Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases
Abstract
:1. Introduction
2. Molecular Biology of Gene 33
3. Regulation of Gene 33
4. Biological Functions of Gene 33
4.1. Gene 33 in ErbB Signaling and Cell Proliferation
4.2. Gene 33 in Apoptosis and Senescence
4.3. Gene 33 in Cell Migration and Invasion
4.4. Nuclear Functions of Gene 33
4.5. Gene 33 in Development and Homeostasis
5. Gene 33 and Human Diseases
5.1. Gene 33 in Cancer
5.1.1. Gene 33 in Lung Cancer
5.1.2. Gene 33 in Endometrial Cancer
5.1.3. Gene 33 in Glioma
5.1.4. Gene 33 in Papillary Thyroid Cancer
5.1.5. Gene 33 in Breast Cancer
5.1.6. Gene 33 in Skins Cancer
5.1.7. Gene 33 in Other Cancer Types
5.1.8. Gene 33 in Acquired Resistance to Cancer Therapy
5.2. Gene 33 in Diabetes
5.3. Gene 33 in Cardiovascular Diseases
5.4. Gene 33 in Other Diseases
6. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
14-3-3-BD | 14-3-3– binding domain |
AH | Ack homology |
CRE | cAMP response element |
CRIB | Cdc42/Rac-interactive binding |
DEAD | Asp-Glu-Ala-Asp box |
DDR | DNA damage response |
EBD/EBR | ErbB binding domain/region |
EMT | epithelial mesenchymal transition |
GR | glucocorticoid receptor |
GRE | glucocorticoid response element |
HRE | HIF-response element |
LOH | loss of heterozygosity |
LPA | lysophosphatidic acid |
Mig6 | mitogen-inducible gene 6 |
NLS | nuclear localization signal |
PDGF | platelet-derived growth factor |
PDZ-BD | PDZ binding domain |
PEST | Pro, Glu, Ser, Thr-rich sequence |
RALT | receptor-associated late transducer |
RED | RALT endocytic domain |
RTK | receptor tyrosine kinase |
SH2 | Src homology 2 |
SH3-BD | Src homology 3 binding domain |
SNP | single nucleotide polymorphism |
SRE | serum response element |
TCGA | the cancer genome atlas |
TKI | tyrosine kinase inhibitor |
TNBC | triple negative breast cancer |
TRE | TPA response element |
BRafV600E | valine to glutamate mutation at amino acid 600 of BRAF |
References
- Lee, K.L.; Isham, K.R.; Stringfellow, L.; Rothrock, R.; Kenney, F.T. Molecular cloning of cDNAs cognate to genes sensitive to hormonal control in rat liver. J. Biol. Chem. 1985, 260, 16433–16438. [Google Scholar] [CrossRef]
- Messina, J.L. Regulation of Gene 33 expression by insulin. In Molecular Biology of Diabetes, Part II; Draznin, B., LeRooith, D., Eds.; Humana Press: Totowa, NJ, USA, 1994; pp. 263–281. [Google Scholar]
- Wick, M.; Burger, C.; Funk, M.; Muller, R. Identification of a novel mitogen-inducible gene (mig-6): Regulation during G1 progression and differentiation. Exp. Cell Res. 1995, 219, 527–535. [Google Scholar] [CrossRef]
- Makkinje, A.; Quinn, D.A.; Chen, A.; Cadilla, C.L.; Force, T.; Bonventre, J.V.; Kyriakis, J.M. Gene 33/Mig-6, a transcriptionally inducible adapter protein that binds GTP-Cdc42 and activates SAPK/JNK. A potential marker transcript for chronic pathologic conditions, such as diabetic nephropathy. Possible role in the response to persistent stress. J. Biol. Chem. 2000, 275, 17838–17847. [Google Scholar] [CrossRef] [Green Version]
- Saarikoski, S.T.; Rivera, S.P.; Hankinson, O. Mitogen-inducible gene 6 (MIG-6), adipophilin and tuftelin are inducible by hypoxia. FEBS Lett. 2002, 530, 186–190. [Google Scholar] [CrossRef]
- Van Laar, T.; Schouten, T.; van der Eb, A.J.; Terleth, C. Induction of the SAPK activator MIG-6 by the alkylating agent methyl methanesulfonate. Mol. Carcinog. 2001, 31, 63–67. [Google Scholar] [CrossRef]
- Cadilla, C.; Isham, K.R.; Lee, K.L.; Ch’ang, L.Y.; Johnson, A.C.; Kenney, F.T. Insulin increases transcription of rat gene 33 through cis-acting elements in 5’-flanking DNA. Gene 1992, 118, 223–229. [Google Scholar] [CrossRef]
- Kent, T.A.; Messina, J.L.; Weinstock, R.S.; Stein, J.P. Synergistic induction of gene 33 expression by retinoic acid and insulin. Endocrinology 1994, 134, 2237–2244. [Google Scholar] [CrossRef]
- Romero, N.; Jimenez, B.D.; Cadilla, C.L. Insulin and phorbol ester regulation of gene 33 expression in CHO cells. P. R. Health Sci. J. 1999, 18, 257–265. [Google Scholar]
- Varley, C.L.; Armitage, S.; Dickson, A.J. Activation of stress-activated protein kinases by hepatocyte isolation induces gene 33 expression. Biochem. Biophys. Res. Commun. 1999, 254, 728–733. [Google Scholar] [CrossRef]
- Xu, D.; Makkinje, A.; Kyriakis, J.M. Gene 33 is an endogenous inhibitor of epidermal growth factor (EGF) receptor signaling and mediates dexamethasone-induced suppression of EGF function. J. Biol. Chem. 2005, 280, 2924–2933. [Google Scholar] [CrossRef] [Green Version]
- Anastasi, S.; Fiorentino, L.; Fiorini, M.; Fraioli, R.; Sala, G.; Castellani, L.; Alema, S.; Alimandi, M.; Segatto, O. Feedback inhibition by RALT controls signal output by the ErbB network. Oncogene 2003, 22, 4221–4234. [Google Scholar] [CrossRef] [Green Version]
- Chrapkiewicz, N.B.; Davis, C.M.; Chu, D.T.; Caldwell, C.M.; Granner, D.K. Rat gene 33: Analysis of its structure, messenger RNA and basal promoter activity. Nucleic Acids Res. 1989, 17, 6651–6667. [Google Scholar] [CrossRef] [Green Version]
- Mohn, K.L.; Laz, T.M.; Melby, A.E.; Taub, R. Immediate-early gene expression differs between regenerating liver, insulin-stimulated H-35 cells, and mitogen-stimulated Balb/c 3T3 cells. Liver-specific induction patterns of gene 33, phosphoenolpyruvate carboxykinase, and the jun, fos, and egr families. J. Biol. Chem. 1990, 265, 21914–21921. [Google Scholar] [CrossRef]
- Fiorentino, L.; Pertica, C.; Fiorini, M.; Talora, C.; Crescenzi, M.; Castellani, L.; Alema, S.; Benedetti, P.; Segatto, O. Inhibition of ErbB-2 mitogenic and transforming activity by RALT, a mitogen-induced signal transducer which binds to the ErbB-2 kinase domain. Mol. Cell. Biol. 2000, 20, 7735–7750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackel, P.O.; Gishizky, M.; Ullrich, A. Mig-6 is a negative regulator of the epidermal growth factor receptor signal. Biol. Chem. 2001, 382, 1649–1662. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Patten, R.; Force, T.; Kyriakis, J.M. Gene 33/RALT is induced in cardiomyocytes by hypoxia where it promotes cell death by suppressing PI-3-kinase and ERK survival signaling. Mol. Cell. Biol. 2006, 26, 5043–5054. [Google Scholar] [CrossRef] [Green Version]
- Anastasi, S.; Baietti, M.F.; Frosi, Y.; Alema, S.; Segatto, O. The evolutionarily conserved EBR module of RALT/MIG6 mediates suppression of the EGFR catalytic activity. Oncogene 2007, 26, 7833–7846. [Google Scholar] [CrossRef] [Green Version]
- Boopathy, G.T.K.; Lynn, J.L.S.; Wee, S.; Gunaratne, J.; Hong, W. Phosphorylation of Mig6 negatively regulates the ubiquitination and degradation of EGFR mutants in lung adenocarcinoma cell lines. Cell. Signal. 2018, 43, 21–31. [Google Scholar] [CrossRef]
- Ferby, I.; Reschke, M.; Kudlacek, O.; Knyazev, P.; Pante, G.; Amann, K.; Sommergruber, W.; Kraut, N.; Ullrich, A.; Fassler, R.; et al. Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis and tumor formation. Nat. Med. 2006, 12, 568–573. [Google Scholar] [CrossRef]
- Frosi, Y.; Anastasi, S.; Ballaro, C.; Varsano, G.; Castellani, L.; Maspero, E.; Polo, S.; Alema, S.; Segatto, O. A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J. Cell Biol. 2010, 189, 557–571. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Pickin, K.A.; Bose, R.; Jura, N.; Cole, P.A.; Kuriyan, J. Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 2007, 450, 741–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descot, A.; Hoffmann, R.; Shaposhnikov, D.; Reschke, M.; Ullrich, A.; Posern, G. Negative regulation of the EGFR-MAPK cascade by actin-MAL-mediated Mig6/Errfi-1 induction. Mol. Cell 2009, 35, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Anastasi, S.; Sala, G.; Huiping, C.; Caprini, E.; Russo, G.; Iacovelli, S.; Lucini, F.; Ingvarsson, S.; Segatto, O. Loss of RALT/MIG-6 expression in ERBB2-amplified breast carcinomas enhances ErbB-2 oncogenic potency and favors resistance to Herceptin. Oncogene 2005, 24, 4540–4548. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.; Zheng, H.; Scott, K.; Wiedemeyer, R.; Yan, H.; Lim, C.; Huang, J.; Dhakal, S.; Ivanova, E.; Xiao, Y.; et al. Mig-6 controls EGFR trafficking and suppresses gliomagenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 6912–6917. [Google Scholar] [CrossRef] [Green Version]
- Reschke, M.; Ferby, I.; Stepniak, E.; Seitzer, N.; Horst, D.; Wagner, E.F.; Ullrich, A. Mitogen-inducible gene-6 is a negative regulator of epidermal growth factor receptor signaling in hepatocytes and human hepatocellular carcinoma. Hepatology 2010, 51, 1383–1390. [Google Scholar] [CrossRef]
- Li, C.; Park, S.; Zhang, X.; Eisenberg, L.M.; Zhao, H.; Darzynkiewicz, Z.; Xu, D. Nuclear Gene 33/Mig6 Regulates the DNA Damage Response through an ATM-dependent Mechanism. J. Biol. Chem. 2017, 292, 16746–16759. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Li, C.; Zhao, H.; Darzynkiewicz, Z.; Xu, D. Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells. Oncotarget 2016, 7, 8916–8930. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.W.; Vande Woude, G.F. Mig-6, signal transduction, stress response and cancer. Cell Cycle 2007, 6, 507–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotoh, N. Feedback inhibitors of the epidermal growth factor receptor signaling pathways. Int. J. Biochem. Cell Biol. 2009, 41, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Segatto, O.; Anastasi, S.; Alema, S. Regulation of epidermal growth factor receptor signalling by inducible feedback inhibitors. J. Cell Sci. 2011, 124, 1785–1793. [Google Scholar] [CrossRef] [Green Version]
- Anastasi, S.; Lamberti, D.; Alema, S.; Segatto, O. Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumor suppression and responses to oncogene-targeted therapeutics. Semin. Cell. Dev. Biol. 2016, 50, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, S.; Linderoth, E.; Hantschel, O.; Suarez-Henriques, P.; Pilia, G.; Kendrick, H.; Smalley, M.J.; Superti-Furga, G.; Ferby, I. Mig6 is a sensor of EGF receptor inactivation that directly activates c-Abl to induce apoptosis during epithelial homeostasis. Dev. Cell 2012, 23, 547–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maity, T.K.; Venugopalan, A.; Linnoila, I.; Cultraro, C.M.; Giannakou, A.; Nemati, R.; Zhang, X.; Webster, J.D.; Ritt, D.; Ghosal, S.; et al. Loss of MIG6 Accelerates Initiation and Progression of Mutant Epidermal Growth Factor Receptor-Driven Lung Adenocarcinoma. Cancer Discov. 2015, 5, 534–549. [Google Scholar] [CrossRef] [Green Version]
- Pante, G.; Thompson, J.; Lamballe, F.; Iwata, T.; Ferby, I.; Barr, F.A.; Davies, A.M.; Maina, F.; Klein, R. Mitogen-inducible gene 6 is an endogenous inhibitor of HGF/Met-induced cell migration and neurite growth. J. Cell Biol. 2005, 171, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Tsunoda, T.; Inokuchi, J.; Baba, I.; Okumura, K.; Naito, S.; Sasazuki, T.; Shirasawa, S. A novel mechanism of nuclear factor kappaB activation through the binding between inhibitor of nuclear factor-kappaBalpha and the processed NH(2)-terminal region of Mig-6. Cancer Res. 2002, 62, 5668–5671. [Google Scholar]
- Cairns, J.; Fridley, B.L.; Jenkins, G.D.; Zhuang, Y.; Yu, J.; Wang, L. Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation. EMBO Rep. 2018, 19, e44767. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Kang, H.B.; Broaddus, R.R.; Risinger, J.I.; Choi, K.C.; Kim, T.H. MIG-6 suppresses endometrial epithelial cell proliferation by inhibiting phospho-AKT. BMC Cancer 2018, 18, 605. [Google Scholar] [CrossRef]
- Takeda, K.; Takata, T.; Kawai, Y.; Ishigaki, Y.; Kajinami, K. Chk1-mediated phosphorylation of receptor-associated late transducer at serine 250 increases its stability by stimulating its interaction with 14-3-3. Genes Cells 2013, 18, 369–386. [Google Scholar] [CrossRef]
- Liu, N.; Matsumoto, M.; Kitagawa, K.; Kotake, Y.; Suzuki, S.; Shirasawa, S.; Nakayama, K.I.; Nakanishi, M.; Niida, H.; Kitagawa, M. Chk1 phosphorylates the tumour suppressor Mig-6, regulating the activation of EGF signalling. EMBO J. 2012, 31, 2365–2377. [Google Scholar] [CrossRef] [Green Version]
- Fiorini, M.; Ballaro, C.; Sala, G.; Falcone, G.; Alema, S.; Segatto, O. Expression of RALT, a feedback inhibitor of ErbB receptors, is subjected to an integrated transcriptional and post-translational control. Oncogene 2002, 21, 6530–6539. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, M.; Terabayashi, T.; Weiss, S.M.; Ferby, I. The Tumor Suppressor MIG6 Controls Mitotic Progression and the G2/M DNA Damage Checkpoint by Stabilizing the WEE1 Kinase. Cell Rep. 2018, 24, 1278–1289. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xing, L.; Chen, R.; Zhang, J.; Huang, Y.; Huang, L.; Xie, B.; Ren, X.; Wang, S.; Kuang, H.; et al. Mitogen-Inducible Gene 6 Inhibits Angiogenesis by Binding to SHC1 and Suppressing Its Phosphorylation. Front. Cell Dev. Biol. 2021, 9, 634242. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Yang, W.S.; Lee, J.H.; Kim, B.G.; Broaddus, R.R.; Lim, J.M.; Kim, T.H.; Jeong, J.W. MIG-6 negatively regulates STAT3 phosphorylation in uterine epithelial cells. Oncogene 2018, 37, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linder, P. Dead-box proteins: A family affair—Active and passive players in RNP-remodeling. Nucleic Acids Res. 2006, 34, 4168–4180. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.Y.; Sheng, M. PDZ domains: Structural modules for protein complex assembly. J. Biol. Chem. 2002, 277, 5699–5702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tindal, M.H.; Lee, K.L.; Isham, K.R.; Cadilla, C.; Kenney, F.T. Structure of a multihormonally regulated rat gene. Gene 1988, 71, 413–420. [Google Scholar] [CrossRef]
- Chu, D.T.; Davis, C.M.; Chrapkiewicz, N.B.; Granner, D.K. Reciprocal regulation of gene transcription by insulin. Inhibition of the phosphoenolpyruvate carboxykinase gene and stimulation of gene 33 in a single cell type. J. Biol. Chem. 1988, 263, 13007–13011. [Google Scholar] [CrossRef]
- Melendez, P.A.; Longo, N.; Jimenez, B.D.; Cadilla, C.L. Insulin-induced gene 33 mRNA expression in Chinese hamster ovary cells is insulin receptor dependent. J. Cell Biochem. 2000, 77, 432–444. [Google Scholar] [CrossRef]
- Weinstock, R.S.; Messina, J.L. Vanadate and insulin stimulate gene 33 expression. Biochem. Biophys. Res. Commun. 1992, 189, 931–937. [Google Scholar] [CrossRef]
- Jeong, J.W.; Lee, H.S.; Lee, K.Y.; White, L.D.; Broaddus, R.R.; Zhang, Y.W.; Vande Woude, G.F.; Giudice, L.C.; Young, S.L.; Lessey, B.A.; et al. Mig-6 modulates uterine steroid hormone responsiveness and exhibits altered expression in endometrial disease. Proc. Natl. Acad. Sci. USA 2009, 106, 8677–8682. [Google Scholar] [CrossRef] [Green Version]
- Keeton, A.B.; Xu, J.; Franklin, J.L.; Messina, J.L. Regulation of Gene33 expression by insulin requires MEK-ERK activation. Biochim. Biophys. Acta 2004, 1679, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, H.; Wang, H.; Dong, Y.; Yin, M.; Zhang, L.; Wei, J. MicroRNA-374a Promotes Hepatocellular Carcinoma Cell Proliferation by Targeting Mitogen-Inducible Gene 6 (MIG-6). Oncol. Res. 2018, 26, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Izumchenko, E.; Chang, X.; Michailidi, C.; Kagohara, L.; Ravi, R.; Paz, K.; Brait, M.; Hoque, M.O.; Ling, S.; Bedi, A.; et al. The TGFbeta-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors. Cancer Res. 2014, 74, 3995–4005. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Zhang, Y.; Skalski, M.; Hayes, J.; Kefas, B.; Schiff, D.; Purow, B.; Parsons, S.; Lawler, S.; Abounader, R. microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res. 2014, 74, 1541–1553. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Tian, L.; Liu, X.; He, Y.; Chang, S.; Shen, Y. ERRFI1 Inhibits Proliferation and Inflammation of Nucleus Pulposus and Is Negatively Regulated by miR-2355-5p in Intervertebral Disc Degeneration. Spine (Phila Pa 1976) 2019, 44, E873–E881. [Google Scholar] [CrossRef]
- Okada, H.; Honda, M.; Campbell, J.S.; Takegoshi, K.; Sakai, Y.; Yamashita, T.; Shirasaki, T.; Takabatake, R.; Nakamura, M.; Tanaka, T.; et al. Inhibition of microRNA-214 ameliorates hepatic fibrosis and tumor incidence in platelet-derived growth factor C transgenic mice. Cancer Sci. 2015, 106, 1143–1152. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zheng, Y.; Wang, M.; Yan, M.; Jiang, J.; Li, Z. Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1. Gene 2019, 690, 75–80. [Google Scholar] [CrossRef]
- Li, Z.; Chen, P.; Su, R.; Li, Y.; Hu, C.; Wang, Y.; Arnovitz, S.; He, M.; Gurbuxani, S.; Zuo, Z.; et al. Overexpression and knockout of miR-126 both promote leukemogenesis. Blood 2015, 126, 2005–2015. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Wang, Y.; He, H.T.; Yang, Q. MiR-589-5p is a potential prognostic marker of hepatocellular carcinoma and regulates tumor cell growth by targeting MIG-6. Neoplasma 2018, 65, 753–761. [Google Scholar] [CrossRef]
- Santra, M.; Chopp, M.; Santra, S.; Nallani, A.; Vyas, S.; Zhang, Z.G.; Morris, D.C. Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. J. Neurochem. 2016, 136, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.I.; Du, J.; Shen, W.T.; Whang, E.E.; Donner, D.B.; Griff, N.; He, F.; Moore, F.D., Jr.; Clark, O.H.; Ruan, D.T. Mitogen-inducible gene-6 is a multifunctional adaptor protein with tumor suppressor-like activity in papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2011, 96, E554–E565. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Staal, B.; Dykema, K.J.; Furge, K.A.; Vande Woude, G.F. Cancer-type regulation of MIG-6 expression by inhibitors of methylation and histone deacetylation. PLoS ONE 2012, 7, e38955. [Google Scholar] [CrossRef]
- Akimov, V.; Barrio-Hernandez, I.; Hansen, S.V.F.; Hallenborg, P.; Pedersen, A.K.; Bekker-Jensen, D.B.; Puglia, M.; Christensen, S.D.K.; Vanselow, J.T.; Nielsen, M.M.; et al. UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat. Struct. Mol. Biol. 2018, 25, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Choi, H.K.; Seo, J.S.; Yoo, J.Y.; Jeong, J.W.; Choi, Y.; Choi, K.C.; Yoon, H.G. DNAJB1 negatively regulates MIG6 to promote epidermal growth factor receptor signaling. Biochim. Biophys. Acta 2015, 1853, 2722–2730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Cai, J.; Anderson, R.A.; Sun, Y. Type I gamma Phosphatidylinositol Phosphate 5-Kinase i5 Controls the Ubiquitination and Degradation of the Tumor Suppressor Mitogen-inducible Gene 6. J. Biol. Chem. 2016, 291, 21461–21473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, S.V.; Kovacevic, Z.; Richardson, D.R. The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6. J. Biol. Chem. 2019, 294, 4045–4064. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Raines, L.L.; Hooy, R.M.; Roberson, H.; Leahy, D.J.; Cole, P.A. Tyrosine phosphorylation of mig6 reduces its inhibition of the epidermal growth factor receptor. ACS Chem. Biol. 2013, 8, 2372–2376. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Kim, N.; Ficarro, S.B.; Zhang, Y.; Lee, B.I.; Cho, A.; Kim, K.; Park, A.K.J.; Park, W.Y.; Murray, B.; et al. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat. Struct. Mol. Biol. 2015, 22, 703–711. [Google Scholar] [CrossRef]
- Avraham, R.; Yarden, Y. Feedback regulation of EGFR signalling: Decision making by early and delayed loops. Nat. Rev. Mol. Cell Biol. 2011, 12, 104–117. [Google Scholar] [CrossRef]
- Milewska, M.; Romano, D.; Herrero, A.; Guerriero, M.L.; Birtwistle, M.; Quehenberger, F.; Hatzl, S.; Kholodenko, B.N.; Segatto, O.; Kolch, W.; et al. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation. PLoS ONE 2015, 10, e0129859. [Google Scholar] [CrossRef]
- Jin, N.; Gilbert, J.L.; Broaddus, R.R.; Demayo, F.J.; Jeong, J.W. Generation of a Mig-6 conditional null allele. Genesis 2007, 45, 716–721. [Google Scholar] [CrossRef]
- Joiner, D.M.; Less, K.D.; Van Wieren, E.M.; Zhang, Y.W.; Hess, D.; Williams, B.O. Accelerated and increased joint damage in young mice with global inactivation of mitogen-inducible gene 6 after ligament and meniscus injury. Arthritis Res. Ther. 2014, 16, R81. [Google Scholar] [CrossRef] [Green Version]
- Pest, M.A.; Russell, B.A.; Zhang, Y.W.; Jeong, J.W.; Beier, F. Disturbed cartilage and joint homeostasis resulting from a loss of mitogen-inducible gene 6 in a mouse model of joint dysfunction. Arthritis Rheumatol. 2014, 66, 2816–2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.W.; Su, Y.; Lanning, N.; Swiatek, P.J.; Bronson, R.T.; Sigler, R.; Martin, R.W.; Vande Woude, G.F. Targeted disruption of Mig-6 in the mouse genome leads to early onset degenerative joint disease. Proc. Natl. Acad. Sci. USA 2005, 102, 11740–11745. [Google Scholar] [CrossRef] [Green Version]
- Ando, H.; Miyamoto, T.; Kashima, H.; Higuchi, S.; Ida, K.; Mvunta, D.H.; Shiozawa, T. Panobinostat Enhances Growth Suppressive Effects of Progestin on Endometrial Carcinoma by Increasing Progesterone Receptor and Mitogen-Inducible Gene-6. Horm. Cancer 2017, 8, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhu, S.; Zhou, Y.; Jin, Y.; Dai, H.; Wang, X. Upregulation of mitogen-inducible gene 6 triggers antitumor effect and attenuates progesterone resistance in endometrial carcinoma cells. Cancer Gene Ther. 2015, 22, 536–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karasik, A.; Kahn, C.R. Dexamethasone-induced changes in phosphorylation of the insulin and epidermal growth factor receptors and their substrates in intact rat hepatocytes. Endocrinology 1988, 123, 2214–2222. [Google Scholar] [CrossRef] [PubMed]
- Colvin, E.S.; Ma, H.Y.; Chen, Y.C.; Hernandez, A.M.; Fueger, P.T. Glucocorticoid-induced suppression of beta-cell proliferation is mediated by Mig6. Endocrinology 2013, 154, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Harvey, S.L.; Charlet, A.; Haas, W.; Gygi, S.P.; Kellogg, D.R. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 2005, 122, 407–420. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Zhang, X.; Li, C.; Yin, C.; Li, J.; Fallon, J.T.; Huang, W.; Xu, D. Single-cell RNA sequencing reveals an altered gene expression pattern as a result of CRISPR/cas9-mediated deletion of Gene 33/Mig6 and chronic exposure to hexavalent chromium in human lung epithelial cells. Toxicol. Appl. Pharmacol. 2017, 330, 30–39. [Google Scholar] [CrossRef]
- Kim, S.C.; Shin, Y.K.; Kim, Y.A.; Jang, S.G.; Ku, J.L. Identification of genes inducing resistance to ionizing radiation in human rectal cancer cell lines: Re-sensitization of radio-resistant rectal cancer cells through down regulating NDRG1. BMC Cancer 2018, 18, 594. [Google Scholar] [CrossRef]
- Vu, H.L.; Rosenbaum, S.; Capparelli, C.; Purwin, T.J.; Davies, M.A.; Berger, A.C.; Aplin, A.E. MIG6 Is MEK Regulated and Affects EGF-Induced Migration in Mutant NRAS Melanoma. J. Investig. Dermatol. 2016, 136, 453–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Keeton, A.B.; Wu, L.; Franklin, J.L.; Cao, X.; Messina, J.L. Gene 33 inhibits apoptosis of breast cancer cells and increases poly(ADP-ribose) polymerase expression. Breast Cancer Res. Treat. 2005, 91, 207–215. [Google Scholar] [CrossRef]
- Kang, D.H.; Jung, S.S.; Yeo, M.K.; Lee, D.H.; Yoo, G.; Cho, S.Y.; Oh, I.J.; Kim, J.O.; Park, H.S.; Chung, C.; et al. Suppression of Mig-6 overcomes the acquired EGFR-TKI resistance of lung adenocarcinoma. BMC Cancer 2020, 20, 571. [Google Scholar] [CrossRef] [PubMed]
- Mojica, C.A.R.; Ybanez, W.S.; Olarte, K.C.V.; Poblete, A.B.C.; Bagamasbad, P.D. Differential Glucocorticoid-Dependent Regulation and Function of the ERRFI1 Gene in Triple-Negative Breast Cancer. Endocrinology 2020, 161, bqaa082. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Colvin, E.S.; Maier, B.F.; Mirmira, R.G.; Fueger, P.T. Mitogen-inducible gene 6 triggers apoptosis and exacerbates ER stress-induced beta-cell death. Mol. Endocrinol. 2013, 27, 162–171. [Google Scholar] [CrossRef]
- Gong, J.G.; Costanzo, A.; Yang, H.Q.; Melino, G.; Kaelin, W.G., Jr.; Levrero, M.; Wang, J.Y. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 1999, 399, 806–809. [Google Scholar] [CrossRef]
- Agami, R.; Blandino, G.; Oren, M.; Shaul, Y. Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 1999, 399, 809–813. [Google Scholar] [CrossRef]
- Chau, B.N.; Chen, T.T.; Wan, Y.Y.; DeGregori, J.; Wang, J.Y. Tumor necrosis factor alpha-induced apoptosis requires p73 and c-ABL activation downstream of RB degradation. Mol. Cell. Biol. 2004, 24, 4438–4447. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Franco, H.L.; Jung, S.Y.; Qin, J.; Broaddus, R.R.; Lydon, J.P.; Jeong, J.W. The synergistic effect of Mig-6 and Pten ablation on endometrial cancer development and progression. Oncogene 2010, 29, 3770–3780. [Google Scholar] [CrossRef]
- Li, Z.; Tian, Y.; Qu, L.; Mao, J.; Zhong, H. AAV-Mig-6 Increase the Efficacy of TAE in VX2 Rabbit Model, Is Associated With JNK Mediated Autophagy. J. Cancer 2019, 10, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Cho, S.N.; Raso, M.G.; Wistuba, I.; Smith, Y.; Yang, Y.; Kurie, J.M.; Yen, R.; Evans, C.M.; Ludwig, T.; et al. Mig-6 is required for appropriate lung development and to ensure normal adult lung homeostasis. Development 2009, 136, 3347–3356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.I.; Barletta, J.A.; Nehs, M.A.; Morris, Z.S.; Donner, D.B.; Whang, E.E.; Jeong, J.W.; Kimura, S.; Moore, F.D., Jr.; Ruan, D.T. Thyroid-specific knockout of the tumor suppressor mitogen-inducible gene 6 activates epidermal growth factor receptor signaling pathways and suppresses nuclear factor-kappaB activity. Surgery 2011, 150, 1295–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkett, M.; Gilmore, T.D. Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 1999, 18, 6910–6924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonenshein, G.E. Rel/NF-kappa B transcription factors and the control of apoptosis. Semin. Cancer Biol. 1997, 8, 113–119. [Google Scholar] [CrossRef]
- Milewska, M.; Kolch, W. Mig-6 participates in the regulation of cell senescence and retinoblastoma protein phosphorylation. Cell. Signal. 2014, 26, 1870–1877. [Google Scholar] [CrossRef]
- Xie, B.; Zhao, L.; Chen, H.; Jin, B.; Mao, Z.; Yao, Z. The mitogen-inducible gene-6 is involved in regulation of cellular senescence in normal diploid fibroblasts. Biol. Cell 2013, 105, 488–499. [Google Scholar] [CrossRef]
- Jiang, X.; Niu, M.; Chen, D.; Chen, J.; Cao, Y.; Li, X.; Ying, H.; Bergholz, J.; Zhang, Y.; Xiao, Z.X. Inhibition of Cdc42 is essential for Mig-6 suppression of cell migration induced by EGF. Oncotarget 2016, 7, 49180–49193. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Dong, Q.; Wang, Y.; Qu, L.; Qiu, X.; Wang, E. Downregulation of Mig-6 in nonsmall-cell lung cancer is associated with EGFR signaling. Mol. Carcinog. 2011, 51, 522–534. [Google Scholar] [CrossRef]
- Shaul, Y. c-Abl: Activation and nuclear targets. Cell Death Differ. 2000, 7, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Shaul, Y.; Ben-Yehoyada, M. Role of c-Abl in the DNA damage stress response. Cell Res. 2005, 15, 33–35. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, L.; Wang, J.; Chau, J.F.; Lai, K.P.; Jia, D.; Poonepalli, A.; Hande, M.P.; Liu, H.; He, G.; et al. A positive role for c-Abl in Atm and Atr activation in DNA damage response. Cell Death Differ. 2011, 18, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.M.; Shioya, H.; Ishiko, T.; Sun, X.; Gu, J.; Huang, Y.Y.; Lu, H.; Kharbanda, S.; Weichselbaum, R.; Kufe, D. p73 is regulated by tyrosine kinase c-Abl in the apoptotic response to DNA damage. Nature 1999, 399, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Muslin, A.J.; Tanner, J.W.; Allen, P.M.; Shaw, A.S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 1996, 84, 889–897. [Google Scholar] [CrossRef] [Green Version]
- Van Hemert, M.J.; Steensma, H.Y.; van Heusden, G.P. 14-3-3 proteins: Key regulators of cell division, signalling and apoptosis. Bioessays 2001, 23, 936–946. [Google Scholar] [CrossRef]
- Bartek, J.; Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003, 3, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, Y.; Wong, C.; Thoma, R.S.; Richman, R.; Wu, Z.; Piwnica-Worms, H.; Elledge, S.J. Conservation of the Chk1 checkpoint pathway in mammals: Linkage of DNA damage to Cdk regulation through Cdc25. Science 1997, 277, 1497–1501. [Google Scholar] [CrossRef]
- Staal, B.; Williams, B.O.; Beier, F.; Vande Woude, G.F.; Zhang, Y.W. Cartilage-specific deletion of Mig-6 results in osteoarthritis-like disorder with excessive articular chondrocyte proliferation. Proc. Natl. Acad. Sci. USA 2014, 111, 2590–2595. [Google Scholar] [CrossRef] [Green Version]
- Shepard, J.B.; Jeong, J.W.; Maihle, N.J.; O’Brien, S.; Dealy, C.N. Transient anabolic effects accompany epidermal growth factor receptor signal activation in articular cartilage in vivo. Arthritis Res. Ther. 2013, 15, R60. [Google Scholar] [CrossRef] [Green Version]
- Bellini, M.; Pest, M.A.; Miranda-Rodrigues, M.; Qin, L.; Jeong, J.W.; Beier, F. Overexpression of MIG-6 in the cartilage induces an osteoarthritis-like phenotype in mice. Arthritis Res. Ther. 2020, 22, 119. [Google Scholar] [CrossRef]
- Lafont, J.E.; Talma, S.; Hopfgarten, C.; Murphy, C.L. Hypoxia promotes the differentiated human articular chondrocyte phenotype through SOX9-dependent and -independent pathways. J. Biol. Chem. 2008, 283, 4778–4786. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shang-Guan, Y.; Ma, J.; Hu, H.; Wang, L.; Magdalou, J.; Chen, L.; Wang, H. Mitogen-inducible gene-6 partly mediates the inhibitory effects of prenatal dexamethasone exposure on endochondral ossification in long bones of fetal rats. Br. J. Pharmacol. 2016, 173, 2250–2262. [Google Scholar] [CrossRef]
- Ballaro, C.; Ceccarelli, S.; Tiveron, C.; Tatangelo, L.; Salvatore, A.M.; Segatto, O.; Alema, S. Targeted expression of RALT in mouse skin inhibits epidermal growth factor receptor signalling and generates a Waved-like phenotype. EMBO Rep. 2005, 6, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Rothrock, R.; Lee, K.L.; Isham, K.R.; Johnson, A.C.; Kenney, F.T. Different mechanisms control developmental activation of transcription of genes subject to identical hormonal regulation in adult liver. Biochem. Biophys. Res. Commun. 1987, 144, 1182–1187. [Google Scholar] [CrossRef]
- Johnson, A.C.; Lee, K.L.; Isham, K.R.; Kenney, F.T. Gene-specific acquisition of hormonal responsiveness in rat liver during development. J. Cell Biochem. 1988, 37, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Plisov, S.Y.; Ivanov, S.V.; Yoshino, K.; Dove, L.F.; Plisova, T.M.; Higinbotham, K.G.; Karavanova, I.; Lerman, M.; Perantoni, A.O. Mesenchymal-epithelial transition in the developing metanephric kidney: Gene expression study by differential display. Genesis 2000, 27, 22–31. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, D.K.; Franco, H.L.; Lydon, J.P.; Jeong, J.W. ERBB receptor feedback inhibitor 1 regulation of estrogen receptor activity is critical for uterine implantation in mice. Biol. Reprod. 2010, 82, 706–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haber, B.A.; Mohn, K.L.; Diamond, R.H.; Taub, R. Induction patterns of 70 genes during nine days after hepatectomy define the temporal course of liver regeneration. J. Clin. Investig. 1993, 91, 1319–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donner, D.B.; Ruan, D.T.; Toriguchi, K.; Bergsland, E.K.; Nakakura, E.K.; Lin, M.H.; Antonia, R.J.; Warren, R.S. Mitogen Inducible Gene-6 Is a Prognostic Marker for Patients with Colorectal Liver Metastases. Transl. Oncol. 2019, 12, 550–560. [Google Scholar] [CrossRef]
- Gilgenkrantz, H.; Collin de l’Hortet, A. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine. Am. J. Pathol. 2018, 188, 1316–1327. [Google Scholar] [CrossRef] [Green Version]
- Wild, S.L.; Elghajiji, A.; Grimaldos Rodriguez, C.; Weston, S.D.; Burke, Z.D.; Tosh, D. The Canonical Wnt Pathway as a Key Regulator in Liver Development, Differentiation and Homeostatic Renewal. Genes 2020, 11, 1163. [Google Scholar] [CrossRef]
- Ku, B.J.; Kim, T.H.; Lee, J.H.; Buras, E.D.; White, L.D.; Stevens, R.D.; Ilkayeva, O.R.; Bain, J.R.; Newgard, C.B.; DeMayo, F.J.; et al. Mig-6 plays a critical role in the regulation of cholesterol homeostasis and bile acid synthesis. PLoS ONE 2012, 7, e42915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Chen, Y.; Zhu, G.; Hysi, P.G.; Wu, S.; Adhikari, K.; Breslin, K.; Pospiech, E.; Hamer, M.A.; Peng, F.; et al. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair. Hum. Mol. Genet 2018, 27, 559–575. [Google Scholar] [CrossRef]
- Zhang, H.; Berezov, A.; Wang, Q.; Zhang, G.; Drebin, J.; Murali, R.; Greene, M.I. ErbB receptors: From oncogenes to targeted cancer therapies. J. Clin. Investig. 2007, 117, 2051–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, A.; Mills, A.A. The quest for the 1p36 tumor suppressor. Cancer Res. 2008, 68, 2551–2556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomoto, S.; Haruki, N.; Tatematsu, Y.; Konishi, H.; Mitsudomi, T.; Takahashi, T.; Takahashi, T. Frequent allelic imbalance suggests involvement of a tumor suppressor gene at 1p36 in the pathogenesis of human lung cancers. Genes Chromosomes Cancer 2000, 28, 342–346. [Google Scholar] [CrossRef]
- Tseng, R.C.; Chang, J.W.; Hsien, F.J.; Chang, Y.H.; Hsiao, C.F.; Chen, J.T.; Chen, C.Y.; Jou, Y.S.; Wang, Y.C. Genomewide loss of heterozygosity and its clinical associations in non small cell lung cancer. Int. J. Cancer 2005, 117, 241–247. [Google Scholar] [CrossRef]
- Herzog, C.R.; Wang, Y.; You, M. Allelic loss of distal chromosome 4 in mouse lung tumors localize a putative tumor suppressor gene to a region homologous with human chromosome 1p36. Oncogene 1995, 11, 1811–1815. [Google Scholar]
- Herzog, C.R.; Devereux, T.R.; Pittman, B.; You, M. Carcinogenic induction directs the selection of allelic losses in mouse lung tumorigenesis. Cancer Res. 2002, 62, 6424–6429. [Google Scholar]
- Sargent, L.M.; Senft, J.R.; Lowry, D.T.; Jefferson, A.M.; Tyson, F.L.; Malkinson, A.M.; Coleman, A.E.; Reynolds, S.H. Specific chromosomal aberrations in mouse lung adenocarcinoma cell lines detected by spectral karyotyping: A comparison with human lung adenocarcinoma. Cancer Res. 2002, 62, 1152–1157. [Google Scholar]
- Zhang, Y.W.; Staal, B.; Su, Y.; Swiatek, P.; Zhao, P.; Cao, B.; Resau, J.; Sigler, R.; Bronson, R.; Vande Woude, G.F. Evidence that MIG-6 is a tumor-suppressor gene. Oncogene 2007, 26, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, T.; Ushikoshi-Nakayama, R.; Suenaga, A.; Ide, K.; Yumoto, N.; Naruo, Y.; Takahashi, K.; Saeki, Y.; Taiji, M.; Tanaka, H.; et al. Mutation of epidermal growth factor receptor is associated with MIG6 expression. FEBS J. 2009, 276, 5239–5251. [Google Scholar] [CrossRef]
- Liu, J.; Cho, S.N.; Wu, S.P.; Jin, N.; Moghaddam, S.J.; Gilbert, J.L.; Wistuba, I.; DeMayo, F.J. Mig-6 deficiency cooperates with oncogenic Kras to promote mouse lung tumorigenesis. Lung Cancer 2017, 112, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cho, S.N.; Akkanti, B.; Jin, N.; Mao, J.; Long, W.; Chen, T.; Zhang, Y.; Tang, X.; Wistub, I.I.; et al. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis. Cell Rep. 2015, 10, 1599–1613. [Google Scholar] [CrossRef] [Green Version]
- Nagy, P.; Kiss, A.; Schnur, J.; Thorgeirsson, S.S. Dexamethasone inhibits the proliferation of hepatocytes and oval cells but not bile duct cells in rat liver. Hepatology 1998, 28, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Stovall, D.W.; Halme, J. Endometriosis and associated pathology. Curr. Opin. Obstet. Gynecol. 1991, 3, 853–858. [Google Scholar] [CrossRef]
- Kim, J.J.; Chapman-Davis, E. Role of progesterone in endometrial cancer. Semin. Reprod. Med. 2010, 28, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.H.; Lee, D.K.; Cho, S.N.; Orvis, G.D.; Behringer, R.R.; Lydon, J.P.; Ku, B.J.; McCampbell, A.S.; Broaddus, R.R.; Jeong, J.W. Critical tumor suppressor function mediated by epithelial Mig-6 in endometrial cancer. Cancer Res. 2013, 73, 5090–5099. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Yoo, J.Y.; Kim, H.I.; Gilbert, J.; Ku, B.J.; Li, J.; Mills, G.B.; Broaddus, R.R.; Lydon, J.P.; Lim, J.M.; et al. Mig-6 suppresses endometrial cancer associated with Pten deficiency and ERK activation. Cancer Res. 2014, 74, 7371–7382. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.G.; Killela, P.J.; Payne, C.A.; Lampson, B.; Chen, W.C.; Liu, J.; Solomon, D.; Waldman, T.; Towers, A.J.; Gregory, S.G.; et al. Integrated genomic analyses identify ERRFI1 and TACC3 as glioblastoma-targeted genes. Oncotarget 2010, 1, 265–277. [Google Scholar] [CrossRef]
- Wong, A.J.; Ruppert, J.M.; Bigner, S.H.; Grzeschik, C.H.; Humphrey, P.A.; Bigner, D.S.; Vogelstein, B. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl. Acad. Sci. USA 1992, 89, 2965–2969. [Google Scholar] [CrossRef] [Green Version]
- Chumbalkar, V.; Latha, K.; Hwang, Y.; Maywald, R.; Hawley, L.; Sawaya, R.; Diao, L.; Baggerly, K.; Cavenee, W.K.; Furnari, F.B.; et al. Analysis of phosphotyrosine signaling in glioblastoma identifies STAT5 as a novel downstream target of DeltaEGFR. J. Proteome Res. 2011, 10, 1343–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, D.T.; Warren, R.S.; Moalem, J.; Chung, K.W.; Griffin, A.C.; Shen, W.; Duh, Q.Y.; Nakakura, E.; Donner, D.B.; Khanafshar, E.; et al. Mitogen-inducible gene-6 expression correlates with survival and is an independent predictor of recurrence in BRAF(V600E) positive papillary thyroid cancers. Surgery 2008, 144, 908–913; discussion 913–914. [Google Scholar] [CrossRef] [PubMed]
- Farabegoli, F.; Ceccarelli, C.; Santini, D.; Trere, D.; Baldini, N.; Taffurelli, M.; Derenzini, M. Chromosome 1 aneusomy with 1p36 under-representation is related to histologic grade, DNA aneuploidy, high c-erb B-2 and loss of bcl-2 expression in ductal breast carcinoma. Int. J. Cancer 1996, 69, 381–385. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Ito, N.; Yoshimoto, M.; Kasumi, F.; Akiyama, F.; Sakamoto, G.; Nakamura, Y.; Emi, M. Allelic loss on chromosome 1p is associated with progression and lymph node metastasis of primary breast carcinoma. Cancer 1998, 82, 317–322. [Google Scholar] [CrossRef]
- Meseure, D.; Drak Alsibai, K.; Vacher, S.; Hatem, R.; Nicolas, A.; Callens, C.; Lerebours, F.; Bieche, I. Altered Expression of Three EGFR Posttranslational Regulators MDGI, MIG6, and EIG121 in Invasive Breast Carcinomas. Anal. Cell. Pathol. 2020, 2020, 9268236. [Google Scholar] [CrossRef] [Green Version]
- Amatschek, S.; Koenig, U.; Auer, H.; Steinlein, P.; Pacher, M.; Gruenfelder, A.; Dekan, G.; Vogl, S.; Kubista, E.; Heider, K.H.; et al. Tissue-wide expression profiling using cDNA subtraction and microarrays to identify tumor-specific genes. Cancer Res. 2004, 64, 844–856. [Google Scholar] [CrossRef] [Green Version]
- Wendt, M.K.; Williams, W.K.; Pascuzzi, P.E.; Balanis, N.G.; Schiemann, B.J.; Carlin, C.R.; Schiemann, W.P. The antitumorigenic function of EGFR in metastatic breast cancer is regulated by expression of Mig6. Neoplasia 2015, 17, 124–133. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Li, C.F.; Lee, H.J.; Shin, D.H.; Chern, Y.J.; Pereira De Carvalho, B.; Chan, C.H. MIG-6 is essential for promoting glucose metabolic reprogramming and tumor growth in triple-negative breast cancer. EMBO Rep. 2021, e50781. [Google Scholar] [CrossRef]
- Ichise, T.; Yoshida, N.; Ichise, H. CBP/p300 antagonises EGFR-Ras-Erk signalling and suppresses increased Ras-Erk signalling-induced tumour formation in mice. J. Pathol. 2019, 249, 39–51. [Google Scholar] [CrossRef]
- Jager, K.; Larribere, L.; Wu, H.; Weiss, C.; Gebhardt, C.; Utikal, J. Expression of Neural Crest Markers GLDC and ERRFI1 is Correlated with Melanoma Prognosis. Cancers 2019, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Qu, L.; Luo, W.; Tian, Y.; Zhai, H.; Xu, K.; Zhong, H. Mig-6 is down-regulated in HCC and inhibits the proliferation of HCC cells via the P-ERK/Cyclin D1 pathway. Exp. Mol. Pathol. 2017, 102, 492–499. [Google Scholar] [CrossRef]
- Borad, M.J.; Champion, M.D.; Egan, J.B.; Liang, W.S.; Fonseca, R.; Bryce, A.H.; McCullough, A.E.; Barrett, M.T.; Hunt, K.; Patel, M.D.; et al. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet. 2014, 10, e1004135. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, Q.; Zhang, X.; Yang, J.; Lin, K.; Ji, C.; Xu, A.; Yang, L.; Miao, L. Long noncoding RNA ANRIL promotes the malignant progression of cholangiocarcinoma by epigenetically repressing ERRFI1 expression. Cancer Sci. 2020, 111, 2297–2309. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Qu, L.Y.; Wen, H.; Zhong, H.S.; Xu, K.; Qiu, X.S.; Wang, E.H. Mig-6 overcomes gefitinib resistance by inhibiting EGFR/ERK pathway in non-small cell lung cancer cell lines. Int. J. Clin. Exp. Pathol. 2014, 7, 7304–7311. [Google Scholar] [PubMed]
- Chang, X.; Izumchenko, E.; Solis, L.M.; Kim, M.S.; Chatterjee, A.; Ling, S.; Monitto, C.L.; Harari, P.M.; Hidalgo, M.; Goodman, S.N.; et al. The relative expression of Mig6 and EGFR is associated with resistance to EGFR kinase inhibitors. PLoS ONE 2013, 8, e68966. [Google Scholar] [CrossRef]
- Endo, H.; Okami, J.; Okuyama, H.; Nishizawa, Y.; Imamura, F.; Inoue, M. The induction of MIG6 under hypoxic conditions is critical for dormancy in primary cultured lung cancer cells with activating EGFR mutations. Oncogene 2017, 36, 2824–2834. [Google Scholar] [CrossRef]
- Migliore, C.; Morando, E.; Ghiso, E.; Anastasi, S.; Leoni, V.P.; Apicella, M.; Cora, D.; Sapino, A.; Pietrantonio, F.; De Braud, F.; et al. miR-205 mediates adaptive resistance to MET inhibition via ERRFI1 targeting and raised EGFR signaling. EMBO Mol. Med. 2018, 10, e8746. [Google Scholar] [CrossRef]
- Gregory, P.A.; Bert, A.G.; Paterson, E.L.; Barry, S.C.; Tsykin, A.; Farshid, G.; Vadas, M.A.; Khew-Goodall, Y.; Goodall, G.J. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008, 10, 593–601. [Google Scholar] [CrossRef]
- Adam, L.; Zhong, M.; Choi, W.; Qi, W.; Nicoloso, M.; Arora, A.; Calin, G.; Wang, H.; Siefker-Radtke, A.; McConkey, D.; et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin. Cancer Res. 2009, 15, 5060–5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; Sperl, B.; Gartner, S.; Nedelko, T.; Stacher-Priehse, E.; Ullrich, A.; Knyazev, P.G. Lung cancer stem cells and their aggressive progeny, controlled by EGFR/MIG6 inverse expression, dictate a novel NSCLC treatment approach. Oncotarget 2019, 10, 2546–2560. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.K.; Kim, H.P.; Song, S.H.; Han, S.W.; Oh, D.Y.; Im, S.A.; Bang, Y.J.; Kim, T.Y. Down-regulation of mitogen-inducible gene 6, a negative regulator of EGFR, enhances resistance to MEK inhibition in KRAS mutant cancer cells. Cancer Lett. 2012, 316, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Messina, J.L.; Hamlin, J.; Larner, J. Effects of insulin alone on the accumulation of a specific mRNA in rat hepatoma cells. J. Biol. Chem. 1985, 260, 16418–16423. [Google Scholar] [CrossRef]
- Lee, I.S.; Lee, J.H.; Kim, H.J.; Lee, J.M.; Lee, S.K.; Kim, H.S.; Lee, J.M.; Park, K.S.; Ku, B.J. Novel ERBB receptor feedback inhibitor 1 (ERRFI1) + 808 T/G polymorphism confers protective effect on diabetic nephropathy in a Korean population. Dis. Markers 2013, 34, 113–124. [Google Scholar] [CrossRef]
- Chen, Y.C.; Colvin, E.S.; Griffin, K.E.; Maier, B.F.; Fueger, P.T. Mig6 haploinsufficiency protects mice against streptozotocin-induced diabetes. Diabetologia 2014, 57, 2066–2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, J.Y.; Kim, T.H.; Kong, S.; Lee, J.H.; Choi, W.; Kim, K.S.; Kim, H.J.; Jeong, J.W.; Ku, B.J. Role of Mig-6 in hepatic glucose metabolism. J. Diabetes 2016, 8, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Lee, E.A.; Kim, H.Y.; Lee, J.C.; Kim, K.S.; Jeong, W.H.; Kim, K.Y.; Ku, B.J.; Rhee, S.D. Fatty Liver and Insulin Resistance in the Liver-Specific Knockout Mice of Mitogen Inducible Gene-6. J. Diabetes Res. 2016, 2016, 1632061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.C.; Park, B.K.; Choung, S.; Kim, J.M.; Joung, K.H.; Lee, J.H.; Kim, K.S.; Kim, H.J.; Jeong, J.W.; Rhee, S.D.; et al. Amelioration of hypercholesterolemia by an EGFR tyrosine kinase inhibitor in mice with liver-specific knockout of Mig-6. PLoS ONE 2014, 9, e114782. [Google Scholar] [CrossRef]
- Crone, S.A.; Zhao, Y.Y.; Fan, L.; Gu, Y.; Minamisawa, S.; Liu, Y.; Peterson, K.L.; Chen, J.; Kahn, R.; Condorelli, G.; et al. ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat. Med. 2002, 8, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.I.; Burke, M.A.; Singh, A.T.; Prachand, S.; Lieberman, E.D.; Sun, L.; Naik, T.J.; Prasad, S.V.; Ardehali, H. Blockade of the erbB2 receptor induces cardiomyocyte death through mitochondrial and reactive oxygen species-dependent pathways. J. Biol. Chem. 2009, 284, 2080–2087. [Google Scholar] [CrossRef] [Green Version]
- Grazette, L.P.; Boecker, W.; Matsui, T.; Semigran, M.; Force, T.L.; Hajjar, R.J.; Rosenzweig, A. Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: Implications for herceptin-induced cardiomyopathy. J. Am. Coll. Cardiol. 2004, 44, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
- Ozcelik, C.; Erdmann, B.; Pilz, B.; Wettschureck, N.; Britsch, S.; Hubner, N.; Chien, K.R.; Birchmeier, C.; Garratt, A.N. Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc. Natl. Acad. Sci. USA 2002, 99, 8880–8885. [Google Scholar] [CrossRef] [Green Version]
- Kuramochi, Y.; Cote, G.M.; Guo, X.; Lebrasseur, N.K.; Cui, L.; Liao, R.; Sawyer, D.B. Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J. Biol. Chem. 2004, 279, 51141–51147. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Yi, F.F.; Yang, L.; Shen, D.F.; Yang, Q.; Li, A.; Ghosh, A.K.; Bian, Z.Y.; Yan, L.; Tang, Q.Z.; et al. Targeted expression of receptor-associated late transducer inhibits maladaptive hypertrophy via blocking epidermal growth factor receptor signaling. Hypertension 2009, 53, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Choung, S.; Kim, J.M.; Lee, J.U.; Kim, K.S.; Kim, H.J.; Jeong, J.W.; Ku, B.J. Mig-6 gene knockout induces neointimal hyperplasia in the vascular smooth muscle cell. Dis. Markers 2014, 2014, 549054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulus, C.; Sollars, P.J.; Pickard, G.E.; Enquist, L.W. Transcriptome signature of virulent and attenuated pseudorabies virus-infected rodent brain. J. Virol. 2006, 80, 1773–1786. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, T.; Dhahbi, J.M.; Cui, X.; Mote, P.L.; Bartke, A.; Spindler, S.R. Additive regulation of hepatic gene expression by dwarfism and caloric restriction. Physiol. Genom. 2004, 17, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Russo, A. Decreased Mitogen Inducible Gene 6 (MIG-6) Associated with Symptom Severity in Children with Autism. Biomark Insights 2014, 9, 85–89. [Google Scholar] [CrossRef]
- Kubota, N.; Suyama, M. An integrated analysis of public genomic data unveils a possible functional mechanism of psoriasis risk via a long-range ERRFI1 enhancer. BMC Med. Genom. 2020, 13, 8. [Google Scholar] [CrossRef]
- Gelfand, J.M. Psoriasis, Type 2 Diabetes Mellitus, and Obesity: Weighing the Evidence. JAMA Dermatol. 2016, 152, 753–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Function in Cancer | Cancer Type | Reference |
Suppressor | Lung cancer | [20,28,34,81,100,132,133,134,135] |
Endometrial cancer | [76,77,91,136,139] | |
Glioma | [25,55,141,142] | |
Thyroid cancer | [62,71,94,144] | |
Liver cancer | [26,57] | |
Suppressor or promotor | Breast cancer | [24,84,148,149] |
Skin cancer | [20,83,152] | |
Marker for liver metastasis | Colorectal cancer | [120] |
Function in other diseases | Disease | Reference |
Suppressor | Cholangiocarcinoma | [154] |
promotor | Intervertebral disk degeneration | [56] |
Suppressor or promotor | Diabetes | [4,79,87,165,166,167,168] |
Suppressor or promoter | Cardiovascular diseases | [17,175,176] |
Positive correlation | Dwarfism and longevity | [178] |
Negative correlation | Psoriasis | [180] |
Negative correlation | Autism | [179] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Li, C. Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells 2021, 10, 1574. https://doi.org/10.3390/cells10071574
Xu D, Li C. Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells. 2021; 10(7):1574. https://doi.org/10.3390/cells10071574
Chicago/Turabian StyleXu, Dazhong, and Cen Li. 2021. "Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases" Cells 10, no. 7: 1574. https://doi.org/10.3390/cells10071574
APA StyleXu, D., & Li, C. (2021). Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells, 10(7), 1574. https://doi.org/10.3390/cells10071574