Morphological and Calcium Signaling Alterations of Neuroglial Cells in Cerebellar Cortical Dysplasia Induced by Carmustine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Handling
2.2. Experimental Model of Cortical Dysplasia
2.3. Behavioral Tests
2.4. Tissue Clearing
2.5. Light-Sheet Fluorescent Microscopy
2.5.1. Image Acquisition
2.5.2. Image Processing and Reconstruction
2.6. Golgi Cox Staining
2.7. Calcium Imaging
2.7.1. Slice Preparation
2.7.2. Primary Culture of Astrocytes
2.7.3. Data Acquisition
2.7.4. Data Analysis
2.8. Statistical Analysis
3. Results
3.1. Motor Coordination Impairment
3.2. Cerebellar Cortical Dysplasia
3.3. Carmustine Reduces the Morphological Complexity of Astrocytes and Bergman Cells
3.4. Carmustine Induced a Higher Number of Bergmann Glia Engaged in Spontaneous [Ca2+]i Oscillations
3.5. Carmustine Induced a Reduction in the Complexity of Astrocyte Morphology Which Shows More Spontaneous [Ca2+]i Oscillations In Vitro
3.6. Astrocyte [Ca2+]i Oscillations In Vitro Show a Disrupted Global Synchronization Network
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luhmann, H.J. Models of cortical-malformation-chemical and physical. J. Neurosci. Methods 2016, 260, 62–72. [Google Scholar] [CrossRef]
- Barkovich, A.J.; Kuzniecky, R.I.; Jackson, G.D.; Guerrini, R.; Dobyns, W.B. A developmental and genetic classification for malformations of cortical development. Neurology 2005, 65, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Baka, M.; Uyanikgil, Y.; Ates, U. Investigation of maternal metionin effect on the hippocampal formation of newborn rat model or intrauterine cortical dysplasia. Childs Nerv. Syst. 2010, 26, 1575–1581. [Google Scholar] [CrossRef]
- Moroni, R.F.; Inverardi, F.; Regondi, M.C.; Ferrucio, P.; Spreafico, R.; Frassoni, C. Altered spatial distribution of PV-cortical cells and dysmorphic neurons in the somatosensory cortex of BCNU-treated rat model of cortical dysplasia. Epilepsy 2008, 49, 882–887. [Google Scholar] [CrossRef] [PubMed]
- Benardete, E.A.; Kriegstein, A.R. Increased excitability and decreased sensitivity to GABA in an animal model of dysplastic cortex. Epilepsy 2002, 43, 970–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moroni, R.F.; Cipelletti, B.; Inverardi, F.; Regondi, M.C.; Spreafico, R.; Frassoni, C. Development of cortical malformations in BCNU-treated rat, model of cortical dysplasia. Neuroscience 2011, 175, 380–393. [Google Scholar] [CrossRef] [PubMed]
- Calcagnotto, M.E.; Baraban, S.C. Prolonged NMDA-mediated responses, altered ifenprodil sensitivity, and epileptiform-like events in the malformed hippocampus of methylazoxymethanol exposed rats. J. Neurophysiol. 2005, 94, 153–162. [Google Scholar] [CrossRef]
- Inverardi, F.; Chikhladze, M.; Donzelli, A.; Moroni, R.F.; Regondi, M.C.; Pennacchio, P.; Zucca, I.; Corradini, I.; Braida, D.; Sala, M.; et al. Cytoarchitectural, behavioural and neurophysiological dysfunctions in the BCNU-treated rat model of cortical dysplasia. Eur. J. Neurosci. 2013, 37, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Martinian, L.; Boer, K.; Middeldorp, J.; Hol, E.M.; Sisodiya, S.M.; Squier, W.; Aronica, E.; Thom, M. Expression patterns of glial fibrillary acidic protein (GFAP)-delta in epilepsy-associated lesional pathologies. Neuropathol. Appl. Neurobiol. 2009, 35, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Yasin, S.A.; Latak, K.; Becherini, F.; Ganapathi, A.; Miller, K.; Campos, O.; Picker, S.R.; Bier, N.; Smith, M.; Thom, M.; et al. Balloon cells in human cortical dysplasia and tuberous sclerosis: Isolation of a pathological progenitor-like cell. Acta Neuropathol. 2010, 120, 85–96. [Google Scholar] [CrossRef]
- Sukigara, S.; Dai, H.; Nabatame, S.; Otsuki, T.; Hanai, S.; Honda, R.; Saito, T.; Nakagawa, E.; Kaido, T.; Sato, N.; et al. Expression of astrocyte-related receptors in cortical dysplasia with intractable epilepsy. J. Neuropathol. Exp. Neurol. 2014, 73, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Bordey, A.; Hablitz, J.J.; Sontheimer, H. Reactive astrocytes show enhanced inwardly rectifying K+ currents in situ. Neuroreport 2000, 11, 3151–3155. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, T.C. Interactions between Purkinje neurons and Bergmann glia. Cerebellum 2006, 5, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Reeber, S.L.; Otis, T.S.; Sillitoe, R.V. New roles for the cerebellum in health and disease. Front. Syst. Neurosci. 2013, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-González, M.A.; Ostos-Valverde, A.; Becerra-Hernández, A.; Sánchez-Castillo, H.; Martínez-Torres, A. The effect of carmustine on Bergmann cells of the cerebellum. Neurosci. Lett. 2015, 595, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.P.B.; Carpi-Santos, R.; Gomes, F.C.A. The Role of Astrocytes in the Development of the Cerebellum. Cerebellum 2019, 18, 1017–1035. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Nedergaard, M. Physiology of astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef]
- Nolte, C.; Matyash, M.; Pivneva, T.; Schipke, C.G.; Ohlemeyer, C.; Hanisch, U.K.; Kirchhoff, F.; Kettenmann, H. GFAP promoter-controlled EGFP expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 2001, 33, 72–86. [Google Scholar] [CrossRef]
- Crawley, J.N. Behavioral phenotyping of transgenic and knockout mice: Experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 1999, 835, 18–26. [Google Scholar] [CrossRef]
- González-González, M.A.; Gómez-González, G.B.; Becerra-González, M.; Martínez-Torres, A. Identification of novel cellular clusters define a specialized area in the cerebellar periventricular zone. Sci. Rep. 2017, 7, 40768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisken, J.; Swoger, J.; Del Bene, F.; Wittbrodt, J.; Stelzer, E.H. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 2004, 305, 1007–1009. [Google Scholar] [CrossRef] [Green Version]
- Olarte, O.E.; Andilla, J.; Gualda, E.J.; Loza-Alvarez, P. Light-sheet microscopy: A tutorial. Adv. Opt. Photonics 2018, 10, 111–179. [Google Scholar] [CrossRef]
- Girkin, J.M.; Carvalho, M.T. The light-sheet microscopy revolution. J. Opt. 2018, 20, 053002. [Google Scholar] [CrossRef]
- Licea-Rodriguez, J.; Figueroa-Melendez, A.; Falaggis, K.; Plata-Sanchez, M.; Riquelme, M.; Rocha-Mendoza, I. Multicolor fluorescence microscopy using static light sheets and a single-channel detection. J. Biomed. Opt. 2019, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Preibisch, S.; Saalfeld, S.; Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 2009, 25, 1463–1465. [Google Scholar] [CrossRef]
- Das, G.; Reuhl, K.; Zhou, R. The Golgi-Cox method. Methods Mol. Biol. 2013, 1018, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Tovey, S.C.; Collins, T.J.; Bootman, M.D.; Berridge, M.J.; Lipp, P.A. Comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 2000, 28, 213–223. [Google Scholar] [CrossRef]
- Yuste, R.; MacLean, J.; Vogelstein, J.; Paninski, L. Imaging action potentials with calcium indicators. Cold Spring Harb. Protoc. 2011, 985–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, M.; Kékesi, O.; Morley, J.W.; Tapson, J.; Breen, P.P.; van Schaik, A.; Buskila, Y. Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue. PLoS ONE 2016, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Pétriz, A.; Reyes-Haro, D.; González-González, M.A.; Miledi, R.; Martínez-Torres, A. GABAρ subunits confer a bicuculline-insensitive component to GFAP+ cells of cerebellum. Proc. Natl. Acad. Sci. USA 2014, 111, 17522–17527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Haro, D.; Miledi, R.; García-Colunga, J. Potassium currents in primary cultured astrocytes from the rat corpus callosum. J. Neurocytol. 2005, 34, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Delgado, G.; Reyes-Haro, D.; Espino-Saldaña, A.E.; Rosas-Arellano, A.; Pétriz, A.; Juárez-Mercado, P.; Miledi, R.; Martínez-Torres, A. Dynamics of GABAρ2 receptors in retinal bipolar neurons and cerebellar astrocytes. Neuroreport 2011, 22, 4–9. [Google Scholar] [CrossRef]
- Kanner, S.; Goldin, M.; Galron, R.; Ben, J.E.; Bonifazi, P.; Barzilai, A. Astrocytes restore connectivity and synchronization in dysfunctional cerebellar networks. Proc. Natl. Acad. Sci. USA 2018, 115, 8025–8030. [Google Scholar] [CrossRef] [Green Version]
- Beierlein, M. Imaging calcium waves in cerebellar Bergmann glia. Cold Spring Harbor Protoc. 2013. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ortega, J.; Duhne, M.; Lara-González, E.; Plata, V.; Gasca, D.; Galarraga, E.; Hernández-Cruz, A.; Bargas, J. Pathophysiological signatures of functional connectomics in parkinsonian and dyskinetic striatal microcircuits. Neurobiol. Dis. 2016, 91, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.P.; Man, K.; Firestein, B.L.; Meaney, D.F. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging. J. Neurosci. Methods 2015, 243, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Watase, K.; Hashimoto, K.; Kano, M.; Yamada, K.; Watanabe, M.; Inoue, Y.; Okuyama, S.; Sakagawa, T.; Ogawa, S.; Kawashima, N.; et al. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur. J. Neurosci. 1998, 3, 976–988. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.J.; Morton, J.; Dunnett, S.B. Motor coordination and balance in rodents. Curr. Protoc. Neurosci. 2001, 15, 8.12.1–8.12.14. [Google Scholar] [CrossRef]
- Nimmerjahn, A.; Mukamel, E.A.; Schnitzer, M.J. Motor behavior activates Bergmann glial networks. Neuron 2009, 62, 400–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metea, M.R.; Newman, E.A. Calcium signaling in specialized glial cells. Glia 2006, 54, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Mathiesen, C.; Brazhe, A.; Thomsen, K.; Lauritzen, M. Spontaneous calcium waves in Bergman glia increase with age and hypoxia and may reduce tissue oxygen. J. Cereb. Blood Flow Metab. 2013, 33, 161–169. [Google Scholar] [CrossRef]
- Dong, Q.; Liu, Q.; Li, R.; Wang, A.; Bu, Q.; Wang, K.H.; Chang, Q. Mechanism and consequence of abnormal calcium homeostasis in Rett syndrome astrocytes. eLife 2018, 7, e33417. [Google Scholar] [CrossRef] [PubMed]
- Buffo, A.; Rossi, F. Origin, lineage and function of cerebellar glia. Progress Neurobiol. 2013, 109, 42–63. [Google Scholar] [CrossRef]
- He, L.; Yu, K.; Lu, F.; Wang, J.; Wu, L.N.; Zhao, C.; Li, Q.; Zhou, X.; Liu, H.; Mu, D.; et al. Transcriptional Regulator ZEB2 Is Essential for Bergmann Glia Development. J. Neurosci. 2018, 38, 1575–1587. [Google Scholar] [CrossRef]
- Iskusnykh, I.Y.; Buddington, R.K.; Chizhikov, V.V. Preterm birth disrupts cerebellar development by affecting granule cell proliferation program and Bergmann glia. Exp. Neurol. 2018, 306, 209–221. [Google Scholar] [CrossRef]
- Haldipur, P.; Bharti, U.; Alberti, C.; Sarkar, C.; Gulati, G.; Iyengar, S.; Gressens, P.; Mani, S. Preterm delivery disrupts the developmental program of the cerebellum. PLoS ONE 2011, 6, e23449. [Google Scholar] [CrossRef] [Green Version]
- Piet, R.; Jahr, C.E. Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells. J. Neurosci. 2007, 27, 4027–4035. [Google Scholar] [CrossRef] [Green Version]
- Saab, A.S.; Neumeyer, A.; Jahn, H.M.; Cupido, A.; Šimek, A.A.; Boele, H.J.; Scheller, A.; Le Meur, K.; Götz, M.; Monyer, H.; et al. Bergmann glial AMPA receptors are required for fine motor coordination. Science 2012, 337, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, S. Synchronization of Ca2+ oscillations: Involvement of ATP release in astrocytes. FEBS J. 2010, 277, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Delekate, A.; Füchtemeier, M.; Schumacher, T.; Ulbrich, C.; Foddis, M.; Petzold, G.C. Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nat. Commun. 2014, 5, 5422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Ferradas, C.; Morales, J.C.; Wellmann, M.; Nualart, F.; Roncagliolo, M.; Fuenzalida, M.; Bonansco, C. Enhanced astroglial Ca2+ signaling increases excitatory synaptic strength in the epileptic brain. Glia 2015, 63, 1507–1521. [Google Scholar] [CrossRef]
- Shigetomi, E.; Hirayama, Y.J.; Ikenaka, K.; Tanaka, K.; Koizumi, S. Role of Purinergic Receptor P2Y1 in Spatiotemporal Ca2+ Dynamics in Astrocytes. J. Neurosci. 2018, 38, 1383–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirischuk, S.; Möller, T.; Voitenko, N.; Kettenmann, H.; Verkhratsky, A. ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. J. Neurosci. 1995, 15, 7861–7871. [Google Scholar] [CrossRef] [PubMed]
- Beierlein, M.; Regehr, W.G. Brief bursts of parallel fiber activity trigger calcium signals in bergmann glia. J. Neurosci. 2006, 26, 6958–6967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolph, R.; Jahn, H.M.; Courjaret, R.; Messemer, N.; Kirchhoff, F.; Deitmer, J.W. The inhibitory input to mouse cerebellar Purkinje cells is reciprocally modulated by Bergmann glial P2Y1 and AMPA receptor signaling. Glia 2016, 64, 1265–1280. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.G.; Subramanian, L.; Kriegstein, A.R. mTOR signaling regulates the morphology and migration of outer radial glia in developing human cortex. eLife 2020, 9, e58737. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Arzate, C.A.; Martínez-Mendoza, M.L.; Rocha-Mendoza, I.; Luna-Palacios, Y.; Licea-Rodríguez, J.; Martínez-Torres, A. Morphological and Calcium Signaling Alterations of Neuroglial Cells in Cerebellar Cortical Dysplasia Induced by Carmustine. Cells 2021, 10, 1581. https://doi.org/10.3390/cells10071581
Rodríguez-Arzate CA, Martínez-Mendoza ML, Rocha-Mendoza I, Luna-Palacios Y, Licea-Rodríguez J, Martínez-Torres A. Morphological and Calcium Signaling Alterations of Neuroglial Cells in Cerebellar Cortical Dysplasia Induced by Carmustine. Cells. 2021; 10(7):1581. https://doi.org/10.3390/cells10071581
Chicago/Turabian StyleRodríguez-Arzate, Cynthia Alejandra, Marianne Lizeth Martínez-Mendoza, Israel Rocha-Mendoza, Yryx Luna-Palacios, Jacob Licea-Rodríguez, and Ataúlfo Martínez-Torres. 2021. "Morphological and Calcium Signaling Alterations of Neuroglial Cells in Cerebellar Cortical Dysplasia Induced by Carmustine" Cells 10, no. 7: 1581. https://doi.org/10.3390/cells10071581
APA StyleRodríguez-Arzate, C. A., Martínez-Mendoza, M. L., Rocha-Mendoza, I., Luna-Palacios, Y., Licea-Rodríguez, J., & Martínez-Torres, A. (2021). Morphological and Calcium Signaling Alterations of Neuroglial Cells in Cerebellar Cortical Dysplasia Induced by Carmustine. Cells, 10(7), 1581. https://doi.org/10.3390/cells10071581