Lacking the Extracellular Matrix Protein WARP Develop Normally but Have Compromised Peripheral Nerve Structure and Function. J. Biol. Chem. 2009, 284, 12020–12030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pober, B.R. Williams-Beuren syndrome. N. Engl. J. Med. 2010, 362, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Curran, M.E.; Atkinson, D.L.; Ewart, A.K.; Morris, C.A.; Leppert, M.F.; Keating, M.T. The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell 1993, 73, 159–168. [Google Scholar] [CrossRef]
- Zhang, M.-C.; He, L.; Giro, M.; Yong, S.L.; Tiller, G.E.; Davidson, J.M. Cutis Laxa Arising from Frameshift Mutations in Exon 30 of the Elastin Gene (ELN). J. Biol. Chem. 1999, 274, 981–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassabehji, M.; Metcalfe, K.; Hurst, J.; Ashcroft, G.S.; Kielty, C.; Wilmot, C.; Donnai, D.; Read, A.P.; Jones, C.J.P. An elastin gene mutation producing abnormal tropoelastin and abnormal elastic fibres in a patient with autosomal dominant cutis laxa. Hum. Mol. Genet. 1998, 7, 1021–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, T.; Narahari, S.R.; Vijaya, B.; Aggithaya, M.G. Dermatologic Implications of Secondary Lymphedema of the Lower Leg. In Lymphedema: Complete Medical and Surgical Management; Neligan, P.C., Masia, J., Piller, N.B., Eds.; CRC Press, Taylor Francis Group: Boca Raton, FL, USA, 2016; pp. 195–213. [Google Scholar]
Name | Fwd 5′–3′ | Rev 5′–3′ |
---|---|---|
ADAMTS15 | ACCTGAGTGGTTCATTGGGG | TCTCCTCCTCAGAAGGTCCG |
ADAMTS6 | ACCTGAGTGGTTCATTGGGG | TCTCCTCCTCAGAAGGTCCG |
CEMIP2 | TGGTCGCAAGCACAGACTAT | TGCAGGAACTGAGGGGTTTC |
CP | GAGAGGCCCTGAAGAAGAGC | TGATGGTGTCTCCCACCTCT |
ELN | CTTTCCCGGCTTTGGTGTCG | CCTGAGCTTCGGGGGAAATG |
FBLN5 | TCCTGCACCGACGGATATTG | GCTGGCAGTAACCATAGCGA |
FMOD | AACCAGCTGCAGAAGATCCC | GCAGAAGCTGCTGATGGAGA |
H19 | GCACCTTGGACATCTGGAGT | GCCTACTCCACACTCCTCAC |
HTRA3 | CATACGGATGCGGACGATCA | GAATTCGGCGCAACCTCTTG |
ITIH5 | GTGGGGTCGCAGGAAGAG | AACAGTCTGACTTGCCTCGG |
LOX | GGGTCTGAATCCCACCCTTG | AAAAACGGGGCTCAAATCACG |
MMP1 | CCAGGTATTGGAGGGGATGC | GTCCAAGAGAATGGCCGAGT |
P4HA1 | AGGATGAATGGGACAAGCCTC | GGGTCATGTACTGTAGCTCGG |
PLOD2 | GAGAAGCCCTCGAGCATCC | GGCTGACTGCATAAATCGATGG |
TGFB2 | ACAACACCCTCTGGCTCAGT | CTGTAGAAAGTGGGCGGGAT |
TGFB3 | ACCCAGGAAAACACCGAGTC | TTAGGGCAGACAGCCAGTTC |
TNS1 | CCATGTCTCTGGTGGGCAAA | TGGGAGGATTTGAGCTGTCC |
TNXB | TCTGTCAGGCAGGAAACGAC | AGGTAGCTCCTTCTCCAGGG |
VWA1 | TTGTGGACGTGGATGACCTG | CTGGACGTGATCTCCGTGG |
Gene Name | Chromos. | Strand | Gene type | Base Mean | Base Mean Ctrl | Base Mean Treat | log2 FC | qPCR FC ± SD | p Value | Padj |
---|---|---|---|---|---|---|---|---|---|---|
H19 | 11 | - | lncRNA | 1102.56 | 49.10 | 2156.03 | 4.54 | 19.9 ± 23 | 2.21 × 10−121 | 3.00 × 10−117 |
CP | 3 | - | prot_coding | 131.14 | 5.32 | 256.96 | 1.98 | 54.6 ± 7.7 | 9.70 × 10−13 | 2.86 × 10−10 |
ITIH5 | 10 | - | prot_coding | 149.79 | 43.16 | 256.41 | 1.69 | 5.7 ± 2.5 | 1.10 × 10−10 | 2.22 × 10−8 |
FBLN5 | 14 | - | prot_coding | 472.33 | 140.55 | 804.10 | 1.47 | 5.5 ± 6.0 | 1.19 × 10−8 | 1.64 × 10−6 |
FMOD | 1 | - | prot_coding | 3576.51 | 1724.37 | 5428.65 | 1.40 | 2.2 ± 2.1 | 2.23 × 10−19 | 2.33 × 10−16 |
MMP1 | 11 | - | prot_coding | 5844.68 | 2513.30 | 9176.05 | 1.35 | 1.9 ± 1.3 | 1.23 × 10−14 | 4.64 × 10−12 |
CHST2 | 3 | + | prot_coding | 1493.45 | 745.04 | 2241.85 | 1.24 | - | 1.30 × 10−9 | 2.13 × 10−7 |
HTRA3 | 4 | + | prot_coding | 183.02 | 87.13 | 278.90 | 1.22 | 7.5 ± 8.8 | 4.99 × 10−7 | 4.48 × 10−5 |
TNXB | 6 | - | prot_coding | 208.02 | 45.08 | 370.95 | 1.21 | 3.7 ± 4.8 | 9.67 × 10−6 | 6.07 × 10−4 |
TGFB2 | 1 | + | prot_coding | 2836.67 | 1540.02 | 4133.33 | 1.20 | 1.7 ± 1.0 | 3.40 × 10−11 | 7.56 × 10−9 |
PLOD2 | 3 | - | prot_coding | 9973.82 | 6024.54 | 13923.10 | 1.15 | 3.2 ± 0.6 | 2.78 × 10−20 | 3.14 × 10−17 |
TGFB3 | 14 | - | prot_coding | 106.46 | 40.28 | 172.64 | 1.15 | 7.0 ± 6.2 | 2.13 × 10−5 | 1.17 × 10−3 |
P4HA1 | 10 | - | prot_coding | 2797.71 | 1640.17 | 3955.25 | 1.15 | 1.6 ± 0.9 | 9.35 × 10−13 | 2.82 × 10−10 |
TNS1 | 2 | - | prot_coding | 6950.84 | 4073.20 | 9828.48 | 1.14 | 4.7 ± 1.7 | 7.92 × 10−7 | 6.59 × 10−5 |
CEMIP2 | 9 | - | prot_coding | 5188.67 | 2510.43 | 7866.90 | 1.14 | 4.1 ± 3.1 | 8.12 × 10−8 | 8.73 × 10−6 |
ADAMTS6 | 5 | - | prot_coding | 624.19 | 374.99 | 873.40 | 1.09 | 2.9 ± 0.5 | 2.73 × 10−10 | 5.13 × 10−8 |
LOX | 5 | - | prot_coding | 3001.85 | 1871.25 | 4132.45 | 1.04 | 3.9 ± 0.1 | 9.24 × 10−8 | 9.71 × 10−6 |
VWA1 | 1 | + | prot_coding | 687.79 | 877.41 | 498.16 | −1.02 | 0.9 ± 0.2 | 1.12 × 10−5 | 6.79 × 10−4 |
ADAMTS15 | 11 | + | prot_coding | 584.60 | 895.85 | 273.35 | −1.49 | 0.7 ± 0.3 | 1.22 × 10−11 | 3.00 × 10−9 |
ELN | 7 | + | prot_coding | 6210.97 | 965.37 | 2770.58 | −1.69 | 0.4 ± 0.4 | 2.26 × 10−31 | 6.14 × 10−28 |
Gene-Id | Gene-Symbol | Chromos. | Gene-Name | LEC5; 21% O2 | LEC6; 21% O2 | LEC7; 21% O2 | LEC5; 1% O2 | LEC6; 1% O2 | LEC7; 1% O2 |
---|---|---|---|---|---|---|---|---|---|
ENSG00000110799 | VWF | 12 | von Willebrand factor | 110,056 | 74,476 | 31,043 | 92,868 | 45,799 | 56,732 |
ENSG00000110800 | COL4A1 | 13 | Collagen IV alpha 1 chain | 40,704 | 48,506 | 74,087 | 49,831 | 39,451 | 66,389 |
ENSG00000110801 | COL4A2 | 13 | Collagen IV alpha 2 chain | 29,111 | 40,049 | 66,375 | 37,650 | 35,392 | 78,698 |
ENSG00000110802 | COL8A1 | 3 | Collagen VIII alpha 1 chain | 19,050 | 34,930 | 9414 | 16,103 | 17,801 | 10,441 |
ENSG00000110803 | COL18A1 | 21 | Collagen XVIII alpha 1 chain | 29,847 | 10,505 | 17,796 | 38,463 | 10,204 | 17,105 |
ENSG00000110804 | COL5A2 | 2 | Collagen V alpha 2 chain | 3820 | 3535 | 13,285 | 5904 | 3889 | 12,653 |
ENSG00000110805 | COL4A5 | X | Collagen IV alpha 5 chain | 2114 | 676 | 2081 | 2145 | 864 | 1977 |
ENSG00000110806 | COL6A2 | 21 | Collagen VI alpha 2 chain | 104 | 359 | 304 | 229 | 535 | 383 |
ENSG00000110807 | COL5A1 | 9 | Collagen V alpha 1 chain | 2250 | 306 | 3762 | 4098 | 458 | 6698 |
ENSG00000110808 | COL11A2 | 6 | Collagen XI alpha 2 chain | 41 | 155 | 46 | 48 | 87 | 38 |
ENSG00000110809 | FBN1 | 15 | Fibrillin 1 | 10,648 | 5180 | 3912 | 9795 | 7227 | 3071 |
ENSG00000110810 | LAMA4 | 6 | Laminin alpha 4 | 22,245 | 16,175 | 11,342 | 27,918 | 16,742 | 15,632 |
ENSG00000110811 | LAMA5 | 20 | Laminin alpha 5 | 2174 | 632 | 4070 | 2380 | 465 | 4739 |
ENSG00000110812 | LAMA3 | 18 | Laminin alpha 3 | 484 | 167 | 349 | 582 | 125 | 366 |
ENSG00000110813 | LAMB1 | 7 | Laminin beta 1 | 28,134 | 14,482 | 23,098 | 30,873 | 13,910 | 38,887 |
ENSG00000110814 | LAMB2 | 3 | Laminin beta 2 | 10,535 | 9591 | 4763 | 13,436 | 10,002 | 7752 |
ENSG00000110815 | HSPG2 | 1 | Perlecan | 50,132 | 24,772 | 30,919 | 37,175 | 14,955 | 39,144 |
ENSG00000110816 | FN1 | 2 | Fibronectin | 104,522 | 45,391 | 173,759 | 156,880 | 90,964 | 671,160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, J.; Schwoch, S.; Zelent, C.; Sitte, M.; Salinas, G.; Wilting, J. Transcriptome Analysis of Hypoxic Lymphatic Endothelial Cells Indicates Their Potential to Contribute to Extracellular Matrix Rearrangement. Cells 2021, 10, 1008. https://doi.org/10.3390/cells10051008
Becker J, Schwoch S, Zelent C, Sitte M, Salinas G, Wilting J. Transcriptome Analysis of Hypoxic Lymphatic Endothelial Cells Indicates Their Potential to Contribute to Extracellular Matrix Rearrangement. Cells. 2021; 10(5):1008. https://doi.org/10.3390/cells10051008
Chicago/Turabian StyleBecker, Jürgen, Sonja Schwoch, Christina Zelent, Maren Sitte, Gabriela Salinas, and Jörg Wilting. 2021. "Transcriptome Analysis of Hypoxic Lymphatic Endothelial Cells Indicates Their Potential to Contribute to Extracellular Matrix Rearrangement" Cells 10, no. 5: 1008. https://doi.org/10.3390/cells10051008
APA StyleBecker, J., Schwoch, S., Zelent, C., Sitte, M., Salinas, G., & Wilting, J. (2021). Transcriptome Analysis of Hypoxic Lymphatic Endothelial Cells Indicates Their Potential to Contribute to Extracellular Matrix Rearrangement. Cells, 10(5), 1008. https://doi.org/10.3390/cells10051008