NNRTI and Liver Damage: Evidence of Their Association and the Mechanisms Involved
Abstract
:1. Introduction
2. Liver Damage: General Aspects and cART-Related Effects
3. Mechanisms of NNRTI-Induced Liver Injury
3.1. Nevirapine
3.2. Efavirenz (EFV)
3.3. Etravirine (ETR)
3.4. Rilpivirine (RPV)
3.5. Doravirine (DOR)
4. From DILI to Chronic Liver Disease
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chan, A.W.; Patel, Y.A.; Choi, S. Aging of the Liver: What This Means for Patients with HIV. Curr. HIV/AIDS Rep. 2016, 13, 309–317. [Google Scholar] [CrossRef]
- Kaspar, M.B.; Sterling, R.K. Mechanisms of liver disease in patients infected with HIV. BMJ Open Gastroenterol. 2017, 4, e000166. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.J.; Ryom, L.; Weber, R.; Morlat, P.; Pradier, C.; Reiss, P.; Kowalska, J.D.; De Wit, S.; Law, M.; El Sadr, W.; et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): A multicohort collaboration. Lancet 2014, 384, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Palella, F.J., Jr.; Baker, R.K.; Moorman, A.C.; Chmiel, J.S.; Wood, K.C.; Brooks, J.T.; Holmberg, S.D. HIV Outpatient Study Investigators. Mortality in the highly active antiretroviral therapy era: Changing causes of death and disease in the HIV outpatient study. J. Acquir. Immune Defic. Syndr. 2006, 43, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, J.C.; Thio, C.L. Liver disease in the HIV-infected individual. Clin. Gastroenterol. Hepatol. 2010, 8, 1002–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.Y.; Chung, R.T. Coinfection with HIV-1 and HCV—A one-two punch. Gastroenterology 2009, 137, 795–814. [Google Scholar] [CrossRef] [Green Version]
- Jeyarajan, A.J.; Chung, R.T. Insights into the Pathophysiology of Liver Disease in HCV/HIV: Does it End with HCV Cure? J. Infect. Dis. 2020, 222 (Suppl. S9), S802–S813. [Google Scholar] [CrossRef] [PubMed]
- Blackard, J.T.; Welge, J.A.; Taylor, L.E.; Mayer, K.H.; Klein, R.S.; Celentano, D.D.; Jamieson, D.J.; Gardner, L.; Sherman, K.E. HIV mono-infection is associated with FIB-4—A noninvasive index of liver fibrosis—In women. Clin. Infect. Dis. 2011, 52, 674–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messore, A.; Corona, A.; Madia, N.M.; Saccoliti, F.; Tudino, V.; De Leo, A.; Ialongo, D.; Scipione, L.; De Vita, D.; Amendola, G.; et al. Quinolinonyl Non-Diketo Acid Derivatives as Inhibitors of HIV-1 Ribonuclease H and Polymerase Functions of Reverse Transcriptase. J. Med. Chem. 2021, 64, 8579–8598. [Google Scholar] [CrossRef]
- Maeda, K.; Das, D.; Kobayakawa, T.; Tamamura, H.; Takeuchi, H. Discovery and Development of Anti-HIV Therapeutic Agents: Progress towards Improved HIV Medication. Curr. Top. Med. Chem. 2019, 19, 1621–1649. [Google Scholar] [CrossRef]
- Erickson, D.A.; Mather, G.; Trager, W.F.; Levy, R.H.; Keirns, J.J. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug. Meta. Dispos. 1999, 27, 1488–1495. [Google Scholar]
- Havens, J.P.; Podany, A.T.; Scarsi, K.K.; Fletcher, C.V. Clinical Pharmacokinetics and Pharmacodynamics of Etravirine: An Updated Review. Clin. Pharmacokinet. 2020, 59, 137–154. [Google Scholar] [CrossRef]
- Verloes, R.; Deleu, S.; Niemeijer, N.; Crauwels, H.; Meyvisch, P.; Williams, P. Safety, tolerability and pharmacokinetics of rilpivirine following administration of a long-acting formulation in healthy volunteers. HIV Med. 2015, 16, 477–484. [Google Scholar] [CrossRef]
- Lade, J.M.; Avery, L.B.; Bumpus, N.N. Human biotransformation of the nonnucleoside reverse transcriptase inhibitor rilpivirine and a cross-species metabolism comparison. Antimicrob. Agents Chemother. 2013, 57, 5067–5079. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, R.I.; Fillgrove, K.L.; Yee, K.L.; Liang, Y.; Lu, B.; Tatavarti, A.; Liu, R.; Anderson, M.S.; Behm, M.O.; Fan, L.; et al. Characterisation of the absorption, distribution, metabolism, excretion and mass balance of doravirine, a non-nucleoside reverse transcriptase inhibitor in humans. Xenobiotica 2019, 49, 422–432. [Google Scholar] [CrossRef] [PubMed]
- LiverTox. Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012; Etravirine. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548290/ (accessed on 11 March 2021).
- LiverTox. Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012; Rilpivirine. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548514/ (accessed on 11 March 2021).
- LiverTox. Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012; Doravirine. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548267/ (accessed on 11 March 2021).
- LiverTox. Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012; Severity Grading in Drug Induced Liver Injury. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548241/ (accessed on 11 March 2021).
- Stirnimann, G.; Kessebohm, K.; Lauterburg, B. Liver injury caused by drugs: An update. Swiss. Med. Wkly. 2010, 140, w13080. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Han, H.; Lau, M.Y.; Lee, H.; MacVeigh-Aloni, M.; Ji, C. Effects of Combined Alcohol Anti-HIV Drugs on Cellular Stress Responses in Primary Hepatocytes and Hepatic Stellate and Kupffer Cells. Alcohol. Clin. Exp. Res. 2015, 39, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Jarujaron, S.; Wu, X.; Sun, L.; Zha, W.; Liang, G.; Wang, X.; Gurley, E.C.; Studer, E.J.; Hylemon, P.B.; et al. HIV protease inhibitor lopinavir-induced TNF- α and IL-6 expression is coupled to the unfoulded protein response and ERK signaling pathways in macrophages. Biochem. Pharmacol. 2009, 78, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Oppenheimer, A.P.; Koh, C.; McLaughlin, M.; Williamson, J.C.; Norton, T.D.; Laudadio, J.; Heller, T.; Kleiner, D.E.; High, K.P.; Morse, C.G. Vanishing bile duct syndrome in human immunodeficiency virus infected adults: A report of two cases. World J. Gastroenterol. 2013, 19, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Puoti, C.; Guarisco, R.; Bellis, L.; Spilabotit, L. Diagnosis, management, and treatment of hepatitis C. Hepatology 2009, 50, 322. [Google Scholar] [CrossRef] [PubMed]
- Núñez, M. Clinical syndromes and consequences of antiretroviral-related hepatotoxicity. Hepatology 2010, 52, 1143–1155. [Google Scholar] [CrossRef] [PubMed]
- Otto, A.O.; Rivera, C.G.; Zeuli, J.D.; Temesgen, Z. Hepatotoxicity of Contemporary Antiretroviral Drugs: A Review and Evaluation of Published Clinical Data. Cells 2021, 10, 1263. [Google Scholar] [CrossRef] [PubMed]
- Ezhilarasan, D.; Srilekha, M.; Raghu, R. HAART and Hepatotoxicity. J. Appl. Pharm. Sci. 2017, 7, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Pilaye, J.N.; Marakalala, M.J.; Khumalo, N.; Spearman, W.; Ndlovu, H. Mechanistic insights into antiretroviral drug-induced liver injury. Pharmacol. Res. Perspect. 2020, 8, e00598. [Google Scholar] [CrossRef] [PubMed]
- Sonderup, M.W.; Wainwright, H.C. Human Immunodeficiency Virus Infection, Antiretroviral Therapy, and Liver Pathology. Gastroenterol. Clin. North Am. 2017, 46, 327–343. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Pinto, B.; Pinto-Ramos, J.; Correia, C.; Gonçalves-Costa, G.; Gomes, L.; Gil-Mata, S.; Araújo, L.; Delgado, L. Pharmacogenetics of abacavir hypersensitivity: A systematic review and meta-analysis of the association with HLA-B*57:01. J. Allergy Clin. Immunol. 2015, 136, 1092–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abel, S.; Back, D.J.; Vourvahis, M. Maraviroc: Pharmacokinetics and drug interactions. Antivir. Ther. 2009, 14, 607–618. [Google Scholar]
- Hardy, W.D.; Gulick, R.M.; Mayer, H.; Fätkenheuer, G.; Nelson, M.; Heera, J.; Rajicic, N.; Goodrich, J. Two-year safety and virologic efficacy of maraviroc in treatment-experienced patients with CCR5-tropic HIV-1 infection: 96-week combined analysis of MOTIVATE 1 and 2. J. Acquir. Immune Defic. Syndr. 2010, 55, 558–564. [Google Scholar] [CrossRef] [Green Version]
- Nichols, W.G.; Steel, H.M.; Bonny, T.; Adkison, K.; Curtis, L.; Millard, J.; Kabeya, K.; Clumeck, N. Hepatotoxicity observed in clinical trials of aplaviroc (GW873140). Antimicrob. Agents Chemother. 2008, 52, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Kolakowska, A.; Maresca, A.F.; Collins, I.J.; Calihol, J. Update on Adverse Effects of HIV Integrase Inhibiotors. Curr. Treat. Options. Infect. Dis. 2019, 11, 372–387. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.M.; Clotet, B.; Van Lunzen, J.; Lazzarin, A.; Cavassini, M.; Henry, K.; Kulagin, V.; Givens, N.; De Oliveira, C.F.; Brennan, C. Once-daily dolutegravir versus darunavir plus ritonavir for treatment-naive adults with HIV-1 infection (FLAMINGO): 96 week results from a randomised, open-label, phase 3b study. Lancet HIV 2015, 2, e127–e136. [Google Scholar] [CrossRef]
- Pelchen-Matthews, A.; Larsen, J.F.; Shepherd, L.; Begovac, J.; Pedersen, K.B.H.; Curtis, L.; De Wit, S.; Horban, A.; Jablonowska, E.; Johnson, M.; et al. The occurrence of hypersensitivity reaction and hepatotoxicity in individuals receiving integrase strand transfer inhibitors: Results from the EuroSIDA study. J. Int. AIDS Soc. 2020, 23, 52–54. [Google Scholar]
- Wang, B.; Abbott, L.; Childs, K.; Taylor, C.; Awargal, K.; Cormack, I.; Miquel, R.; Suddle, A. Dolutegravir-induced liver injury leading to sub-acute liver failure requiring trasplantation: A case report and review of literature. Int. J. STD AIDS 2018, 29, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Rossotti, R.; Maggioni, M.; Merli, M.; Orcese, C.; Lavarone, M.; Puoti, M. Severe cholestatic hepatitis related to abacvir/lamivudine/dolutegravir antiretroviral treatment in a HIV-1 infected subject. AIDS 2018, 32, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Neukam, K.; Espinosa, N.; Collado, A.; Delgado-Fernández, M.; Jiménez-Aguilar, P.; Rivero-Juárez, A.; Hontañón-Antoñana, V.; Gómez-Berrocal, A.; Ruiz-Morales, J.; Merino, D.; et al. Hepatic Safety of Rilpivirine/Emtricitabine/Tenofovir Disoproxil Fumarate Fixed-Dose Single-Tablet Regimen in HIV-Infected Patients with Active Hepatitis C Virus Infection: The hEPAtic Study. PLoS ONE 2016, 11, e0155842. [Google Scholar] [CrossRef] [Green Version]
- Casado, J.L.; Mena, A.; Bañón, S.; Castro, A.; Quereda, C.; Moreno, A.; Pedreira, J.; Moreno, S. Liver toxicity and risk of discontinuation in HIV/hepatitis C virus-coinfected patients receiving an etravirine-containing antiretroviral regimen: Influence of liver fibrosis. HIV Med. 2016, 17, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Office of AIDS Research. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. National Institutes of Health (NIH). Available online: https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-arv/whats-new-guidelines (accessed on 8 March 2021).
- European AIDS Clinical Society (EACS) guidelines for the Treatment of Adult HIV-Positive Persons. Version 10.1. October 2020. Available online: https://www.eacsociety.org/files/guidelines-10.1_finaljan2021_1.pdf (accessed on 8 March 2021).
- Reliquet, V.; Allavena, C.; Morineau-Le Houssine, P.; Mounoury, O.; Raffi, F. Twelve-year experience of nevirapine use: Benefits and convenience for long-term management in a French cohort of HIV-1-infected patients. HIV. Clin. Trials 2010, 11, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Llibre, J.M.; Bravo, I.; Ornelas, A.; Santos, J.R.; Puig, J.; Martin-Iguacel, R.; Paredes, R.; Clotet, B. Effectiveness of a treatment switch to Nevirapine plus Tenofovir and Emtricitabine (or lamivudine) in adults with HIV-1 suppressed viremia. PLoS ONE 2015, 10, e0128131. [Google Scholar] [CrossRef] [Green Version]
- De Boissieu, P.; Dramé, M.; Raffi, F.; Cabie, A.; Poizot-Martin, I.; Cotte, L.; Garraffo, R.; Delobel, P.; Huleux, T.; Rey, D.; et al. Long-term efficacy and toxicity of abacavir/lamivudine/nevirapine compared to the most prescribed ARV regimens before 2013 in a French Nationwide cohort study. Medicine 2016, 95, e4890. [Google Scholar] [CrossRef]
- Stern, J.O.; Robinson, P.A.; Love, J.; Lanes, S.; Imperiale, M.S.; Douglas, L.M. A comprehensive hepatic safety analysis of nevirapine in different populations of HIV infected patients. J. Acquir. Immune. Defic. Syndr. 2003, 34 (Suppl. S1), S21–S33. [Google Scholar] [CrossRef]
- Dieterich, D.T.; Robinson, P.A.; Love, J.; Stern, J.O. Drug-induced liver injury associated with the use of nonnucleoside reverse-transcriptase inhibitors. Clin. Infect. Dis. 2004, 38 (Suppl. S2), S80–S89. [Google Scholar] [CrossRef]
- Gao, S.; Gui, X.E.; Deng, L.; Zhang, Y.; Liang, K.; Yang, R.; Yan, Y.; Rong, Y. Antiretroviral therapy hepatotoxicity: Prevalence, risk factors, and clinical characteristics in a cohort of Han Chinese. Hepatol. Res. 2010, 40, 287–294. [Google Scholar] [CrossRef]
- Manfredi, R.; Calza, L.; Chiodo, F. Efavirenz versus nevirapine in current clinical practice: A prospective, open-label observational study. J. Acquir. Immune Defic. Syndr. 2004, 35, 492–502. [Google Scholar] [CrossRef]
- Sanne, I.; Mommeja-Marin, H.; Hinkle, J.; Bartlett, J.A.; Lederman, M.M.; Maartens, G.; Wakeford, C.; Shaw, A.; Quinn, J.; Gish, R.G.; et al. Severe hepatotoxicity associated with nevirapine use in HIV-infected subjects. J. Infect. Dis. 2005, 191, 825–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shubber, Z.; Calmy, A.; Andrieux-Meyer, I.; Vitoria, M.; Renaud-Théry, F.; Shaffer, N.; Hargreaves, S.; Mills, E.J.; Ford, N. Adverse events associated with nevirapine and efavirenz-based first-line antiretroviral therapy: A systematic review and meta-analysis. AIDS 2013, 27, 1403–1412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casado, J.L. Liver toxicity in HIV-infected patients receiving novel second-generation nonnucleoside reverse transcriptase inhibitors etravirine and rilpivirine. AIDS. Rev. 2013, 15, 139–145. [Google Scholar] [PubMed]
- Wu, L.; Jin, C.; Bai, S.; Davies, H.; Rao, H.; Liang, Y.; Wu, N. The effect of highly active antiretroviral therapy on liver function in human immunodeficiency virus-infected pediatric patients with or without hepatitis virus co-infection. J. Res. Med. Sci. 2015, 20, 127–132. [Google Scholar]
- Macías, J.; Neukam, K.; Mallolas, J.; López-Cortés, L.F.; Cartón, J.A.; Domingo, P.; Moreno, S.; Iribarren, J.A.; Clotet, B.; Crespo, M.; et al. Liver Toxicity of Initial Antiretroviral Drug Regimens Including Two Nucleoside Analogs Plus One Non-Nucleoside Analog or One Ritonavir-Boosted Protease Inhibitor in HIV/HCV-Coinfected Patients. HIV Clin. Trials 2012, 13, 61–69. [Google Scholar] [CrossRef]
- Brück, S.; Witte, S.; Brust, J.; Schuster, D.; Mosthaf, F.; Procaccianti, M.; Rump, J.A.; Klinker, H.; Petzold, D.; Hartmann, M. Hepatotoxicity in patients prescribed efavirenz or nevirapine. Eur. J. Med Res. 2008, 13, 343–348. [Google Scholar]
- Martin-Carbonero, L.; Nuñez, M.; Gonzalez-Lahoz, J.; Soriano, V. Incidence of liver injury after beginning antiretroviral therapy with efavirenz or nevirapine. HIV. Clin. Trials 2003, 4, 115–120. [Google Scholar] [CrossRef]
- Giacomelli, A.; Riva, A.; Falvella, F.S.; Oreni, M.L.; Cattaneo, D.; Cheli, S.; Renisi, G.; Di Cristo, V.; Lupo, A.; Clementi, E.; et al. Clinical and genetic factors associated with increased risk of severe liver toxicity in a monocentric cohort of HIV positive patients receiving nevirapine-based antiretroviral therapy. BMC Infect. Dis. 2018, 18, 556. [Google Scholar] [CrossRef]
- Patel, S.M.; Johnson, S.; Belknap, S.M.; Chan, J.; Beverly, E.S.; Bennett, C. Serious adverse cutaneous and hepatic toxicities associated with nevirapine use by non-HIV-infected individuals. J. Acquir. Immune Defic. Syndr. 2004, 35, 120–125. [Google Scholar] [CrossRef]
- Kappelhoff, B.S.; Van Leth, F.; Robinson, P.A.; MacGregor, T.R.; Baraldi, E.; Montella, F.; Uip, D.E.; Thompson, M.A.; Russell, D.B.; Lange, J.M.; et al. Are adverse events of nevirapine and efavirenz related to plasma concentrations? Antivir. Ther. 2005, 10, 489–498. [Google Scholar]
- González de Requena, D.; Núñez, M.; Jiménez-Nácher, I.; Soriano, V. Liver toxicity caused by nevirapine. AIDS 2002, 16, 290–291. [Google Scholar] [CrossRef]
- Bera, E.; Naidoo, D.; Williams, M. Maternal deaths following nevirapine-based antiretroviral therapy. S. Afr. J. HIV Med. 2012, 13, 196–197. [Google Scholar] [CrossRef]
- Hitti, J.; Frenkel, L.M.; Stek, A.M.; Nachman, S.A.; Baker, D.; Gonzalez-Garcia, A.; Provisor, A.; Thorpe, E.M.; Paul, M.E.; Foca, M.; et al. Maternal toxicity with continuous nevirapine in pregnancy: Results from PACTG 1022. J. Acquir. Immune Defic. Syndr. 2004, 36, 772–776. [Google Scholar] [CrossRef]
- Elias, A.; Nelson, B. Concentration-Effect, Incidence and Mechanism of Nevirapine Hepatotoxicity. Am. J. Pharmacol. Toxicol. 2013, 8, 20–30. [Google Scholar] [CrossRef]
- Cano, P.A.; Amariles, P. A Structured Review of Hepatotoxic Medicines during Pregnancy. Rev. Col. Gastroenterol. 2017, 32, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Macías, J.; Castellano, V.; Merchante, N.; Palacios, R.B.; Mira, J.A.; Sáez, C.; García-García, J.A.; Lozano, F.; Gómez-Mateos, J.M.; Pineda, J.A. Effect of antiretroviral drugs on liver fibrosis in HIV-infected patients with chronic hepatitis C: Harmful impact of nevirapine. AIDS 2004, 18, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, J.; Bellón, J.M.; Miralles, P.; Alvarez, E.; Castillo, I.; Cosín, J.; López, J.C.; Sánchez Conde, M.; Padilla, B.; Resino, S. Association between exposure to nevirapine and reduced liver fibrosis progression in patients with HIV and hepatitis C virus coinfection. Clin. Infect. Dis. 2008, 46, 137–143. [Google Scholar] [CrossRef]
- Fernández-Montero, J.V.; Barreiro, P.; Vispo, E.; Labarga, P.; Sánchez-Parra, C.; De Mendoza, C.; Treviño, A.; Soriano, V. Liver fibrosis progression in HIV-HCV-coinfected patients treated with distinct antiretroviral drugs and impact of pegylated interferon/ribavirin therapy. Antivir. Ther. 2014, 19, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Shenton, J.M.; Teranishi, M.; Abu-Asab, M.S.; Yager, J.A.; Uetrecht, J.P. Characterization of a potential animal model of an idiosyncratic drug reaction: Nevirapine-induced skin rash in the rat. Chem. Res. Toxicol. 2003, 16, 1078–1089. [Google Scholar] [CrossRef]
- Bekker, Z.; Walubo, A.; Du Plessis, J.B. The role of the immune system in Nevirapine-induced subclinical liver injury of a rat model. ISRN Pharm. 2012, 2012, 932542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.M.; Li, Y.; Novalen, M.; Hayes, M.A.; Uetrecht, J. Bioactivation of Nevirapine to a Reactive Quinone Methide: Implications for Liver Injury. Chem. Res. Toxicol. 2012, 25, 1708–1719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sharma, A.M.; Uetrecht, J. Identification of danger signals in nevirapine-induced skin rash. Chem. Res. Toxicol. 2013, 26, 1378–1383. [Google Scholar] [CrossRef]
- De Jesus, D.F.; Orime, K.; Kaminska, D.; Kimura, T.; Basile, G.; Wang, C.H.; Haertle, L.; Riemens, R.; Brown, N.K.; Hu, J.; et al. Parental metabolic syndrome epigenetically reprograms offspring hepatic lipid metabolism in mice. J. Clin. Investig. 2020, 130, 2391–2407. [Google Scholar] [CrossRef] [Green Version]
- Sastry, J.; Mohammed, H.; Campos, M.M.; Uetrecht, J.; Abu-Asab, M. Nevirapine-induced liver lipid-SER inclusions and other ultrastructural aberrations. Ultrastruct. Pathol. 2018, 42, 108–115. [Google Scholar] [CrossRef]
- Mak, A.; Uetrecht, J. The Combination of Anti-CTLA-4 and PD1-/-Mice Unmasks the Potential of Isoniazid and Nevirapine to Cause Liver Injury. Chem. Res. Toxicol. 2015, 28, 2287–2291. [Google Scholar] [CrossRef]
- Fang, J.L.; Beland, F.A. Differential responses of human hepatocytes to the non-nucleoside HIV-1 reverse transcriptase inhibitor nevirapine. J. Toxicol. Sci. 2013, 38, 741–752. [Google Scholar] [CrossRef] [Green Version]
- Wongtrakul, J.; Paemanee, A.; Wintachai, P.; Thepparit, C.; Roytrakul, S.; Thongtan, T.; Janphen, K.; Supparatpinyo, K.; Smith, D.R. Nevirapine induces apoptosis in liver (HepG2) cells. Asian Pac. J. Trop. Med. 2016, 9, 547–553. [Google Scholar] [CrossRef]
- Paemanee, A.; Sornjai, W.; Kittisenachai, S.; Sirinonthanawech, N.; Roytrakul, S.; Wongtrakul, J.; Smith, D.R. Nevirapine induced mitochondrial dysfunction in HepG2 cells. Sci. Rep. 2017, 7, 9194. [Google Scholar] [CrossRef] [PubMed]
- Heck, C.J.S.; Seneviratne, H.K.; Bumpus, N.N. Twelfth-Position Deuteration of Nevirapine Reduces 12-Hydroxy-Nevirapine Formation and Nevirapine-Induced Hepatocyte Death. J. Med. Chem. 2020, 63, 6561–6574. [Google Scholar] [CrossRef] [PubMed]
- Blas-García, A.; Apostolova, N.; Ballesteros, D.; Monleón, D.; Morales, J.M.; Rocha, M.; Victor, V.M.; Esplugues, J.V. Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology 2010, 52, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Terelius, Y.; Figler, R.A.; Marukian, S.; Collado, M.S.; Lawson, M.J.; Mackey, A.J.; Manka, D.; Qualls, C.W., Jr.; Blackman, B.R.; Wamhoff, B.R.; et al. Transcriptional profiling suggests that Nevirapine and Ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes. Chem. Biol. Interact. 2016, 255, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Faucette, S.R.; Zhang, T.C.; Moore, R.; Sueyoshi, T.; Omiecinski, C.J.; LeCluyse, E.L.; Negishi, M.; Wang, H. Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J. Pharmacol. Exp. Ther. 2007, 320, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Sharma, D.; Lau, A.J.; Sherman, M.A.; Chang, T.K.H. Agonism of human pregnane X receptor by rilpivirine and etravirine: Comparison with first generation non-nucleoside reverse transcriptase inhibitors. Biochem Pharmacol. 2013, 85, 1700–1711. [Google Scholar] [CrossRef]
- Sharma, D.; Lau, A.J.; Sherman, M.A.; Chang, T.K. Differential activation of human constitutive androstane receptor and its SV23 and SV24 splice variants by rilpivirine and etravirine. Br. J. Pharmacol. 2015, 172, 1263–1276. [Google Scholar] [CrossRef] [Green Version]
- Kato, R.; Uetrecht, J. Supernatant from Hepatocyte Cultures with Drugs That Cause Idiosyncratic Liver Injury Activates Macrophage Inflammasomes. Chem. Res. Toxicol. 2017, 30, 1327–1332. [Google Scholar] [CrossRef]
- Rivero, A.; Mira, J.A.; Pineda, J.A. Liver toxicity induced by non-nucleoside reverse transcriptase inhibitors. J. Antimicrob. Chemother. 2007, 59, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Neukam, K.; Mira, J.A.; Ruiz-Morales, J.; Rivero, A.; Collado, A.; Torres-Cornejo, A.; Merino, D.; De los Santos, I.; Macías, J.; González-Serrano, M.; et al. Liver toxicity associated with antiretroviral therapy including efavirenz or ritonavir-boosted protease inhibitors in a cohort of HIV/hepatitis C virus co-infected patients. J. Antimicrob. Chemother. 2011, 77, 2605–2614. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Maroto, A.; Suárez-Castellano, L.; Hernández-Cabrera, M.; Pérez-Arellano, J.L. Severe efavirenz-induced hypersensitivity syndrome (not-DRESS) with acute renal failure. J. Infect. 2006, 52, e39–e40. [Google Scholar] [CrossRef] [PubMed]
- Bossi, P.; Colin, D.; Bricaire, F.; Caumes, E. Hypersensitivity syndrome associated with efavirenz therapy. Clin. Infect. Dis. 2000, 30, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.A.; Caixas, U.; Branco, T.; Germano, I.; Lampreia, F.; Papoila, A.L.; Monteiro, E.C. Efavirenz concentrations in HIV-infected patients with and without viral hepatitis. Br. J. Clin. Pharmacol. 2008, 66, 551–555. [Google Scholar] [CrossRef] [Green Version]
- McRae, M.P.; Lowe, C.M.; Tian, X.; Bourdet, D.L.; Ho, R.H.; Leake, B.F.; Kim, R.B.; Brouwer, K.L.; Kashuba, A.D. Ritonavir, saquinavir, and efavirenz, but not nevirapine, inhibit bile acid transport in human and rat hepatocytes. J. Pharmacol. Exp. Ther. 2006, 318, 1068–1075. [Google Scholar] [CrossRef]
- Macías, J.; Mancebo, M.; Merino, D.; Téllez, F.; Montes-Ramírez, M.L.; Pulido, F.; Rivero-Juárez, A.; Raffo, M.; Pérez-Pérez, M.; Merchante, N.; et al. Changes in liver steatosis after switching from Efavirenz to Raltegravir among Human Immunodeficiency Virus-infected patients with Nonalcoholic Fatty Liver Disease. Clin. Infect. Dis. 2017, 65, 1012–1019. [Google Scholar] [CrossRef] [Green Version]
- Gwag, T.; Meng, Z.; Sui, Y.; Helsley, R.N.; Park, S.H.; Wang, S.; Greenberg, R.N.; Zhou, C. Non-nucleoside reverse transcriptase inhibitor efavirenz activates PXR to induce hypercholesterolemia and hepatic steatosis. J. Hepatol. 2019, 70, 930–940. [Google Scholar] [CrossRef]
- Apostolova, N.; Gomez-Sucerquia, L.J.; Moran, A.; Alvarez, A.; Blas-Garcia, A.; Esplugues, J.V. Enhanced oxidative stress and increased mitochondrial mass during efavirenz-induced apoptosis in human hepatic cells. Br. J. Pharmacol. 2010, 160, 2069–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bumpus, N.N. Efavirenz and 8-hydroxyefavirenz induce cell death via a JNK- and BimEL-dependent mechanism in primary human hepatocytes. Toxicol. Appl. Pharmacol. 2011, 257, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, N.; Kwang Lee, K.; Zhang, C.; Boelsterli, U.A. Mechanisms of cell death pathway activation following drug-induced inhibition of mitochondrial complex I. Redox Biol. 2015, 4, 279–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganta, K.K.; Mandal, A.; Chaubey, B. Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol. Toxicol. 2017, 33, 69–82. [Google Scholar] [CrossRef]
- Wang, R.; Novick, S.J.; Mangum, J.B.; Queen, K.; Ferrick, D.A.; Rogers, G.W.; Stimmel, J.B. The acute extracellular flux (XF) assay to assess compound effects on mitochondrial function. J. Biomol. Screen. 2015, 20, 422–429. [Google Scholar] [CrossRef] [Green Version]
- Apostolova, N.; Gomez-Sucerquia, L.J.; Alegre, F.; Funes, H.A.; Victor, V.M.; Barrachina, M.D.; Blas-Garcia, A.; Esplugues, J.V. ER stress in human hepatic cells treated with Efavirenz: Mitochondria again. J. Hepatol. 2013, 59, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Heck, C.J.S.; Hamlin, A.N.; Bumpus, N.N. Efavirenz and Efavirenz-like Compounds Activate Human, Murine, and Macaque Hepatic IRE1α-XBP1. Mol. Pharmacol. 2019, 95, 183–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apostolova, N.; Gomez-Sucerquia, L.J.; Gortat, A.; Blas-Garcia, A.; Esplugues, J.V. Compromising mitochondrial function with the antiretroviral drug efavirenz induces cell survival-promoting autophagy. Hepatology 2011, 54, 1009–1019. [Google Scholar] [CrossRef]
- Hariparsad, N.; Nallani, S.C.; Sane, R.S.; Buckley, D.J.; Buckley, A.R.; Desai, P.B. Induction of CYP3A4 by efavirenz in primary human hepatocytes: Comparison with rifampin and phenobarbital. J. Clin. Pharmacol. 2004, 44, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Shehu, A.I.; Lu, J.; Wang, P.; Zhu, J.; Wang, Y.; Yang, D.; McMahon, D.; Xie, W.; Gonzalez, F.J.; Ma, X. Pregnane X receptor activation potentiates ritonavir hepatotoxicity. J. Clin. Investig. 2019, 129, 2898–2903. [Google Scholar] [CrossRef]
- Kakuda, T.N.; Leopold, L.; Nijs, S.; Vandevoorde, A.; Crauwels, H.M.; Bertelsen, K.M.; Stevens, M.; Witek, J.; van Delft, Y.; Tomaka, F.; et al. Pharmacokinetic interaction between etravirine or rilpivirine and telaprevir in healthy volunteers: A randomized, two-way crossover trial. J. Clin. Pharmacol. 2014, 54, 563–573. [Google Scholar] [CrossRef]
- Katlama, C.; Clotet, B.; Mills, A.; Trottier, B.; Molina, J.M.; Grinsztejn, B.; Towner, W.; Haubrich, R.; Nijs, S.; Vingerhoets, J.; et al. Efficacy and safety of etravirine at week 96 in treatment-experienced HIV type-1-infected patients in the DUET-1 and DUET-2 trials. Antivir. Ther. 2010, 15, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, M.L.; Vargas, F.X.; González-Garcia, J.; Quereda, C.; Pérez-Elías, M.J.; de Cea, A.M.; Barros, C.; Condés, E.; Moreno, J.S.; Santos, I.; et al. Etravirine-based antiretroviral therapy in HIV/hepatitis C virus coinfected advanced fibrosis patients receiving triple therapy against hepatitis C virus with telaprevir. AIDS 2014, 28, 2487–2489. [Google Scholar] [CrossRef]
- Lazzarin, A.; Campbell, T.; Clotet, B.; Johnson, M.; Katlama, C.; Moll, A.; Towner, W.; Trottier, B.; Peeters, M.; Vingerhoets, J.; et al. Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-2: 24-week results from a randomised, double-blind, placebo-controlled trial. Lancet 2007, 370, 39–48. [Google Scholar] [CrossRef]
- Girard, P.M.; Campbell, T.B.; Grinsztejn, B.; Hartikainen, J.; Rachline, A.; Nijs, S.; Witek, J. Pooled week 96 results of the phase III DUET-1 and DUET-2 trials of etravirine: Further analysis of adverse events and laboratory abnormalities of special interest. HIV Med. 2012, 13, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Fatkenheuer, G.; Duvivier, C.; Rieger, A.; Durant, J.; Rey, D.; Schmidt, W.; Hill, A.; Van Delft, Y.; Marks, S.; SENSE Study Team; et al. Lipid profiles for etravirine versus efavirenz in treatment-naive patients in the randomized, double-blind SENSE trial. J. Antimicrob. Chemother. 2012, 67, 685–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.; Amaya, G.; Clumeck, N.; Arns da Cunha, C.; Jayaweera, D.; Junod, P.; Taisheng, L.; Tebas, P.; Stevens, M.; Buelens, A.; et al. Efficacy and safety of rilpivirine in treatment-naive, HIV-1-infected patients with hepatitis B virus/hepatitis C virus co-infection enrolled in the phase III randomized, double-blind ECHO and THRIVE trials. J. Antimicrob. Chemother. 2012, 67, 2020–2028. [Google Scholar] [CrossRef] [Green Version]
- Gianotti, N.; Poli, A.; Nozza, S.; Spagnuolo, V.; Tambussi, G.; Bossolasco, S.; Cinque, P.; Maillard, M.; Cernuschi, M.; Galli, L.; et al. Efficacy and safety in clinical practice of a rilpivirine, tenofovir and emtricitabine single-tablet regimen in virologically suppressed HIV-positive patients on stable antiretroviral therapy. J. Int. AIDS. Soc. 2015, 18, 20037. [Google Scholar] [CrossRef]
- Bagella, P.; De Socio, G.V.L.; Ricci, E.; Menzaghi, B.; Martinelli, C.; Squillace, N.; Maggi, P.; Orofino, G.; Calza, L.; Carenzi, L.; et al. Durability, safety, and efficacy of rilpivirine in clinical practice: Results from the SCOLTA Project. Infect. Drug Resist. 2018, 11, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, Y.; Siddiqui, W.; Enoch, C.B.; Albrecht, H.; Bookstaver, P.B. Rare case of rilpivirine-induced severe allergic hepatitis. J. Antimicrob. Chemother. 2013, 68, 484–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.J.; Berry, P.; D’Errico, F.; Miquel, R.; Kulasegaram, R. A case of rilpivirine drug-induced liver injury. Sex. Transm. Infect. 2020, 96, 618–619. [Google Scholar] [CrossRef] [Green Version]
- Cohen, C.; Wohl, D.; Arribas, J.R.; Henry, K.; Van Lunzen, J.; Bloch, M.; Towner, W.; Wilkins, E.; Ebrahimi, R.; Porter, D.; et al. Week 48 results from a randomized clinical trial of rilpivirine/emtricitabine/tenofovir disoproxil fumarate vs. efavirenz/emtricitabine/tenofovir disoproxil fumarate in treatment-naive HIV-1-infected adults. AIDS 2014, 28, 989–997. [Google Scholar] [CrossRef]
- Tebas, P.; Sension, M.; Arribas, J.; Duiculescu, D.; Florence, E.; Hung, C.C.; Wilkin, T.; Vanveggel, S.; Stevens, M.; Deckx, H.; et al. Lipid levels and changes in body fat distribution in treatment-naive, HIV-1-infected adults treated with rilpivirine or efavirenz for 96 weeks in the ECHO and THRIVE trials. Clin. Infect. Dis. 2014, 59, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Thamrongwonglert, P.; Chetchotisakd, P.; Anunnatsiri, S.; Mootsikapun, P. Improvement of lipid profiles when switching from efavirenz to rilpivirine in HIV-infected patients with dyslipidemia. HIV Clin. Trials 2016, 17, 12–16. [Google Scholar] [CrossRef]
- Taramasso, L.; Tatarelli, P.; Ricci, E.; Madeddu, G.; Menzaghi, B.; Squillace, N.; De Socio, G.V.; Martinelli, C.; Gulminetti, R.; Maggi, P.; et al. Improvement of lipid profile after switching from efavirenz or ritonavir-boosted protease inhibitors to rilpivirine or once-daily integrase inhibitors: Results from a large observational cohort study (SCOLTA). BMC Infect. Dis. 2018, 18, 357. [Google Scholar] [CrossRef]
- Curran, A.; Rull, A.; Navarro, J.; Vidal-González, J.; Martin-Castillo, M.; Burgos, J.; Falcó, V.; Ribera, E.; Torrella, A.; Planas, B.; et al. Lipidomics Reveals Reduced Inflammatory Lipid Species and Storage Lipids after Switching from EFV/FTC/TDF to RPV/FTC/TDF: A Randomized Open-Label Trial. J. Clin. Med. 2020, 9, 1246. [Google Scholar] [CrossRef]
- Blas-García, A.; Polo, M.; Alegre, F.; Funes, H.A.; Martinez, E.; Apostolova, N.; Esplugues, J.V. Lack of mitochondrial toxicity of darunavir, raltegravir and rilpivirine in neurons and hepatocytes: A comparison with efavirenz. J. Antimicrob. Chemother. 2014, 69, 2995–3000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martí-Rodrigo, A.; Alegre, F.; Moragrega, A.B.; Garcia-Garcia, F.; Martí-Rodrigo, P.; Fernández-Iglesias, A.; Gracia-Sancho, J.; Apostolova, N.; Esplugues, J.V.; Blas-García, A. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut 2020, 69, 929–932. [Google Scholar] [CrossRef] [PubMed]
- Rock, A.E.; Lerner, J.; Badowski, M.E. Doravirine and Its Potential in the Treatment of HIV: An Evidence-Based Review of the Emerging Data. HIV AIDS 2020, 12, 201–210. [Google Scholar] [CrossRef]
- Orkin, C.; Squires, K.E.; Molina, J.M.; Sax, P.E.; Wong, W.W.; Sussmann, O.; Kaplan, R.; Lupinacci, L.; Rodgers, A.; Xu, X.; et al. Doravirine/lamivudine/tenofovir disoproxil fumarate is non-inferior to efavirenz/emtricitabine/tenofovir disoproxil fumarate in treatment-naive adults with human immunodeficiency virus–1 infection: Week 48 results of the DRIVE-AHEAD trial. Clin. Infect. Dis. 2019, 68, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.M.; Squires, K.; Sax, P.E.; Cahn, P.; Lombaard, J.; DeJesus, E.; Lai, M.T.; Rodgers, A.; Lupinacci, L.; Kumar, S.; et al. DRIVE-FORWARD trial group. Doravirine versus ritonavir-boosted darunavir in antiretroviral-naive adults with HIV-1 (DRIVE-FORWARD): 96-week results. Lancet HIV 2020, 7, e16–e26. [Google Scholar] [CrossRef]
- Blevins, S.R.; Hester, E.K.; Chastain, D.B.; Cluck, D.B. Doravirine: A Return of the NNRTI Class? Ann. Pharmacother. 2020, 54, 64–74. [Google Scholar] [CrossRef]
- Colombier, M.A.; Molina, J.M. Doravirine: A review. Curr. Opin. HIV AIDS 2018, 13, 308–314. [Google Scholar] [CrossRef]
- Feng, M.; Sachs, N.A.; Xu, M.; Grobler, J.; Blair, W.; Hazuda, D.J.; Miller, M.D.; Lai, M.T. Doravirine Suppresses Common Nonnucleoside Reverse Transcriptase Inhibitor-Associated Mutants at Clinically Relevant Concentrations. Antimicrob. Agents Chemother. 2016, 60, 2241–2247. [Google Scholar] [CrossRef] [Green Version]
- Saladini, F.; Giammarino, F.; Hosseini, B.A.; Giannini, A.; Boccuto, A.; Dragoni, F.; Vicenti, I.; Shafer, R.W.; Zazzi, M. In vitro cross-resistance to doravirine in a panel of HIV-1 clones harbouring multiple NNRTI resistance mutations. J. Antimicrob. Chemother. 2021, 76, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Khalilieh, S.G.; Yee, K.L.; Sanchez, R.I.; Fan, L.; Anderson, M.S.; Sura, M.; Laethem, T.; Rasmussen, S.; Van Bortel, L.; Van Lancker, G.; et al. Doravirine and the Potential for CYP3A-Mediated Drug-Drug Interactions. Antimicrob. Agents Chemother. 2019, 63, e02016–e02018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleasby, K.; Fillgrove, K.L.; Houle, R.; Lu, B.; Palamanda, J.; Newton, D.J.; Lin, M.; Chan, G.H.; Sanchez, R.I. In Vitro Evaluation of the Drug Interaction Potential of Doravirine. Antimicrob. Agents Chemother. 2019, 63, e02492–e02518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalilieh, S.; Yee, K.L.; Liu, R.; Fan, L.; Sanchez, R.I.; Auger, P.; Triantafyllou, I.; Stypinski, D.; Lasseter, K.C.; Marbury, T.; et al. Moderate Hepatic Impairment Does Not Affect Doravirine Pharmacokinetics. J. Clin. Pharmacol. 2017, 57, 777–783. [Google Scholar] [CrossRef]
- Orkin, C.; Elion, R.; Thompson, M.; Rockstroh, J.K.; Alvarez Bognar, F.; Xu, Z.J.; Hwang, C.; Sklar, P.; Martin, E.A. Changes in weight and BMI with first-line doravirine-based therapy. AIDS 2021, 35, 91–99. [Google Scholar] [CrossRef]
NNRTI | Commercial Name | Recommended Dose (Adults) | Bioavailability | Pharmacokinetics Concentrations (μg/mL) | Main Hepatic Metabolism |
---|---|---|---|---|---|
Nevirapine | Viramune | 200 mg orally OD for the first 14 days, followed by 200 mg BD or 400 mg OD | After oral administration: >90% | In patients taking 200 mg OD: steady state plasma Cmax of 5.74 (5.0–7.44) and Cmin of 3.73 (3.2–5.08) (median and range) | CYP3A4 CYP2B6 |
Efavirenz | Sustiva Stocrin | 600 mg orally OD | After oral administration: 40–50% | In patients taking 600 mg OD: steady state plasma Cmax of 4.072 ± 1.167 and Cmin of 1.767 ± 1.01 (mean ± SD) | CYP2B6 CYP3A4 [11] |
Etravirine | Intelence | 200 mg orally BD | Absolute bioavailability unknown | In patients taking 200 mg BD: Cmax of 0.586 (0.199–3.13) and Cmin of 0.297 (0.075–2.71) (median and range) [12] | CYP3A4 CYP2C9 CYP2C19 |
Rilpivirine | Edurant Rekambys | 25 mg orally OD, or long-acting intramuscular injection of 900 mg initially followed by 600 mg monthly or 900 mg every 2 months | Absolute bioavailability unknown | Cmax (mean ± SD) in patients taking 25 mg orally OD: 0.134 ± 0.072. In volunteers injected with a loading dose of long-acting RPV of 1200 mg on day 1 was 0.140 ± 0.016, 600 mg on day 29 was 0.120 ± 0.04 and 600 mg on day 57 was 0.132 ± 0.019 [13] | CYP3A4 CYP3A5 [14] |
Doravirine | Pifeltro | 100 mg orally OD | After oral administration: 64% | In patients taking 100 mg OD: steady state plasma Cmax of 0.962 (19) (geometric mean and % CV) | CYP3A4 CYP3A5 [15] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedicto, A.M.; Fuster-Martínez, I.; Tosca, J.; Esplugues, J.V.; Blas-García, A.; Apostolova, N. NNRTI and Liver Damage: Evidence of Their Association and the Mechanisms Involved. Cells 2021, 10, 1687. https://doi.org/10.3390/cells10071687
Benedicto AM, Fuster-Martínez I, Tosca J, Esplugues JV, Blas-García A, Apostolova N. NNRTI and Liver Damage: Evidence of Their Association and the Mechanisms Involved. Cells. 2021; 10(7):1687. https://doi.org/10.3390/cells10071687
Chicago/Turabian StyleBenedicto, Ana M., Isabel Fuster-Martínez, Joan Tosca, Juan V. Esplugues, Ana Blas-García, and Nadezda Apostolova. 2021. "NNRTI and Liver Damage: Evidence of Their Association and the Mechanisms Involved" Cells 10, no. 7: 1687. https://doi.org/10.3390/cells10071687
APA StyleBenedicto, A. M., Fuster-Martínez, I., Tosca, J., Esplugues, J. V., Blas-García, A., & Apostolova, N. (2021). NNRTI and Liver Damage: Evidence of Their Association and the Mechanisms Involved. Cells, 10(7), 1687. https://doi.org/10.3390/cells10071687