Weapons Evolve Faster Than Sperm in Bovids and Cervids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Phylogenetic Analyses
2.3. Comparing Evolutionary Models
2.4. Comparing Evolutionary Rates
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clutton-Brock, T.H.; Parker, G.A. Potential reproductive rates and the operation of sexual selection. Q. Rev. Biol. 1992, 67, 437–456. [Google Scholar] [CrossRef]
- Parker, G.A.; Simmons, L.W. Parental investment and the control of sexual selection: Predicting the direction of sexual competition. Proc. R. Soc. B 1996, 263, 315–321. [Google Scholar]
- Kokko, H.; Klug, H.; Jennions, M.D. Unifying cornerstones of sexual selection: Operational sex ratio, Bateman gradient and the scope for competitive investment. Ecol. Lett. 2012, 15, 1340–1351. [Google Scholar] [CrossRef]
- Andersson, M.B. Sexual Selection, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1994; ISBN 0691000573. [Google Scholar]
- Hardy, I.C.W.; Briffa, M. (Eds.) Animal Contests, 1st ed.; Cambridge University Press: Cambridge, UK, 2013; ISBN 9781139051248. [Google Scholar]
- Parker, G.A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 1970, 45, 525–567. [Google Scholar] [CrossRef]
- Parker, G.A. Sperm competition and the evolution of ejaculates: Towards a theory base. In Sperm Competition and Sexual Selection; Birkhead, T.R., Møller, A.P., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 3–54. [Google Scholar]
- Snook, R.R. Sperm in competition: Not playing by the numbers. Trends Ecol. Evol. 2005, 20, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Pizzari, T.; Parker, G.A. Sperm competition and sperm phenotype. In Sperm Biology; Birkhead, T.R., Hosken, D.J., Pitnick, S., Eds.; Academic Press: Burlington, MA, USA, 2009; pp. 207–245. ISBN 9780123725684. [Google Scholar]
- Fitzpatrick, J.L.; Almbro, M.; Gonzalez-Voyer, A.; Kolm, N.; Simmons, L.W. Male contest competition and the coevolution of weaponry and testes in pinnipeds. Evolution 2012, 66, 3595–3604. [Google Scholar] [CrossRef]
- Simmons, L.W.; Fitzpatrick, J.L. Sperm competition and the coevolution of pre- and postcopulatory traits: Weapons evolve faster than testes among onthophagine dung beetles. Evolution 2016, 70, 998–1008. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, J.L.; Bridge, C.D.; Snook, R.R. Repeated evidence that the accelerated evolution of sperm is associated with their fertilization function. Proc. R. Soc. B Biol. Sci. 2020, 287. [Google Scholar] [CrossRef]
- Cotton, S.; Fowler, K.; Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. R. Soc. B Biol. Sci. 2004, 271, 771–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, J.C.; Rowe, L. Condition-dependent ejaculate size and composition in a ladybird beetle. Proc. R. Soc. B Biol. Sci. 2010, 277, 3639–3647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macartney, E.L.; Crean, A.J.; Nakagawa, S.; Bonduriansky, R. Effects of nutrient limitation on sperm and seminal fluid: A systematic review and meta-analysis. Biol. Rev. 2019, 94, 1722–1739. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.A.; Lessells, C.M.; Simmons, L.W. Sperm competition games: A general model for precopulatory male–male competition. Evolution 2013, 67, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Simmons, L.W.; Lüpold, S.; Fitzpatrick, J.L. Evolutionary trade-offs between secondary sexual traits and ejaculates. Trends Ecol. Evol. 2017, 32, 964–976. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.P.; Garcia-Gonzalez, F. The total opportunity for sexual selection and the integration of pre- and post-mating episodes of sexual selection in a complex world. J. Evol. Biol. 2016, 29, 2338–2361. [Google Scholar] [CrossRef]
- Seddon, N.; Botero, C.A.; Tobias, J.A.; Dunn, P.O.; MacGregor, H.E.A.; Rubenstein, D.R.; Uy, J.A.C.; Weir, J.T.; Whittingham, L.A.; Safran, R.J. Sexual selection accelerates signal evolution during speciation in birds. Proc. R. Soc. B Biol. Sci. 2013, 280, 20131065. [Google Scholar] [CrossRef] [Green Version]
- Friedman, N.R.; Remeš, V. Rapid evolution of elaborate male coloration is driven by visual system in Australian fairy-wrens (Maluridae). J. Evol. Biol. 2015, 28, 2125–2135. [Google Scholar] [CrossRef]
- Van der Bijl, W.; Zeuss, D.; Chazot, N.; Tunström, K.; Wahlberg, N.; Wiklund, C.; Fitzpatrick, J.L.; Wheat, C.W. Butterfly dichromatism primarily evolved via Darwin’s, not Wallace’s, model. Evol. Lett. 2020, 4, 545–555. [Google Scholar] [CrossRef]
- Lüpold, S.; De Boer, R.A.; Evans, J.P.; Tomkins, J.L.; Fitzpatrick, J.L. How sperm competition shapes the evolution of testes and sperm: A meta-analysis. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375. [Google Scholar] [CrossRef]
- Pitnick, S.; Hosken, D.J.; Birkhead, T.R. Sperm morphological diversity. In Sperm Biology; Birkhead, T.R., Hosken, D.J., Pitnick, S., Eds.; Academic Press: Burlington, MA, USA, 2009; pp. 69–149. ISBN 9780123725684. [Google Scholar]
- Lüpold, S.; Pitnick, S. Sperm form and function: What do we know about the role of sexual selection? Reproduction 2018, 155, 229–243. [Google Scholar] [CrossRef]
- Parker, G.A. Sperm competition games: Sperm size and sperm number under adult control. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1993, 253, 245–254. [Google Scholar]
- Gage, M.J.G.; Morrow, E.H. Experimental evidence for the evolution of numerous, tiny sperm via sperm competition. Curr. Biol. 2003, 13, 754–757. [Google Scholar] [CrossRef]
- Lüpold, S.; Fitzpatrick, J.L. Sperm number trumps sperm size in mammalian ejaculate evolution. Proc. R. Soc. B Biol. Sci. 2015, 282, 1–7. [Google Scholar] [CrossRef]
- Immler, S.; Pitnick, S.; Parker, G.A.; Durrant, K.L.; Lüpold, S.; Calhim, S.; Birkhead, T.R. Resolving variation in the reproductive tradeoff between sperm size and number. Proc. Natl. Acad. Sci. USA 2011, 108, 5325–5330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tourmente, M.; Delbarco Trillo, J.; Roldan, E.R.S. No evidence of trade-offs in the evolution of sperm numbers and sperm size in mammals. J. Evol. Biol. 2015, 28, 1816–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, W.B.; Huang, Y.; Zeng, Y.; Zhong, M.J.; Luo, Y.; Lüpold, S. Ejaculate evolution in external fertilizers: Influenced by sperm competition or sperm limitation? Evolution 2018, 72, 4–17. [Google Scholar] [CrossRef] [Green Version]
- Simmons, L.W.; Moore, A.J. Evolutionary quantitative genetics of sperm. In Sperm Biology; Birkhead, T.R., Hosken, D.J., Pitnick, S., Eds.; Academic Press: Burlington, MA, USA, 2009; pp. 405–434. ISBN 9780123725684. [Google Scholar]
- Cooney, C.R.; MacGregor, H.E.A.; Seddon, N.; Tobias, J.A. Multi-modal signal evolution in brids: Re-examining a standard proxy for sexual selection. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Immler, S.; Gonzalez-Voyer, A.; Birkhead, T.R. Distinct evolutionary patterns of morphometric sperm traits in passerine birds. Proc. R. Soc. B Biol. Sci. 2012, 279, 4174–4182. [Google Scholar] [CrossRef]
- Rowe, M.; Albrecht, T.; Cramer, E.R.A.; Johnsen, A.; Laskemoen, T.; Weir, J.T.; Lifjeld, J.T. Postcopulatory sexual selection is associated with accelerated evolution of sperm morphology. Evolution 2015, 69, 1044–1052. [Google Scholar] [CrossRef]
- Kahrl, A.F.; Johnson, M.A.; Cox, R.M. Rapid evolution of testis size relative to sperm morphology suggests that post-copulatory selection targets sperm number in Anolis lizards. J. Evol. Biol. 2019, 32, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Friesen, C.R.; Kahrl, A.F.; Olsson, M. Sperm competition in squamate reptiles: Sperm competition in lizards and snakes. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375. [Google Scholar] [CrossRef]
- Darwin, C. The Descent of Man and Selection in Relation to Sex; John Murray: London, UK, 1871. [Google Scholar]
- Kruuk, L.E.B.; Slate, J.; Pemberton, J.M.; Brotherstone, S.; Guinness, F.; Clutton-Brock, T. Antler size in red deer: Heritability and selection but no evolution. Evolution 2002, 56, 1683–1695. [Google Scholar] [CrossRef]
- Preston, B.T.; Stevenson, I.R.; Pemberton, J.M.; Coltman, D.W.; Wilson, K. Overt and covert competition in a promiscuous mammal: The importance of weaponry and testes size to male reproductive success. Proc. R. Soc. B Biol. Sci. 2003, 270, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Malo, A.F.; Roldan, E.R.S.; Garde, J.; Soler, A.J.; Gomendio, M. Antlers honestly advertise sperm production and quality. Proc. R. Soc. B Biol. Sci. 2005, 272, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Blood, D.A.; Flook, D.R.; Wishart, W.D. Weights and growth of Rocky Mountain Bighorn Sheep in Western Alberta. J. Wildl. Manag. 1970, 34, 451–455. [Google Scholar] [CrossRef]
- Moen, R.; Pastor, J. A model to predict nutritional requirements for antler growth in moose. Alces 1998, 34, 59–74. [Google Scholar]
- Bro-Jørgensen, J. The intensity of sexual selection predicts weapon size in male bovids. Evolution 2007, 61, 1316–1326. [Google Scholar] [CrossRef] [PubMed]
- Caro, T.M.; Graham, C.M.; Stoner, C.J.; Flores, M.M. Correlates of horn and antler shape in bovids and cervids. Behav. Ecol. Sociobiol. 2003, 55, 32–41. [Google Scholar] [CrossRef]
- Jennings, J.; Gammell, M.P. Contest behaviour in ungulates. In Animal Contests; Hardy, I.C.W., Briffa, M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 304–320. ISBN 9781139051248. [Google Scholar]
- Johnson, H.E.; Bleich, V.C.; Krausman, P.R.; Koprowski, J.L. Effects of antler breakage on mating behavior in male tule elk (Cervus elaphus nannodes). Eur. J. Wildl. Res. 2007, 53, 9–15. [Google Scholar] [CrossRef]
- Loison, A.; Gaillard, J.M.; Pélabon, C.; Yoccoz, N.G. What factors shape sexual size dimorphism in ungulates? Evol. Ecol. Res. 1999, 1, 611–629. [Google Scholar]
- Pérez-Barbería, F.J.; Gordon, I.J.; Pagel, M. The origins of sexual dimorphism in body size in ungulates. Evolution 2002, 56, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Lüpold, S.; Simmons, L.W.; Tomkins, J.L.; Fitzpatrick, J.L. No evidence for a trade-off between sperm length and male premating weaponry. J. Evol. Biol. 2015, 28, 2187–2195. [Google Scholar] [CrossRef] [Green Version]
- Gosling, L.M. The evolution of mating strategies in male antelopes. In Ecological Aspects of Social Evolution; Rubenstein, D.I., Wrangham, R.W., Eds.; Princeton University Press: Princeton, NJ, USA, 1986; pp. 244–281. [Google Scholar]
- Ginsberg, J.R.; Rubenstein, D.I. Sperm competition and variation in zebra mating behavior. Behav. Ecol. Sociobiol. 1990, 26, 427–434. [Google Scholar] [CrossRef]
- Malo, A.F.; Gomendio, M.; Garde, J.; Lang-Lenton, B.; Soler, A.J.; Roldan, E.R.S. Sperm design and sperm function. Biol. Lett. 2006, 2, 246–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomendio, M.; Malo, A.F.; Garde, J.; Roldan, E.R.S. Sperm traits and male fertility in natural populations. Reproduction 2007, 134, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Malo, A.F.; Garde, J.J.; Soler, A.J.; García, A.J.; Gomendio, M.; Roldan, E.R.S. Male fertility in natural populations of red deer is determined by sperm velocity and the proportion of normal spermatozoa. Biol. Reprod. 2005, 72, 822–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomendio, M.; Tourmente, M.; Roldan, E.R.S. Why mammalian lineages respond differently to sexual selection: Metabolic rate constrains the evolution of sperm size. Proc. R. Soc. B Biol. Sci. 2011, 278, 3135–3141. [Google Scholar] [CrossRef] [PubMed]
- Gomendio, M.; Roldan, E.R.S. Sperm competition influences sperm size in mammals. Proc. R. Soc. B Biol. Sci. 1991, 243, 181–185. [Google Scholar] [CrossRef]
- Gomendio, M.; Roldan, E.R.S. Implications of diversity in sperm size and function for sperm competition and fertility. Int. J. Dev. Biol. 2008, 52, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Tourmente, M.; Gomendio, M.; Roldan, E.R.S. Sperm competition and the evolution of sperm design in mammals. BMC Evol. Biol. 2011, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Lüpold, S.; Tomkins, J.L.; Simmons, L.W.; Fitzpatrick, J.L. Female monopolization mediates the relationship between pre- and postcopulatory sexual traits. Nat. Commun. 2014, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Vanpé, C.; Gaillard, J.M.; Kjellander, P.; Mysterud, A.; Magnien, P.; Delorme, D.; Van Laere, G.; Klein, F.; Liberg, O.; Hewison, A.J.M. Antler size provides an honest signal of male phenotypic quality in roe deer. Am. Nat. 2007, 169, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Plard, F.; Bonenfant, C.; Gaillard, J.-M. Revisiting the allometry of antlers among deer species: Male-male sexual competition as a driver. Oikos 2011, 120, 601–606. [Google Scholar] [CrossRef]
- Simmons, L.W.; Emlen, D.J. Evolutionary trade-off between weapons and testes. Proc. Nat. Acad. Sci. USA 2006, 103, 16346–16351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Barbería, F.J.; Gordon, I.J. Relationships between oral morphology and feeding style in the ungulata: A phylogenetically controlled evaluation. Proc. R. Soc. B Biol. Sci. 2001, 268, 1023–1032. [Google Scholar] [CrossRef]
- Lüpold, S. Ejaculate quality and constraints in relation to sperm competition levels among eutherian mammals. Evolution 2013, 67, 3052–3060. [Google Scholar] [CrossRef]
- Gómez Montoto, L.; Magaña, C.; Tourmente, M.; Martín-Coello, J.; Crespo, C.; Luque-Larena, J.J.; Gomendio, M.; Roldan, E.R.S. Sperm competition, sperm numbers and sperm quality in muroid rodents. PLoS ONE 2011, 6, e18173. [Google Scholar] [CrossRef] [Green Version]
- DelBarco-Trillo, J.; Tourmente, M.; Roldan, E.R.S. Metabolic rate limits the effect of sperm competition on mammalian spermatogenesis. PLoS ONE 2013, 8, e76510. [Google Scholar] [CrossRef] [Green Version]
- Ramm, S.A.; Edward, D.A.; Claydon, A.J.; Hammond, D.E.; Brownridge, P.; Hurst, J.L.; Beynon, R.J.; Stockley, P. Sperm competition risk drives plasticity in seminal fluid composition. BMC Biol. 2015, 13. [Google Scholar] [CrossRef] [Green Version]
- Zurano, J.P.; Magalhães, F.M.; Asato, A.E.; Silva, G.; Bidau, C.J.; Mesquita, D.O.; Costa, G.C. Cetartiodactyla: Updating a time-calibrated molecular phylogeny. Mol. Phylogenet. Evol. 2019, 133, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Emlen, D.J. The evolution of animal weapons. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 387–413. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 29 April 2021).
- Adams, D.C. Comparing evolutionary rates for different phenotypic traits on a phylogeny using likelihood. Soc. Syst. Biol. 2013, 62, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Harmon, L.J.; Weir, J.T.; Brock, C.D.; Glor, R.E.; Challenger, W. GEIGER: Investigating evolutionary radiations. Bioinformatics 2008, 24, 129–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, M.A.; King, A.A. Phylogenetic comparative analysis: A modeling approach for adaptive evolution. Am. Nat. 2004, 164, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, S.P.; Garland, T.; Ives, A.R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 2003, 57, 717–745. [Google Scholar] [CrossRef]
- Revell, L.J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2012, 3, 217–223. [Google Scholar] [CrossRef]
- Houle, D. Comparing evolvability and variability of quantitative traits. Genetics 1992, 130, 195–204. [Google Scholar] [CrossRef]
- Ferrandiz-Rovira, M.; Lemaître, J.F.; Lardy, S.; López, B.C.; Cohas, A. Do pre- and post-copulatory sexually selected traits covary in large herbivores? BMC Evol. Biol. 2014, 14. [Google Scholar] [CrossRef] [Green Version]
- West-Eberhard, M. Sexual selection, social competition, and speciation. Q. Rev. Biol. 1983, 58, 155–183. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Voyer, A.; Kolm, N. Rates of phenotypic evolution of ecological characters and sexual traits during the Tanganyikan cichlid adaptive radiation. J. Evol. Biol. 2011, 24, 2378–2388. [Google Scholar] [CrossRef] [Green Version]
- Arnegard, M.E.; McIntyre, P.B.; Harmon, L.J.; Zelditch, M.L.; Crampton, W.G.R.; Davis, J.K.; Sullivan, J.P.; Lavoué, S.; Hopkins, C.D. Sexual signal evolution outpaces ecological divergence during electric fish species radiation. Am. Nat. 2010, 176, 335–356. [Google Scholar] [CrossRef] [Green Version]
- Klaczko, J.; Ingram, T.; Losos, J. Genitals evolve faster than other traits in Anolis lizards. J. Zool. 2015, 295, 44–48. [Google Scholar] [CrossRef]
- Hernández Fernández, M.; Vrba, E.S. A complete estimate of the phylogenetic relationships in Ruminantia: A dated species-level supertree of the extant ruminants. Biol. Rev. Camb. Philos. Soc. 2005, 80, 269–302. [Google Scholar] [CrossRef]
- Prothero, D.R.; Foss, S.E. (Eds.) The Evolution of Artiodactyls, 1st ed.; The John Hopkins University Press: Baltimore, MD, USA, 2007; ISBN 9780801887352. [Google Scholar]
- Geist, V. The evolution of horn-like organs. Behaviour 1966, 27, 175–214. [Google Scholar] [CrossRef]
- Kitchener, A. The effect of behaviour and body weight on the mechanical design of horns. J. Zool. 1985, 205, 191–203. [Google Scholar] [CrossRef]
- Lundrigan, B. Morphology of horns and fighting behavior in the family bovidae. J. Mammal. 1996, 77, 462–475. [Google Scholar] [CrossRef]
- Parker, G.A.; Begon, M.E. Sperm competition games: Sperm size and number under gametic control. Proc. R. Soc. B Biol. Sci. 1993, 253, 255–262. [Google Scholar] [CrossRef]
- Birkhead, T.R.; Pellat, E.J.; Brekke, P.; Yeates, R.; Castillo-Juarez, H. Genetic effects on sperm design in the zebra finch. Nature 2005, 434, 383–387. [Google Scholar] [CrossRef]
- Calhim, S.; Immler, S.; Birkhead, T.R. Postcopulatory sexual selection is associated with reduced variation in sperm morphology. PLoS ONE 2007, 2. [Google Scholar] [CrossRef] [PubMed]
- Immler, S.; Calhim, S.; Birkhead, T.R. Increased postcopulatory sexual selection reduces the intramale variation in sperm design. Evolution 2008, 62, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Kleven, O.; Laskemoen, T.; Fossøy, F.; Robertson, R.J.; Lifjeld, J.T. Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 2008, 62, 494–499. [Google Scholar] [CrossRef]
- Rowley, A.; Locatello, L.; Kahrl, A.; Rego, M.; Boussard, A.; Garza-Gisholt, E.; Kempster, R.M.; Collin, S.P.; Giacomello, E.; Follesa, M.C.; et al. Sexual selection and the evolution of sperm morphology in sharks. J. Evol. Biol. 2019, 32, 1027–1035. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, J.L.; Baer, B. Polyandry reduces sperm length variation in social insects. Evolution 2011, 65, 3006–3012. [Google Scholar] [CrossRef]
- Tourmente, M.; Gomendio, M.; Roldan, E.R.S. Mass-specific metabolic rate and sperm competition determine sperm size in marsupial mammals. PLoS ONE 2011, 6, e21244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceacero, F. Long or heavy? Physiological constraints in the evolution of antlers. J. Mamm. Evol. 2016, 23, 209–216. [Google Scholar] [CrossRef]
- Moore, A.J.; Bacigalupe, L.D.; Snook, R.R. Integrated and independent evolution of heteromorphic sperm types. Proc. R. Soc. B Biol. Sci. 2013, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Fuster, A.; Juan, C.; Petitpierre, E. Genome size in Tribolium flour-beetles: Inter-and intraspecific variation. Genet. Res. 1991, 58, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Gage, M.J.G. Mammalian sperm morphometry. Proc. R. Soc. B Biol. Sci. 1998, 265, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, M.H.; Mondaca, F.C.; Ojeda, R.A.; Köhler, N.; Garrido, O. Morphological diversity in the sperms of caviomorph rodents. J. Neotrop. Mammal. 2002, 9, 159–170. [Google Scholar]
- Hogg, J.T. Copulatory tactics in relation to sperm competition in Rocky Mountain bighorn sheep. Behav. Ecol. Sociobiol. 1988, 22, 49–59. [Google Scholar] [CrossRef]
- Preston, B.T.; Stevenson, I.R.; Pemberton, J.M.; Wilson, K. Dominant rams lose out by sperm depletion. Nature 2001, 409, 681–682. [Google Scholar] [CrossRef]
Trait | σ2obs | σ2common | AICobs | AICcommon | Log (Lobs) | Log (Lcommon) | LRT | p |
---|---|---|---|---|---|---|---|---|
(a) Length Measure Comparisons (n = 38) | ||||||||
Horn/antler length | 10.71 × 10−3 | 3.30 × 10−3 | −245.97 | −81.83 | 132.98 | 46.91 | 172.14 | <0.001 |
Muzzle width | 4.17 × 10−3 | |||||||
Sperm head length | 0.56 × 10−3 | |||||||
Sperm midpiece length | 0.87 × 10−3 | |||||||
Sperm flagellum length | 0.20 × 10−3 | |||||||
Post hoc pairwise comparisons | Head length vs. Midpiece length | 77.96 | 77.05 | 1.81 | 0.18 | |||
Head length vs. Flagellum length | 106.20 | 101.20 | 1.00 | <0.01 | ||||
Head length vs. Muzzle width | 48.09 | 31.47 | 33.25 | <0.001 | ||||
Head length vs. Weapon length | 30.15 | −1.58 | 63.45 | <0.001 | ||||
Midpiece length vs. Flagellum length | 97.88 | 88.23 | 19.30 | <0.001 | ||||
Midpiece length vs. Muzzle width | 39.77 | 29.08 | 21.39 | <0.001 | ||||
Midpiece length vs. Weapon length | 21.82 | −2.60 | 48.85 | <0.001 | ||||
Flagellum length vs. Muzzle width | 68.02 | 34.51 | 67.02 | <0.001 | ||||
Flagellum length vs. Weapon length | 50.07 | −0.34 | 100.81 | <0.001 | ||||
Muzzle width vs. Weapon length | −8.04 | −12.13 | 8.18 | <0.01 | ||||
(b) Mass Measure Comparisons (n = 60) | ||||||||
Testes mass | 0.019 | 0.017 | 118.56 | 117.42 | −55.28 | −55.71 | 0.87 | 0.35 |
Body mass | 0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reuland, C.; Simmons, L.W.; Lüpold, S.; Fitzpatrick, J.L. Weapons Evolve Faster Than Sperm in Bovids and Cervids. Cells 2021, 10, 1062. https://doi.org/10.3390/cells10051062
Reuland C, Simmons LW, Lüpold S, Fitzpatrick JL. Weapons Evolve Faster Than Sperm in Bovids and Cervids. Cells. 2021; 10(5):1062. https://doi.org/10.3390/cells10051062
Chicago/Turabian StyleReuland, Charel, Leigh W. Simmons, Stefan Lüpold, and John L. Fitzpatrick. 2021. "Weapons Evolve Faster Than Sperm in Bovids and Cervids" Cells 10, no. 5: 1062. https://doi.org/10.3390/cells10051062
APA StyleReuland, C., Simmons, L. W., Lüpold, S., & Fitzpatrick, J. L. (2021). Weapons Evolve Faster Than Sperm in Bovids and Cervids. Cells, 10(5), 1062. https://doi.org/10.3390/cells10051062