Effects of (a Combination of) the Beta2-Adrenoceptor Agonist Indacaterol and the Muscarinic Receptor Antagonist Glycopyrrolate on Intrapulmonary Airway Constriction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Guinea Pig Lung Slices
2.3. Lipopolysaccharide Instillation
2.4. Human Lung Slices
2.5. Airway Responsiveness Measurements
3. Results
3.1. Effect of Indacaterol and Glycopyrrolate on Methacholine-Induced Constrictions of Large and Small Airways in Guinea Pig Lung Slices
3.1.1. Effect of Indacaterol
3.1.2. Effect of Glycopyrrolate
3.1.3. Indacaterol vs. Glycopyrrolate
3.2. Effect of Indacaterol and Glycopyrrolate on EFS-Induced Constrictions of Large and Small Airways in Guinea Pig Lung Slices
3.2.1. Effect of Indacaterol
3.2.2. Effect of Glycopyrrolate
3.2.3. Indacaterol vs. Glycopyrrolate
3.3. Effect of Indacaterol and Glycopyrrolate on Methacholine-Induced Constrictions Lung Slices Obtained from COPD Patients
3.4. Effect of (the Combination of) Low Concentrations of Indacaterol and Glycopyrrolate on Methacholine-Induced Airway Constrictions in a Guinea Pig Model of COPD
3.4.1. Effect in Large and Small Intrapulmonary Airways of Saline-Challenged Animals
3.4.2. Effect in Large and Small Intrapulmonary Airways of LPS-Challenged Animals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hogg, J.C.; Timens, W. The pathology of chronic obstructive pulmonary disease. Annu. Rev. Pathol. 2009, 4, 435–459. [Google Scholar] [CrossRef] [PubMed]
- Postma, D.S.; Timens, W. Remodeling in asthma and chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2006, 3, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Maarsingh, H.; Bidan, C.M.; Brook, B.S.; Zuidhof, A.B.; Elzinga, C.R.S.; Smit, M.; Oldenburger, A.; Gosens, R.; Timens, W.; Meurs, H. Small airway hyperresponsiveness in COPD: Relationship between structure and function in lung slices. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L537–L546. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 19 April 2021).
- Overington, J.D.; Huang, Y.C.; Abramson, M.J.; Brown, J.L.; Goddard, J.R.; Bowman, R.V.; Fong, K.M.; Yang, I.A. Implementing clinical guidelines for chronic obstructive pulmonary disease: Barriers and solutions. J. Thorac. Dis. 2014, 6, 1586–1596. [Google Scholar] [CrossRef] [PubMed]
- Matera, M.G.; Cazzola, M.; Page, C. Prospects for COPD treatment. Curr. Opin. Pharmacol. 2020, 56, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Billington, C.K.; Penn, R.B.; Hall, I.P. Beta(2) agonists. Handb. Exp. Pharmacol. 2017, 237, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Dekker, F.J.; Maarsingh, H. Exchange protein directly activated by cAMP (epac): A multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol. Rev. 2013, 65, 670–709. [Google Scholar] [CrossRef] [Green Version]
- Kistemaker, L.E.; Gosens, R. Acetylcholine beyond bronchoconstriction: Roles in inflammation and remodeling. Trends Pharmacol. Sci. 2015, 36, 164–171. [Google Scholar] [CrossRef]
- Gross, N.J.; Skorodin, M.S. Role of the parasympathetic system in airway obstruction due to emphysema. N. Engl. J. Med. 1984, 311, 421–425. [Google Scholar] [CrossRef]
- Meurs, H.; Gosens, R.; Zaagsma, J. Airway hyperresponsiveness in asthma: Lessons from in vitro model systems and animal models. Eur. Respir. J. 2008, 32, 487–502. [Google Scholar] [CrossRef]
- Pera, T.; Penn, R.B. Crosstalk between beta-2-adrenoceptor and muscarinic acetylcholine receptors in the airway. Curr. Opin. Pharmacol. 2014, 16, 72–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carstairs, J.R.; Nimmo, A.J.; Barnes, P.J. Autoradiographic visualization of beta-adrenoceptor subtypes in human lung. Am. Rev. Respir. Dis. 1985, 132, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Mak, J.C.; Barnes, P.J. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am. Rev. Respir. Dis. 1990, 141, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Anisuzzaman, A.S.; Yoshiki, H.; Sasaki, M.; Koshiji, T.; Uwada, J.; Nishimune, A.; Itoh, H.; Muramatsu, I. Regional quantification of muscarinic acetylcholine receptors and β-adrenoceptors in human airways. Br. J. Pharmacol. 2012, 166, 1804–1814. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.J. Distribution of receptor targets in the lung. Proc. Am. Thorac. Soc. 2004, 1, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010, 29, e1000412. [Google Scholar] [CrossRef]
- Oenema, T.A.; Maarsingh, H.; Smit, M.; Groothuis, G.M.; Meurs, H.; Gosens, R. Bronchoconstriction Induces TGF-β release and airway remodelling in guinea pig lung slices. PLoS ONE 2013, 8, e65580. [Google Scholar] [CrossRef] [Green Version]
- Ressmeyer, A.R.; Larsson, A.K.; Vollmer, E.; Dahlèn, S.E.; Uhlig, S.; Martin, C. Characterisation of guinea pig precision-cut lung slices: Comparison with human tissues. Eur. Respir. J. 2006, 28, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Pera, T.; Zuidhof, A.; Valadas, J.; Smit, M.; Schoemaker, R.G.; Gosens, R.; Maarsingh, H.; Zaagsma, J.; Meurs, H. Tiotropium inhibits pulmonary inflammation and remodelling in a guinea pig model of COPD. Eur. Respir. J. 2011, 38, 789–796. [Google Scholar] [CrossRef] [Green Version]
- Toward, T.J.; Broadley, K.J. Goblet cell hyperplasia, airway function, and leukocyte infiltration after chronic lipopolysaccharide exposure in conscious guinea pigs: Effects of rolipram and dexamethasone. J. Pharmacol. Exp. Ther. 2002, 302, 814–821. [Google Scholar] [CrossRef] [Green Version]
- Sturton, R.G.; Trifilieff, A.; Nicholson, A.G.; Barnes, P.J. Pharmacological characterization of indacaterol, a novel once daily inhaled beta-2 adrenoceptor agonist, on small airways in human and rat precision-cut lung slices. J. Pharmacol. Exp. Ther. 2008, 324, 270–275. [Google Scholar] [CrossRef] [Green Version]
- Beckett, A.H.; Harper, N.J.; Clitherow, J.W. The importance of stereoisomerism in muscarinic activity. J. Pharm. Pharmacol. 1963, 15, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Van den Berge, M.; Vonk, J.M.; Gosman, M.; Lapperre, T.S.; Snoeck-Stroband, J.B.; Sterk, P.J.; Kunz, L.I.; Hiemstra, P.S.; Timens, W.; Ten Hacken, N.H.; et al. Clinical and inflammatory determinants of bronchial hyperresponsiveness in COPD. Eur. Respir. J. 2012, 40, 1098–1105. [Google Scholar] [CrossRef] [Green Version]
- Moulton, B.C.; Fryer, A.D. Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and COPD. Br. J. Pharmacol. 2011, 163, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Gunst, S.J.; Stropp, J.Q.; Flavahan, N.A. Muscarinic receptor reserve and beta-adrenergic sensitivity in tracheal smooth muscle. J. Appl. Physiol. 1989, 67, 1294–1298. [Google Scholar] [CrossRef] [PubMed]
- Meurs, H.; Roffel, A.F.; Postema, J.B.; Timmermans, A.; Elzinga, C.R.; Kauffman, H.F.; Zaagsma, J. Evidence for a direct relationship between phosphoinositide metabolism and airway smooth muscle contraction induced by muscarinic agonists. Eur. J. Pharmacol. 1988, 156, 271–274. [Google Scholar] [CrossRef]
- Kistemaker, L.E.M.; Prakash, Y.S. Airway innervation and plasticity in asthma. Physiology 2019, 34, 283–298. [Google Scholar] [CrossRef]
- Brown, S.M.; Koarai, A.; Sturton, R.G.; Nicholson, A.G.; Barnes, P.J.; Donnelly, L.E. A role for M2 and M3 muscarinic receptors in the contraction of rat and human small airways. Eur. J. Pharmacol. 2013, 702, 109–115. [Google Scholar] [CrossRef]
- Battram, C.; Charlton, S.J.; Cuenoud, B.; Dowling, M.R.; Fairhurst, R.A.; Farr, D.; Fozard, J.R.; Leighton-Davies, J.R.; Lewis, C.A.; McEvoy, L.; et al. In vitro and in vivo pharmacological characterization of 5-[(R)-2-(5,6-diethyl-indan-2-ylamino)-1-hydroxy-ethyl]-8-hydroxy-1H-quinolin-2-one (indacaterol), a novel inhaled beta(2) adrenoceptor agonist with a 24-h duration of action. J. Pharmacol. Exp. Ther. 2006, 317, 762–770. [Google Scholar] [CrossRef]
- Calzetta, L.; Rogliani, P.; Page, C.; Rinaldi, B.; Cazzola, M.; Matera, M.G. Pharmacological characterization of the interaction between tiotropium bromide and olodaterol on human bronchi and small airways. Pulm. Pharmacol. Ther. 2019, 56, 39–50. [Google Scholar] [CrossRef]
- Ismaila, A.S.; Huisman, E.L.; Punekar, Y.S.; Karabis, A. Comparative efficacy of long-acting muscarinic antagonist monotherapies in COPD: A systematic review and network meta-analysis. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 2495–2517. [Google Scholar] [CrossRef] [Green Version]
- Wedzicha, J.A.; Buhl, R.; Lawrence, D.; Young, D. Monotherapy with indacaterol once daily reduces the rate of exacerbations in patients with moderate-to-severe COPD: Post-hoc pooled analysis of 6 months data from three large phase III trials. Respir. Med. 2015, 109, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Donohue, J.F.; Fogarty, C.; Lötvall, J.; Mahler, D.A.; Worth, H.; Yorgancioglu, A.; Iqbal, A.; Swales, J.; Owen, R.; Higgins, M.; et al. Once-daily bronchodilators for chronic obstructive pulmonary disease: Indacaterol versus tiotropium. INHANCE Study Investigators. Am. J. Respir. Crit. Care Med. 2010, 182, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Banerji, D.; Fogel, R.; Patalano, F. Indacaterol/glycopyrronium: A dual bronchodilator for COPD. Drug Discov. Today 2018, 23, 196–203. [Google Scholar] [CrossRef]
- Matera, M.G.; Page, C.P.; Calzetta, L.; Rogliani, P.; Cazzola, M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol. Rev. 2020, 72, 218–252. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Calzetta, L.; Segreti, A.; Facciolo, F.; Rogliani, P.; Matera, M.G. Translational Study Searching for Synergy between Glycopyrronium and Indacaterol. COPD 2015, 12, 175–181. [Google Scholar] [CrossRef]
- Cazzola, M.; Calzetta, L.; Page, C.P.; Rogliani, P.; Facciolo, F.; Gavalda, A.; Matera, M.G. Pharmacological characterization of the interaction between aclidinium bromide and formoterol fumarate on human isolated bronchi. Eur. J. Pharmacol. 2014, 745, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Calzetta, L.; Ora, J.; Puxeddu, E.; Rogliani, P.; Matera, M.G. Searching for the synergistic effect between aclidinium and formoterol: From bench to bedside. Respir. Med. 2015, 109, 1305–1311. [Google Scholar] [CrossRef] [Green Version]
- Calzetta, L.; Rogliani, P.; Facciolo, F.; Rendina, E.; Cazzola, M.; Matera, M.G. Pharmacological characterization of the interaction between umeclidinium and vilanterol in human bronchi. Eur. J. Pharmacol. 2017, 812, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Meurs, H.; Dekkers, B.G.J.; Maarsingh, H.; Halayko, A.J.; Zaagsma, J.; Gosens, R. Muscarinic receptors on airway mesenchymal cells: Novel lessons for an ancient target. Pulm. Pharmacol. Ther. 2013, 26, 145–155. [Google Scholar] [CrossRef]
- Bartels, C.; Looby, M.; Sechaud, R.; Kaiser, G. Determination of the pharmacokinetics of glycopyrronium in the lung using a population pharmacokinetic modelling approach. Br. J. Clin. Pharmacol. 2013, 76, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Slaton, R.M.; Cruthirds, D.L. Indacaterol (arcapta neohaler) for chronic obstructive pulmonary disease. Pharm. Ther. 2012, 37, 86–98. [Google Scholar]
- Inoue, S.; Vaidya, S.; Tillmann, H.C.; Sakita, Y.; Machineni, S.; Heudi, O.; Furihata, K. Pharmacokinetics of indacaterol, glycopyrronium and mometasone furoate administered as an inhaled fixed-dose combination in Japanese and Caucasian healthy subjects. BMC Pulm. Med. 2021, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Calzetta, L.; Page, C.P.; Matera, M.G. Use of indacaterol for the treatment of COPD: A pharmacokinetic evaluation. Expert Opin. Drug Metab. Toxicol. 2014, 10, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Chabicovsky, M.; Winkler, S.; Soeberdt, M.; Kilic, A.; Masur, C.; Abels, C. Pharmacology, toxicology and clinical safety of glycopyrrolate. Toxicol. Appl. Pharmacol. 2019, 370, 154–169. [Google Scholar] [CrossRef]
- Sechaud, R.; Machineni, S.; Tillmann, H.C.; Hara, H.; Tan, X.; Zhao, R.; Ren, S.; Hou, J. Pharmacokinetics of Glycopyrronium Following Repeated Once-Daily Inhalation in Healthy Chinese Subjects. Eur. J. Drug. Metab. Pharmacokinet. 2016, 41, 723–731. [Google Scholar] [CrossRef]
- Schlepütz, M.; Uhlig, S.; Martin, C. Electric field stimulation of precision-cut lung slices. J. Appl. Physiol. 2011, 110, 545–554. [Google Scholar] [CrossRef]
- Martin, C.; Uhlig, S.; Ullrich, V. Videomicroscopy of methacholine-induced contraction of individual airways in precision-cut lung slices. Eur. Respir. J. 1996, 9, 2479–2487. [Google Scholar] [CrossRef] [Green Version]
- Donovan, C.; Royce, S.G.; Esposito, J.; Tran, J.; Ibrahim, Z.A.; Tang, M.L.; Bailey, S.; Bourke, J.E. Differential effects of allergen challenge on large and small airway reactivity in mice. PLoS ONE 2013, 8, e74101. [Google Scholar] [CrossRef] [Green Version]
Large Airways | Small Airways | |||||
---|---|---|---|---|---|---|
Treatment | Emax (% Closure) | pEC50 (−log M) | n | Emax (% Closure) | pEC50 (−log M) | n |
Control | 99.7 ± 0.6 | 6.41 ± 0.14 | 10 | 93.5 ± 4.8 | 6.01 ± 0.19 | 10 |
0.01 μM indacaterol | 101.3 ± 1.3 | 5.66 ± 0.17 ** | 5 | 73.1 ± 9.7 | 5.67 ± 0.19 | 8 |
0.1 μM indacaterol | 73.3 ± 9.3 * | 5.15 ± 0.40 ** | 6 | 83.0 ± 6.5 | 5.70 ± 0.20 | 8 |
1 μM indacaterol | 99.3 ± 0.8 | 5.57 ± 0.17 ** | 8 | 94.1 ± 4.1 | 5.51 ± 0.21 | 8 |
10 μM indacaterol | 71.5 ± 11.1 * | 4.90 ± 0.19 *** | 7 | 85.7 ± 8.5 † | 5.17 ± 0.30 *,† | 7 |
1 nM glycopyrrolate | 97.7 ± 2.9 | 5.61 ± 0.16 *** | 7 | 89.2 ± 5.6 | 5.33 ± 0.21 * | 8 |
3 nM glycopyrrolate | 78.6 ± 8.3 * | 4.68 ± 0.33 *** | 8 | 66.8 ± 18.5 * | 4.77 ± 0.28 ** | 6 |
10 nM glycopyrrolate | 58.9 ± 12.2 ** | 4.21 ± 0.35 *** | 7 | 58.2 ± 10.0 ** | 4.23 ± 0.24 *** | 8 |
Large Airways | Small Airways | |||||
---|---|---|---|---|---|---|
Treatment | Emax (% Closure) | F50% (Hz) | n | Emax (% Closure) | F50% (Hz) | n |
Control | 75.1 ± 6.3 | 13.5 ± 2.2 | 10 | 86.3 ± 5.4 | 11.6 ± 2.3 | 9 |
0.01 μM indacaterol | 64.6 ± 10.6 | 14.4 ± 3.7 | 4 | 71.9 ± 5.8 | 16.6 ± 3.8 | 5 |
0.1 μM indacaterol | 74.9 ± 5.9 | 17.5 ± 2.7 | 4 | 59.3 ± 12.9 * | 22.7 ± 7.6 | 5 |
1 μM indacaterol | 51.3 ± 17.2 | 27.8 ± 4.6 * | 4 | 40.3 ± 15.8 * | 23.6 ± 5.8 * | 5 |
10 μM indacaterol | 47.1 ± 4.4 * | 27.4 ± 1.5 ** | 4 | 20.8 ± 7.6 **,† | 22.5 ± 4.8 * | 4 |
1 nM glycopyrrolate | 72.7 ± 10.9 | 12.8 ± 3.4 | 4 | 49.9 ± 11.4 * | 10.9 ± 3.8 | 3 |
3 nM glycopyrrolate | 53.6 ± 12.0 | 18.3 ± 7.9 | 4 | 46.9 ± 18.1 | 12.5 ± 4.8 | 2 |
10 nM glycopyrrolate | 23.3 ± 3.6 **,† | 24.3 ± 2.0 * | 3 | 38.4 ± 11.5 * | 15.0 ± 5.7 | 3 |
Treatment | Emax (% Closure) | pEC50 (−log M) | n |
---|---|---|---|
Non-COPD control | 45.8 ± 11.1 | 5.68 ± 0.37 | 5 |
COPD (GOLD I and II) | 67.9 ± 3.2 * | 5.77 ± 0.18 | 7 |
+10 μM indacaterol | 32.6 ± 13.0 ‡ | 4.43 ± 0.55 *,‡ | 3 |
+10 nM glycopyrrolate | 41.1 ± 11.2 ‡ | 4.06 ± 2.0 **,‡‡ | 4 |
Large Airways | Small Airways | |||||
---|---|---|---|---|---|---|
Emax (% Closure) | pEC50 (−log M) | n | Emax (% closure) | pEC50 (−log M) | n | |
Saline-challenged | ||||||
Control | 99.2 ± 0.9 | 6.13 ± 0.15 | 10 | 51.8 ± 7.8 ### | 5.49 ± 0.16 ## | 8 |
10 nM indacaterol | 92.2 ± 4.5 | 5.76 ± 0.13 | 8 | 59.7 ± 5.0 ### | 5.42 ± 0.10 | 6 |
1 nM glycopyrrolate | 93.3 ± 4.1 | 6.06 ± 0.27 | 8 | 60.2 ± 7.3 ### | 5.58 ± 0.13 | 6 |
Combination | 95.7 ± 2.4 | 5.40 ± 0.14 **,† | 9 | 46.7 ± 5.6 ### | 5.16 ± 0.15 | 9 |
LPS-challenged | ||||||
Control | 99.7 ± 0.2 | 6.46 ± 0.17 | 9 | 69.9 ± 5.1 ### | 5.81 ± 0.10 # | 7 |
10 nM indacaterol | 99.0 ± 0.9 | 5.80 ± 0.09 * | 8 | 66.7 ± 6.4 ### | 5.49 ± 0.22 | 8 |
1 nM glycopyrrolate | 90.8 ± 5.2 | 5.82 ± 0.14 * | 8 | 56.8 ± 9.3 ## | 5.44 ± 0.21 | 8 |
Combination | 92.9 ± 3.6 | 5.25 ± 0.12 **,++,‡ | 8 | 40.6 ± 7.1 *,###,+ | 5.34 ± 0.19 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maarsingh, H.; Oldenburger, A.; Han, B.; Zuidhof, A.B.; Elzinga, C.R.S.; Timens, W.; Meurs, H.; Sopi, R.B.; Schmidt, M. Effects of (a Combination of) the Beta2-Adrenoceptor Agonist Indacaterol and the Muscarinic Receptor Antagonist Glycopyrrolate on Intrapulmonary Airway Constriction. Cells 2021, 10, 1237. https://doi.org/10.3390/cells10051237
Maarsingh H, Oldenburger A, Han B, Zuidhof AB, Elzinga CRS, Timens W, Meurs H, Sopi RB, Schmidt M. Effects of (a Combination of) the Beta2-Adrenoceptor Agonist Indacaterol and the Muscarinic Receptor Antagonist Glycopyrrolate on Intrapulmonary Airway Constriction. Cells. 2021; 10(5):1237. https://doi.org/10.3390/cells10051237
Chicago/Turabian StyleMaarsingh, Harm, Anouk Oldenburger, Bing Han, Annet B. Zuidhof, Carolina R. S. Elzinga, Wim Timens, Herman Meurs, Ramadan B. Sopi, and Martina Schmidt. 2021. "Effects of (a Combination of) the Beta2-Adrenoceptor Agonist Indacaterol and the Muscarinic Receptor Antagonist Glycopyrrolate on Intrapulmonary Airway Constriction" Cells 10, no. 5: 1237. https://doi.org/10.3390/cells10051237
APA StyleMaarsingh, H., Oldenburger, A., Han, B., Zuidhof, A. B., Elzinga, C. R. S., Timens, W., Meurs, H., Sopi, R. B., & Schmidt, M. (2021). Effects of (a Combination of) the Beta2-Adrenoceptor Agonist Indacaterol and the Muscarinic Receptor Antagonist Glycopyrrolate on Intrapulmonary Airway Constriction. Cells, 10(5), 1237. https://doi.org/10.3390/cells10051237