Targeting the VEGF Pathway in Osteosarcoma
Abstract
:1. Introduction
2. Clinical Evidence
2.1. Role of VEGF in Osteosarcoma
2.2. Clinical Evidence with Anti-VEGF(R) Agents
2.2.1. Regorafenib
2.2.2. Cabozantinib
2.2.3. Sorafenib (Alone or in Combination with mTOR Inhibitors)
2.2.4. mTOR Inhibitors
2.2.5. Pazopanib
2.2.6. Other Agents
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- WHO Classification of Tumours of Soft Tissue and Bone. Fourth Edition—WHO—OMS—[Internet]. Available online: http://apps.who.int/bookorders/WHP/detart1.jsp?sesslan=1&codlan=1&codcol=70&codcch=4005 (accessed on 14 October 2018).
- Raymond, A.K.; Jaffe, N. Osteosarcoma Multidisciplinary Approach to the Management from the Pathologist’s Perspective. In Cancer Treatment and Research; Springer: Boston, MA, USA, 2009; Volume 152, pp. 63–84. [Google Scholar]
- Marko, T.A.; Diessner, B.J.; Spector, L.G. Prevalence of Metastasis at Diagnosis of Osteosarcoma: An International Comparison. Pediatr. Blood Cancer 2016, 63, 1006–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, S.; Briccoli, A.; Mercuri, M.; Bertoni, F.; Picci, P.; Tienghi, A.; Del Prever, A.B.; Fagioli, F.; Comandone, A.; Bacci, G. Postrelapse Survival in Osteosarcoma of the Extremities: Prognostic Factors for Long-Term Survival. J. Clin. Oncol. 2003, 21, 710–715. [Google Scholar] [CrossRef] [PubMed]
- De Bree, E.; Drositis, I.; Michelakis, D.; Mavroudis, D. Resection of Pulmonary Metastases in Osteosarcoma. Is it Justified? Hell J. Surg. 2018, 90, 293–298. [Google Scholar] [CrossRef]
- Briccoli, A.; Rocca, M.; Salone, M.; Bacci, G.; Ferrari, S.; Balladelli, A.; Mercuri, M. Resection of recurrent pulmonary metastases in patients with osteosarcoma. Cancer 2005, 104, 1721–1725. [Google Scholar] [CrossRef]
- Ferrari, S.; Ruggieri, P.; Cefalo, G.; Tamburini, A.; Capanna, R.; Fagioli, F.; Comandone, A.; Bertulli, R.; Bisogno, G.; Palmerini, E.; et al. Neoadjuvant Chemotherapy With Methotrexate, Cisplatin, and Doxorubicin With or Without Ifosfamide in Nonmetastatic Osteosarcoma of the Extremity: An Italian Sarcoma Group Trial ISG/OS-1. J. Clin. Oncol. 2012, 30, 2112–2118. [Google Scholar] [CrossRef] [Green Version]
- Lagmay, J.P.; Krailo, M.D.; Dang, H.; Kim, A.; Hawkins, D.S.; Beaty, O.; Widemann, B.C.; Zwerdling, T.; Bomgaars, L.; Langevin, A.-M.; et al. Outcome of Patients With Recurrent Osteosarcoma Enrolled in Seven Phase II Trials Through Children’s Cancer Group, Pediatric Oncology Group, and Children’s Oncology Group: Learning From the Past to Move Forward. J. Clin. Oncol. 2016, 34, 3031–3038. [Google Scholar] [CrossRef]
- McTiernan, A.; Driver, D.; Michelagnoli, M.P.; Kilby, A.M.; Whelan, J.S. High dose chemotherapy with bone marrow or peripheral stem cell rescue is an effective treatment option for patients with relapsed or progressive Ewing’s sarcoma family of tumours. Ann. Oncol. 2006, 17, 1301–1305. [Google Scholar] [CrossRef]
- Leary, S.E.; Wozniak, A.W.; Billups, C.A.; Wu, J.; McPherson, V.; Neel, M.D.; Rao, B.N.; Daw, N.C. Survival of pediatric patients after relapsed osteo-sarcoma: The St. Jude Children’s Research Hospital experience. Cancer 2013, 119, 2645–2653. [Google Scholar] [CrossRef]
- Group ESNW. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25 (Suppl. 3), iii113–iii123. [Google Scholar] [CrossRef]
- Duffaud, F.; Egerer, G.; Ferrari, S.; Rassam, H.; Boecker, U.; Bui-Nguyen, B. A phase II trial of second-line pemetrexed in adults with advanced/metastatic osteosarcoma. Eur. J. Cancer 2012, 48, 564–570. [Google Scholar] [CrossRef]
- Massimo, B.; Giovanni, G.; Stefano, F.; Eleonora, B.; Adalberto, B.D.; Sandra, A.; Francesco, S.; Franca, F. Phase 2 trial of two courses of cyclophos-phamide and etoposide for relapsed high-risk osteosarcoma patients. Cancer 2009, 115, 2980–2987. [Google Scholar] [CrossRef]
- Song, B.S.; Seo, J.; Kim, D.H.; Lim, J.S.; Yoo, J.Y.; Lee, J.A. Gemcitabine and docetaxel for the treatment of children and adolescents with recurrent or refractory osteosarcoma: Korea Cancer Center Hospital experience. Pediatr. Blood Cancer 2014, 61, 1376–1381. [Google Scholar] [CrossRef]
- Atkins, M.B.; Plimack, E.R.; Puzanov, I.; Fishman, M.N.; McDermott, D.F.; Cho, D.C.; Vaishampayan, U.; George, S.; E Olencki, T.; Tarazi, J.C.; et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: A non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 2018, 19, 405–415. [Google Scholar] [CrossRef]
- Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef]
- Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvilla, J.; et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: A multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016, 17, 1283–1294. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Jin, Z.; Zhang, M.; Tang, Y.; Yang, G.; Yuan, X.; Yao, J.; Sun, D. Prognostic value of programmed death-ligand 1 in sarcoma: A meta-analysis. Oncotarget 2017, 8, 59570. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Ren, T.; Huang, Y.; Sun, K.; Wang, S.; Bao, X.; Liu, K.; Guo, W. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J. Hematol. Oncol. 2018, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Tawbi, H.; Burgess, M.; Bolejack, V.; Van Tine, B.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.; et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef]
- Le Cesne, A.; Marec-Berard, P.; Blay, J.-Y.; Gaspar, N.; Bertucci, F.; Penel, N.; Bompas, E.; Cousin, S.; Toulmonde, M.; Bessede, A.; et al. Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: Results from the PEMBROSARC study. Eur. J. Cancer 2019, 119, 151–157. [Google Scholar] [CrossRef]
- Luetke, A.; Meyers, P.A.; Lewis, I.; Juergens, H. Osteosarcoma treatment—Where do we stand? A state of the art review. Cancer Treat. Rev. 2014, 40, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov. 2016, 15, 385–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Yang, D.; Sun, Y.; Sun, B.; Wang, G.; Trent, J.C.; Araujo, D.M.; Chen, K.; Zhang, W. Genetic amplification of the vascular endothelial growth factor (VEGF) pathway genes, including VEGFA, in human osteosarcoma. Cancer 2011, 117, 4925–4938. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-W.; Wu, T.-Y.; Yi, X.; Ren, W.-P.; Zhou, Z.; Sun, Y.; Zhang, C.Q. Prognostic significance of VEGF expression in osteosarcoma: A meta-analysis. Tumor Biol. 2014, 35, 155–160. [Google Scholar] [CrossRef]
- Lu, X.-Y.; Lu, Y.; Zhao, Y.-J.; Jaeweon, K.; Kang, J.; Xiao-Nan, L.; Ge, G.; Meyer, R.; Perlaky, L.; Hicks, J.; et al. Cell Cycle Regulator Gene CDC5L, a Potential Target for 6p12-p21 Amplicon in Osteosarcoma. Mol. Cancer Res. 2008, 6, 937–946. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Gao, Y.; Zhang, L.; Cai, X.; Qian, Z.; Huang, H.; Huang, W. VEGF-siRNA silencing induces apoptosis, inhibits proliferation and suppresses vasculogenic mimicry in osteosarcoma in vitro. Exp. Oncol. 2008, 30, 29–34. [Google Scholar]
- Zheng, B.; Ren, T.; Huang, Y.; Guo, W. Apatinib inhibits migration and invasion as well as PD-L1 expression in osteosarcoma by targeting STAT3. Biochem. Biophys. Res. Commun. 2018, 495, 1695–1701. [Google Scholar] [CrossRef]
- Entz-Werle, N.; Schneider, A.; Kalifa, C.; Voegeli, A.C.; Tabone, M.D.; Marec-Berard, P.; Marcellin, L.; Pacquement, H.; Terrier, P.; Boutard, P.; et al. Genetic alterations in primary osteosarcoma from 54 children and adolescents by targeted allelotyping. Br. J. Cancer 2003, 88, 1925–1931. [Google Scholar] [CrossRef] [Green Version]
- Sayles, L.C.; Breese, M.R.; Koehne, A.L.; Leung, S.G.; Lee, A.G.; Liu, H.-Y.; Spillinger, A.; Shah, A.T.; Tanasa, B.; Straessler, K.; et al. Genome-Informed Targeted Therapy for Osteosarcoma. Cancer Discov. 2018, 9, 46–63. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, W. New molecular insights into osteosarcoma targeted therapy. Curr. Opin. Oncol. 2013, 25, 398–406. [Google Scholar] [CrossRef]
- Patanè, S.; Avnet, S.; Coltella, N.; Costa, B.; Sponza, S.; Olivero, M.; Vigna, E.; Naldini, L.; Baldini, N.; Ferracini, R.; et al. MET Overexpression Turns Human Primary Osteoblasts into Osteosarcomas. Cancer Res. 2006, 66, 4750–4757. [Google Scholar] [CrossRef] [Green Version]
- Benassi, M.S.; Molendini, L.; Gamberi, G.; Ragazzini, P.; Sollazzo, M.R.; Merli, M.; Asp, J.; Magagnoli, G.; Balladelli, A.; Bertoni, F.; et al. Alteration of pRb/p16/cdk4 regulation in human osteosarcoma. Int. J. Cancer 1999, 84, 489–493. [Google Scholar] [CrossRef]
- Sun, J.; Xu, H.; Qi, M.; Zhang, C.; Shi, J. Identification of key genes in osteosarcoma by meta-analysis of gene expression microarray. Mol. Med. Rep. 2019, 20, 3075–3084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suehara, Y.; Alex, D.; Bowman, A.S.; Middha, S.; Zehir, A.; Chakravarty, D.; Wang, L.; Jour, G.; Nafa, K.; Hayashi, T.; et al. Clinical Genomic Sequencing of Pediatric and Adult Osteosarcoma Reveals Distinct Molecular Subsets with Potentially Targetable Alterations. Clin. Cancer Res. 2019, 25, 6346–6356. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.-H.; Zopf, D. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 2011, 129, 245–255. [Google Scholar] [CrossRef]
- Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
- Demetri, G.D.; Reichardt, P.; Kang, Y.-K.; Blay, J.-Y.; Rutkowski, P.; Gelderblom, H.; Hohenberger, P.; Leahy, M.; Von Mehren, M.; Joensuu, H.; et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Mross, K.; Frost, A.; Steinbild, S.; Hedbom, S.; Büchert, M.; Fasol, U.; Unger, C.; Krätzschmar, J.; Heinig, R.; Boix, O.; et al. A Phase I Dose–Escalation Study of Regorafenib (BAY 73–4506), an Inhibitor of Oncogenic, Angiogenic, and Stromal Kinases, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2012, 18, 2658–2667. [Google Scholar] [CrossRef] [Green Version]
- Mir, O.; Brodowicz, T.; Italiano, A.; Wallet, J.; Blay, J.-Y.; Bertucci, F.; Chevreau, C.; Piperno-Neumann, S.; Bompas, E.; Salas, S.; et al. Safety and efficacy of regorafenib in patients with advanced soft tissue sarcoma (REGOSARC): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2016, 17, 1732–1742. [Google Scholar] [CrossRef]
- Duffaud, F.; Mir, O.; Boudou-Rouquette, P.; Piperno-Neumann, S.; Penel, N.; Bompas, E.; Delcambre, C.; Kalbacher, E.; Italiano, A.; Collard, O.; et al. Efficacy and safety of regorafenib in adult patients with metastatic osteosarcoma: A non-comparative, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2019, 20, 120–133. [Google Scholar] [CrossRef]
- Davis, L.E.; Bolejack, V.; Ryan, C.W.; Ganjoo, K.N.; Loggers, E.T.; Chawla, S.; Agulnik, M.; Livingston, M.B.; Reed, D.; Keedy, V.; et al. Randomized Double-Blind Phase II Study of Regorafenib in Patients With Metastatic Osteosarcoma. J. Clin. Oncol. 2019, 37, 1424–1431. [Google Scholar] [CrossRef] [PubMed]
- NCCN Guideline Version 2020.1 Bone Cancer. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1418 (accessed on 1 March 2021).
- Uitdehaag, J.C.; de Roos, J.A.; van Doornmalen, A.M.; Prinsen, M.B.; de Man, J.; Tanizawa, Y.; Kawase, Y.; Yoshino, K.; Buijsman, R.C.; Zaman, G.J. Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS ONE 2014, 9, e92146. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.; Kang, M.; Reynolds, P.; Gorlick, R.; Kolb, A.; Maris, J.; Keir, S.; Billups, C.; Kurmasheva, R.; Houghton, P. Abstract LB-353: Pediatric Preclinical Testing Program (PPTP) Stage 1 Evaluation of Cabozantinib; American Association for Cancer Research (AACR): Philadelphia, PA, USA, 2013; Volume 73, p. LB-353. [Google Scholar]
- Fioramonti, M.; Fausti, V.; Pantano, F.; Iuliani, M.; Ribelli, G.; Lotti, F.; Pignochino, Y.; Grignani, G.; Santini, D.; Tonini, G.; et al. Cabozantinib Affects Osteosarcoma Growth Through A Direct Effect On Tumor Cells and Modifications in Bone Microenvironment. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Le Goff, B.; Berreur, M.; Riet, A.; Moreau, A.; Blanchard, F.; Chevalier, C.; Guisle-Marsollier, I.; Léger, J.; Guicheux, J.; et al. Human osteosarcoma cells express functional receptor activator of nuclear factor-kappa B. J. Pathol. 2007, 211, 555–562. [Google Scholar] [CrossRef]
- Bago-Horvath, Z.; Schmid, K.; Rössler, F.; Nagy-Bojarszky, K.; Funovics, P.; Sulzbacher, I. Impact of RANK signalling on survival and chemotherapy response in osteosarcoma. Pathology 2014, 46, 411–415. [Google Scholar] [CrossRef]
- Fioramonti, M.; Santini, D.; Iuliani, M.; Ribelli, G.; Manca, P.; Papapietro, N.; Spiezia, F.; Vincenzi, B.; Denaro, V.; Russo, A.; et al. Cabozantinib targets bone microenvironment modulating human osteoclast and osteoblast functions. Oncotarget 2017, 8, 20113–20121. [Google Scholar] [CrossRef] [Green Version]
- Dani, N.; Olivero, M.; Mareschi, K.; Van Duist, M.M.; Miretti, S.; Cuvertino, S.; Patanè, S.; Calogero, R.; Ferracini, R.; Scotlandi, K. The MET oncogene transforms human primary bone-derived cells into osteosarcomas by targeting committed osteoprogenitors. J. Bone Miner Res. 2012, 27, 1322–1334. [Google Scholar] [CrossRef]
- Sampson, E.R.; Martin, B.A.; Morris, A.E.; Xie, C.; Schwarz, E.M.; O’Keefe, R.J.; Rosier, R.N. The orally bioavailable met inhibitor PF-2341066 inhibits osteosarcoma growth and osteolysis/matrix production in a xenograft model. J. Bone Miner. Res. 2011, 26, 1283–1294. [Google Scholar] [CrossRef]
- Organ, S.L.; Tsao, M.-S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol. 2011, 3, S7–S19. [Google Scholar] [CrossRef] [Green Version]
- Shojaei, F.; Lee, J.H.; Simmons, B.H.; Wong, A.; Esparza, C.O.; Plumlee, P.A.; Feng, J.; Stewart, A.E.; Hu-Lowe, D.D.; Christensen, J.G. HGF/c-Met Acts as an Alternative Angiogenic Pathway in Sunitinib-Resistant Tumors. Cancer Res. 2010, 70, 10090–10100. [Google Scholar] [CrossRef] [Green Version]
- Italiano, A.; Mir, O.; Mathoulin-Pelissier, S.; Penel, N.; Piperno-Neumann, S.; Bompas, E.; Chevreau, C.; Duffaud, F.; Entz-Werlé, N.; Saada, E.; et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 446–455. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the RAF/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in Advanced Clear-Cell Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 125–134. [Google Scholar] [CrossRef]
- Hay, N.; Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 2004, 18, 1926–1945. [Google Scholar] [CrossRef] [Green Version]
- Mita, M.M.; Tolcher, A.W. The role of mTOR inhibitors for treatment of sarcomas. Curr. Oncol. Rep. 2007, 9, 316–322. [Google Scholar] [CrossRef]
- Grignani, G.; Palmerini, E.; Dileo, P.; Asaftei, S.D.; D’Ambrosio, L.; Pignochino, Y.; Mercuri, M.; Picci, P.; Fagioli, F.; Casali, P.G.; et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: An Italian Sarcoma Group study. Ann. Oncol. 2012, 23, 508–516. [Google Scholar] [CrossRef]
- Pignochino, Y.; Dell’Aglio, C.; Basiricò, M.; Capozzi, F.; Soster, M.; Marchiò, S.; Bruno, S.; Gammaitoni, L.; Sangiolo, D.; Torchiaro, E.; et al. The combination of sorafenib and everolimus abrogates mTORC1 and mTORC2 upregulation in osteosarcoma preclinical models. Clin. Cancer Res. 2013, 19, 2117–2131. [Google Scholar] [CrossRef] [Green Version]
- Bar-Peled, L.; Sabatini, D.M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014, 24, 400–406. [Google Scholar] [CrossRef]
- Zinzalla, V.; Stracka, D.; Oppliger, W.; Hall, M.N. Activation of mTORC2 by Association with the Ribosome. Cell 2011, 144, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Grignani, G.; Palmerini, E.; Ferraresi, V.; D’Ambrosio, L.; Bertulli, R.; Asaftei, S.D.; Tamburini, A.; Pignochino, Y.; Sangiolo, D.; Marchesi, E.; et al. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: A non-randomised phase 2 clinical trial. Lancet Oncol. 2015, 16, 98–107. [Google Scholar] [CrossRef]
- Zhou, Q.; Deng, Z.; Zhu, Y.; Long, H.; Zhang, S.; Zhao, J. mTOR/p70S6K Signal transduction pathway contributes to osteosarcoma progression and patients’ prognosis. Med Oncol. 2009, 27, 1239–1245. [Google Scholar] [CrossRef]
- Phase I Study and Preclinical Efficacy Evaluation of the mTOR Inhibitor Sirolimus Plus Gemcitabine in Patients with Advanced Solid Tumours|British Journal of Cancer. Available online: https://www.nature.com/articles/bjc2014370 (accessed on 6 May 2020).
- Martin-Broto, J.; Redondo, A.; Valverde, C.; Vaz, M.; Mora, J.; del Muro, X.G.; Gutierrez, A.; Tous, C.; Carnero, A.; Marcilla, D.; et al. Gemcitabine plus sirolimus for relapsed and progressing osteosarcoma patients after standard chemotherapy: A multicenter, single-arm phase II trial of Spanish Group for Research on Sarcoma (GEIS). Ann. Oncol. 2017, 28, 2994–2999. [Google Scholar] [CrossRef]
- Penel-Page, M.; Ray-Coquard, I.; Larcade, J.; Girodet, M.; Bouclier, L.; Rogasik, M.; Corradini, N.; Entz-Werle, N.; Brugieres, L.; Domont, J.; et al. Off-label use of targeted therapies in osteo-sarcomas: Data from the French registry OUTC’S (Observatoire de l’Utilisation des Thérapies Ciblées dans les Sarcomes). BMC Cancer 2015, 15, 854. [Google Scholar] [CrossRef] [Green Version]
- Van der Graaf, W.T.; Blay, J.-Y.; Chawla, S.P.; Kim, D.-W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.P.; Beppu, Y.; et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012, 379, 1879–1886. [Google Scholar] [CrossRef]
- Tanaka, T.; Yui, Y.; Naka, N.; Wakamatsu, T.; Yoshioka, K.; Araki, N.; Yoshikawa, H.; Itoh, K. Dynamic analysis of lung metastasis by mouse osteosarcoma LM8: VEGF is a candidate for anti-metastasis therapy. Clin. Exp. Metastasis 2013, 30, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Safwat, A.; Boysen, A.; Lücke, A.; Rossen, P. Pazopanib in metastatic osteosarcoma: Significant clinical response in three consecutive patients. Acta Oncol. 2014, 53, 1451–1454. [Google Scholar] [CrossRef] [Green Version]
- Longhi, A.; Paioli, A.; Cesari, M.; Palmerini, E.; Abate, M.; Setola, E.; Rocca, M.; Salone, M.C.; Donati, D.M.; Ferrari, S. Pazopanib in metastatic osteosarcoma patients: Report of 9 cases treated off label at Rizzoli Orthopedic Institute. J. Clin. Oncol. 2018, 36, e23501. [Google Scholar] [CrossRef]
- Longhi, A.; Paioli, A.; Palmerini, E.; Cesari, M.; Abate, M.E.; Setola, E.; Spinnato, P.; Donati, D.; Hompland, I.; Boye, K. Pazopanib in relapsed osteosarcoma patients: Report on 15 cases. Acta Oncol. 2019, 58, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Agulnik, M.; Mohindra, N.A.; Milhem, M.M.; Attia, S.; Robinson, S.I.; Rademaker, A.; Abbinanti, S.E.; Cehic, R.; Humphreys, C.; Prudner, B.; et al. A phase II study of pazopanib with oral topotecan in patients with metastatic and non-resectable soft tissue and bone sarcomas. J. Clin. Oncol. 2018, 36, 11550. [Google Scholar] [CrossRef]
- Li, F.; Liao, Z.; Zhao, J.; Zhao, G.; Li, X.; Du, X.; Yang, Y.; Yang, J. Efficacy and safety of Apatinib in stage IV sarcomas: Experience of a major sarcoma center in China. Oncotarget 2017, 8, 64471–64480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, B.; Li, J.; Xie, Q.; Diao, L.; Gai, L.; Yang, W. Efficacy and safety of apatinib monotherapy in advanced bone and soft tissue sarcoma: An observational study. Cancer Biol. Ther. 2018, 19, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Ren, T.; Huang, Y.; Sun, K.; Bao, X.; Wang, S.; Zheng, B.; Guo, W. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis. 2017, 8, e3015. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Xu, J.; Sun, X.; Tang, X.; Yan, T.; Yang, R.; Guo, W. Apatinib for Advanced Osteosarcoma after Failure of Standard Multimodal Therapy: An Open Label Phase II Clinical Trial. Oncotarget 2019, 24, e542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar, N.; Casanova, M.; Sirvent, F.J.B.; Venkatramani, R.; Morland, B.; Gambart, M.; Thebaud, E.; Strauss, S.J.; Locatelli, F.; Melcon, S.G.; et al. Single-agent expansion cohort of lenvatinib (LEN) and combination dose-finding cohort of LEN + etoposide (ETP) + ifosfamide (IFM) in patients (pts) aged 2 to ≤25 years with relapsed/refractory osteosarcoma (OS). J. Clin. Oncol. 2018, 36, 11527. [Google Scholar] [CrossRef]
- Kumar, R.M.R.; Arlt, M.J.; Kuzmanov, A.; Born, W.; Fuchs, B. Sunitinib malate (SU-11248) reduces tumour burden and lung metastasis in an intratibial human xenograft osteosarcoma mouse model. Am. J. Cancer Res. 2015, 5, 2156–2168. [Google Scholar] [PubMed]
- Bullock, K.E.; Petros, W.P.; Younis, I.; Uronis, H.E.; Morse, M.A.; Blobe, G.C.; Zafar, S.Y.; Gockerman, J.P.; Lager, J.J.; Truax, R.; et al. A phase I study of bevacizumab (B) in combination with everolimus (E) and erlotinib (E) in advanced cancer (BEE). Cancer Chemother. Pharmacol. 2010, 67, 465–474. [Google Scholar] [CrossRef] [Green Version]
Author | N (n = OST) | Phase | Type of Study | Drug | Control | Population | ORR | PFS (Months) | OS (Months) | Side Effects (Grade 3–4) | Additional Survival Data |
---|---|---|---|---|---|---|---|---|---|---|---|
Duffaud et al. (2019) [43] | 38 (26) | 2 | Non-comparative, double blind, prospective, randomized | Regorafenib (160 mg daily for 21 days q28 days) | Placebo | Metastatic OST (10 years or older) after failure of 2 lines of therapy | 8% vs. 0 | 16.4 vs. 4.1 weeks | 11.3 vs. 5.9 | Hypertension (24% vs. 0%) and hand-foot reaction (10% vs. 0%) | PFS at 8 weeks (65% vs. 0) |
Davis et al. (2019) [44] | 42 | 2 | Double blind, prospective, randomized | Regorafenib (160 mg daily for 21 days q28 days) | Placebo | Metastatic OST (10 years or older) after failure of 1 lines of therapy | 13.6 vs. 0 | 3.6 vs. 1.7 | 11.1 vs. 13.4 | hypertension (14%) followed by thrombocytopenia, hypophosphatemia, maculopapular rash and extremity pain (9% each) | PFS at 8 weeks (79 vs. 25) |
Italiano et al. (2020) [56] | 90 (45) | 2 | Prospective, single arm | Cabozantinib (60 mg orally for a cycles of 28 days or 40 mg/m2 in <16 y) | NA | Recurrent or metastatic OST and Ewing sarcoma (10 years or older) | 12 | 6.7 | 10.6 | hypophosphatemia, elevated aspartate aminotransferase, palmar-plantar syndrome and neutropenia | 6-month non-progression = 33% |
Grignani et al. (2012) [62] | 35 | 2 | Prospective, single arm | Sorafenib 400 mg twice daily until progression | NA | Relapsed or unresectable OST (>14 years) after standard therapy | 8 | 4 | 7 | anemia, thrombocytopenia (6%) | PFS at 4 months = 46% |
Grignani et al. (2015) [66] | 38 | 2 | Prospective, single arm | Sorafenib 800 mg + everolimus 5 mg daily | NA | Relapsed or unresectable OST after standard therapy | 10 | 5 | 11 | lymphopenia, hypophosphatemia and hand–foot syndrome | PFS at 6 months = 45% |
Martin-Broto et al. (2017) [69] | 35 | 2 | Prospective, single arm | Gemcitabine (800 mg/m2 on day 1 and 8 on a 21-day cycle) and rapamycin 5 mg daily | NA | Relapsed or unresectable OST after standard therapy | 6% | 2.3 | 7.1 | cytopenia and fatigue | PFS at 4 months = 44% |
Penel-Page et al. (2015) [70] | 23 (18 combo) | NA | Retrospective | Sirolimus ± cyclophosphamide | NA | Relapsed OST after standard therapy | 13 | 3 | NA | PFS at 4 months = 40% | |
Longhi et al. (2018) [75] | 15 | NA | Retrospective | Pazopanib 800 mg daily | NA | Metastatic or unresectable OST after standard therapy | 7 | 6 | 7 | Hypertension and thrombocytopenia (20% each) | |
Agulnik et al. (2018) [76] | 139 (17) | 2 | Prospective, single arm | Pazopanib (800 mg daily) with topotecan (8 mg on day 1, 8 and 15) on a 28-days cycles | NA | Metastatic or unresectable OST after standard therapy | 6 | 4.5 | 11.1 | In all population: neutropenia (42), thrombocytopenia (29), hypertension (16) and anemia (12) | PFS at 3 months = 62.5% |
Xie et al. (2019) [80] | 37 | 2 | Prospective, single arm | Apatinib (500 mg (body surface area) <1.5, or 750 mg if BSA ≥ 1.5) | NA | Relapsed or unresectable OST after standard therapy | 43.24 | 4.5 | 9.87 | pneumothorax (16.2%), palmo-plantar erythrodysesthesia syndrome (8.1%) wound dehiscence (10.8%), proteinuria (8.1%) and diarrhea (8.1%) | PFS at 4 months = 57% |
Gaspar et al. (2018) [81] | 16 (P.2) and 7 (1b) | 1b–2 | Prospective, single arm | Lenvatinib 14 mg/m2 (P.2) or 11 mg/m2 in combination with ifosfamide 3 g/m2 and etoposide 100 mg/m2 days 1-3 (P.1b) | NA | Relapsed or unresectable OST after standard therapy | 6.25 (P.2) and 14.2 (P.1b) | NA | NA | Back pain and dyspnea (12.5% each) |
Clinicaltrials.gov Identifier | Phase | N | Title | Clinical Setting | Type of tumors | Interventional Arm | Control Arm | Primary Endpoint | Start Date | End Date | Status |
---|---|---|---|---|---|---|---|---|---|---|---|
NCT04154189 | 2 | 72 | A Multicenter, Open-label, Randomized Phase 2 Study to Compare the Efficacy and Safety of Lenvatinib in Combination with Ifosfamide and Etoposide Versus Ifosfamide and Etoposide in Children, Adolescents and Young Adults with Relapsed or Refractory Osteosarcoma (OLIE) | Children, Adolescents, and Young Adults with Relapsed or Refractory Osteosarcoma | Osteosarcoma | Lenvatinib 14 mg/m2 d1–21 + Ifosfamide 2 g/m2 D1–3 + Etoposide 100 mg/m2 D1–3 for 5 cycles | Ifosfamide 2 g/m2 D1–3 + Etoposide 100 mg/m2 D1–3 for 5 cycles | PFS at 4 months | March 2020 | December 2022 | Recruiting |
NCT03900793 | 1 | 41 | A Phase I/Ib Study of Losartan in Combination with Sunitinib in the Treatment of Pediatric and Adult Patients with Relapsed or Refractory Osteosarcoma | Pediatric and Adult Patients with Relapsed or Refractory Osteosarcoma | Osteosarcoma | Losartan + Sunitinib | NA | DLT + Phase 2 dosing | August 2019 | February 2025 | Recruiting |
NCT04055220 | NA | 168 | A Randomized, Placebo-controlled, Double-blinded, Multicentre Study Evaluating the Efficacy and Safety of Regorafenib as Maintenance Therapy After First-line Treatment in Patients with Bone Sarcomas | Maintenance Therapy After First-line Treatment in Patients with Bone Sarcomas | Osteosarcoma + Bone sarcomas | Regorafenib 120 D1–21 for a 28-day cycles for 13 cycles | Placebo | Relapse free survival | March 2020 | October 2024 | Recruiting |
NCT03742193 | 2 | 43 | A Phase II Study of Gemcitabine-docetaxel Chemotherapy with VEGFR Inhibitor (Apatinib) for Pulmonary Resectable Metastases of Osteosarcoma | Second line in patients with resectable lung metastasis | Osteosarcoma | Apatinib 250 mg bid + Gemcitabine 900 mg/m2 on D1 and D8 + Docetaxel 75 mg/m2 on 21 day cycles for 7–8 cycles with maintenance apatinb (before and after surgery) | NA | PFS at 12 months | March 2019 | September 2022 | Recruiting |
NCT03277924 | 1 and 2 | 270 | Phase I–II Trial of Sunitinib Plus Nivolumab After Standard Treatment in Advanced Soft Tissue and Bone Sarcomas | Metastatic or relapsing bone sarcomas | Osteosarcoma + Bone sarcomas | Sunitinib 37.5 mg continuously + Nivolumab 240 mg every 2 weeks | NA | PFS at 6 months | May 2017 | September 2022 | Recruiting |
NCT03359018 | 2 | 43 | Apatinib Mesylate Plus Anti-PD1 Therapy (SHR-1210) in Locally Advanced, Unresectable or Metastatic Osteosarcoma(APFAO)Refractory to Chemotherapy: a Single Institution, Open-label, Phase 2 Trial | Locally Advanced, Unresectable or Metastatic Osteosarcoma(APFAO)Refractory to Chemotherapy | Osteosarcoma | Apatinb 500 mg or 250 mg daily + SHR-1210 3 mg/kg every 2 weeks until progression | NA | PFS and CBR | January 2018 | January 2020 | Completed |
NCT04044378 | 1 and 2 | 80 | Famitinib Malate (SHR1020) Plus Camrelizumab (SHR 1210) Versus Famitinib Malate Alone Versus Famitinib Malate Plus Ifosfamide Locally Advanced, Unresectable or Metastatic Osteosarcoma Progression Upon Chemotherapy: A Phase Ib/II Randomized and Controlled Dose-Escalation Trial | Locally Advanced, Unresectable or Metastatic Osteosarcoma(APFAO)Refractory to Chemotherapy | Osteosarcoma | Famitinib (escalation dose) then Famitinib 20 mg daily (phase 2) + Camrelizumab 200 mg every 2 weeks/Famitinib + Ifosfamide 3 g/m2 D1–3 and D 15–17 of 28-day cycles for 5 cycles | Famitinib 20 mg daily (phase 2) | ORR and PFS | August 2019 | September 2022 | Recruiting |
NCT02389244 | 2 | 132 | A Randomized Phase II, Placebo-controlled, Multicenter Study Evaluating Efficacy and Safety of Regorafenib in Patients with Metastatic Bone Sarcomas | Relapsing metastatic | Osteosarcoma + Bone sarcomas | Regorafenib 160 (or 82 mg/m2 in pediatric) D1–21 for a 28-day | Placebo | PFS | September 2014 | March 2023 | Recruiting |
NCT02357810 | 2 | 136 | A Phase II Study of Pazopanib With Oral Topotecan in Patients with Metastatic and Non-resectable Soft Tissue and Bone Sarcomas | Relapsing metastatic | STS + Bone sarcomas | Pazopanib D1–D28 + Topotecan D1,8,15 | NA | PFS at 12 weeks | February 2015 | June 2022 | Recruiting |
NCT02048371 | 2 | 150 | SARC024: A Blanket Protocol to Study Oral Regorafenib in Patients with Selected Sarcoma Subtypes | Relapsing metastatic | Selected STS including osteosarcoma | Regorafenib 160 D1–21 for a 28-day | Placebo | PFS | July 2014 | December 2020 | Recruiting |
NCT02867592 | 2 | 146 | Phase 2 Trial of XL184 (Cabozantinib) an Oral Small-Molecule Inhibitor of Multiple Kinases, in Children and Young Adults with Refractory Sarcomas, Wilms Tumor, and Other Rare Tumors | Relapsing or metastatic | Rare tumors including osteosarcoma | Cabozantinib D1–28 | NA | ORR | May 2017 | June 2020 | Recruiting |
NCT04351308 | 2 | 60 | A Randomized Trial of Comparison of MAPI+Camrelizumbab Verus API+Apatinib Versus MAPI in Patients with a Poor Response to Preoperative Chemotherapy for Newly Diagnosed High-grade Osteosarcomas: an Open-label, Exploratory Study | Poor Response to Preoperative Chemotherapy for Newly Diagnosed High-grade Osteosarcoma | Osteosarcoma | MAPI + Apatinib (500 mg daily) or API + Camrelizumab 200 mg every 2 weeks | MAPI | Event-free survival | May 2020 | December 2022 | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assi, T.; Watson, S.; Samra, B.; Rassy, E.; Le Cesne, A.; Italiano, A.; Mir, O. Targeting the VEGF Pathway in Osteosarcoma. Cells 2021, 10, 1240. https://doi.org/10.3390/cells10051240
Assi T, Watson S, Samra B, Rassy E, Le Cesne A, Italiano A, Mir O. Targeting the VEGF Pathway in Osteosarcoma. Cells. 2021; 10(5):1240. https://doi.org/10.3390/cells10051240
Chicago/Turabian StyleAssi, Tarek, Sarah Watson, Bachar Samra, Elie Rassy, Axel Le Cesne, Antoine Italiano, and Olivier Mir. 2021. "Targeting the VEGF Pathway in Osteosarcoma" Cells 10, no. 5: 1240. https://doi.org/10.3390/cells10051240
APA StyleAssi, T., Watson, S., Samra, B., Rassy, E., Le Cesne, A., Italiano, A., & Mir, O. (2021). Targeting the VEGF Pathway in Osteosarcoma. Cells, 10(5), 1240. https://doi.org/10.3390/cells10051240