Circulating Cell Biomarkers in Pulmonary Arterial Hypertension: Relationship with Clinical Heterogeneity and Therapeutic Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurements
2.3. Assessment of Circulating Endothelial Microvesicles (EMVs)
2.4. Evaluation of Circulating Progenitor Cells (PCs)
2.5. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Circulating Endothelial Microvesicles (EMVs)
3.3. Circulating Progenitor Cells (PCs)
3.4. EMVs/PCs Ratio
3.5. Changes Induced by PAH Treatment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913, NLM (Medline). Available online: https://pubmed.ncbi.nlm.nih.gov/30545968/ (accessed on 30 June 2021). [CrossRef]
- McGoon, M.D.; Benza, R.L.; Escribano-Subias, P.; Jiang, X.; Miller, D.P.; Peacock, A.J.; Pepke-Zaba, J.; Pulido, T.; Rich, S.; Rosenkranz, S.; et al. Pulmonary arterial hypertension: Epidemiology and registries. J. Am. Coll. Cardiol. 2013, 62 (Suppl. 25), D51-9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humbert, M.; Guignabert, C.; Bonnet, S.; Dorfmüller, P.; Klinger, J.R.; Nicolls, M.R.; Olschewski, A.J.; Pullamsetti, S.S.; Schermuly, R.T.; Stenmark, K.R.; et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2019, 53, 1801887. Available online: http://erj.ersjournals.com/content/53/1/1801887.abstract (accessed on 26 April 2021). [CrossRef] [PubMed] [Green Version]
- Humbert, M.; McLaughlin, V.; Gibbs, J.S.R.; Gomberg-Maitland, M.; Hoeper, M.M.; Preston, I.R.; Souza, R.; Waxman, A.; Subias, P.E.; Feldman, J.; et al. Sotatercept for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2021, 384, 1204–1215. Available online: https://pubmed.ncbi.nlm.nih.gov/33789009/ (accessed on 26 April 2021). [CrossRef]
- Galiè, N.; Manes, A.; Negro, L.; Palazzini, M.; Bacchi-Reggiani, M.L.; Branzi, A. A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur. Heart J. 2009, 30, 394–403. Available online: https://pubmed.ncbi.nlm.nih.gov/19155250/ (accessed on 26 April 2021). [CrossRef] [PubMed] [Green Version]
- Rich, S.; Pogoriler, J.; Husain, A.N.; Toth, P.T.; Gomberg-Maitland, M.; Archer, S.L. Long-term effects of epoprostenol on the pulmonary vasculature in idiopathic pulmonary arterial hypertension. Chest 2010, 138, 1234–1239. Available online: https://pubmed.ncbi.nlm.nih.gov/21051399/ (accessed on 26 April 2021). [CrossRef] [PubMed] [Green Version]
- Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Noordegraaf, A.V.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2015, 46, 903–975. [Google Scholar] [CrossRef] [PubMed]
- Nickel, N.; Golpon, H.; Greer, M.; Knudsen, L.; Olsson, K.; Westerkamp, V.; Welte, T.; Hoeper, M.M. The prognostic impact of follow-up assessments in patients with idiopathic pulmonary arterial hypertension. Eur. Respir. J. 2012, 39, 589–596. Available online: https://pubmed.ncbi.nlm.nih.gov/21885392/ (accessed on 26 April 2021). [CrossRef] [PubMed]
- Burger, D.; Touyz, R.M. Cellular biomarkers of endothelial health: Microparticles, endothelial progenitor cells, and circulating endothelial cells. J. Am. Soc. Hypertens. 2012, 6, 85–99. Available online: https://pubmed.ncbi.nlm.nih.gov/22321962/ (accessed on 26 April 2021). [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. Available online: https://pubmed.ncbi.nlm.nih.gov/30637094/ (accessed on 26 April 2021). [CrossRef] [Green Version]
- Koga, H.; Sugiyama, S.; Kugiyama, K.; Watanabe, K.; Fukushima, H.; Tanaka, T.; Sakamoto, T.; Yoshimura, M.; Jinnouchi, H.; Ogawa, H. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J. Am. Coll. Cardiol. 2005, 45, 1622–1630. Available online: https://pubmed.ncbi.nlm.nih.gov/15893178/ (accessed on 26 April 2021). [CrossRef] [Green Version]
- Feng, B.; Chen, Y.; Luo, Y.; Chen, M.; Li, X.; Ni, Y. Circulating level of microparticles and their correlation with arterial elasticity and endothelium-dependent dilation in patients with type 2 diabetes mellitus. Atherosclerosis 2010, 208, 264–269. Available online: https://pubmed.ncbi.nlm.nih.gov/19674745/ (accessed on 26 April 2021). [CrossRef] [PubMed]
- Sinning, J.M.; Losch, J.; Walenta, K.; Böhm, M.; Nickenig, G.; Werner, N. Circulating CD31 +/Annexin V + microparticles correlate with cardiovascular outcomes. Eur. Heart J. 2011, 32, 2034–2041. Available online: https://pubmed.ncbi.nlm.nih.gov/21186238/ (accessed on 26 April 2021). [CrossRef] [Green Version]
- Amabile, N.; Heiss, C.; Real, W.M.; Minasi, P.; McGlothlin, D.; Rame, E.J.; Grossman, W.; Marco, T.D.; Yeghiazarians, Y. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am. J. Respir. Crit. Care Med. 2008, 177, 1268–1275. Available online: https://pubmed.ncbi.nlm.nih.gov/18310479/ (accessed on 26 April 2021). [CrossRef]
- García-Lucio, J.; Peinado, V.I.; de Jover, L.; del Pozo, R.; Blanco, I.; Bonjoch, C.; Coll-Bonfill, N.; Paul, T.; Tura-Ceide, O.; Barberà, J.A. Imbalance between endothelial damage and repair capacity in chronic obstructive pulmonary disease. PLoS ONE 2018, 13, e0195724. [Google Scholar]
- Tura, O.; Skinner, E.M.; Barclay, R.; Samuel, K.; Gallagher, R.C.J.; Brittan, M.; Hadoke, P.W.F.; Newby, D.E.; Turner, M.L.; Mills, N.L. Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 2013, 31, 338–348. [Google Scholar] [CrossRef]
- Foris, V.; Kovacs, G.; Marsh, L.M.; Bálint, Z.; Tötsch, M.; Avian, A.; Douschan, P.; Ghanim, B.; Klepetko, W.; Olschewski, A.; et al. CD133+ cells in pulmonary arterial hypertension. Eur. Respir. J. 2016, 48, 459–469. Available online: https://pubmed.ncbi.nlm.nih.gov/27103380/ (accessed on 28 April 2021). [CrossRef] [Green Version]
- Fadini, G.P.; Schiavon, M.; Rea, F.; Avogaro, A.; Agostini, C. Depletion of endothelial progenitor cells may link pulmonary fibrosis and pulmonary hypertension Am. J. Respir. Crit. Care Med. Am. Thorac. Soc. 2007, 176, 724–725. Available online: https://pubmed.ncbi.nlm.nih.gov/17881591/ (accessed on 28 April 2021). [CrossRef] [PubMed]
- Zhu, J.; Wang, X.; Fu, G.; Shang, Y.; Zhang, F.; Chen, J. Reduced number and activity of circulating endothelial progenitor cells in patients with idiopathic pulmonary arterial hypertension. Respir. Med. 2008, 102, 1073–1079. Available online: https://pubmed.ncbi.nlm.nih.gov/18394873/ (accessed on 28 April 2021).
- García-Lucio, J.; Tura-Ceide, O.; del Pozo, R.; Blanco, I.; Pizarro, S.; Ferrer, E.; Díez, M.; Coll-Bonfill, N.; Piccari, L.; Peinado, V.I.; et al. Effect of targeted therapy on circulating progenitor cells in precapillary pulmonary hypertension. Int. J. Cardiol. 2017, 228, 238–243. Available online: https://pubmed.ncbi.nlm.nih.gov/27865192/ (accessed on 28 April 2021). [CrossRef] [PubMed]
- Feher, K.; Kirsch, J.; Radbruch, A.; Chang, H.D.; Kaiser, T. Cell population identification using fluorescence-minus-one controls with a one-class classifying algorithm. Bioinformatics 2014, 30, 3372–3378. Available online: https://pubmed.ncbi.nlm.nih.gov/25170025/ (accessed on 26 April 2021). [CrossRef] [Green Version]
- Schmidt-Lucke, C.; Fichtlscherer, S.; Aicher, A.; Tschöpe, C.; Schultheiss, H.P.; Zeiher, A.M.; Dimmeler, S. Quantification of circulating endothelial progenitor cells using the modified ISHAGE Protocol. PLoS ONE 2010, 5, e13790. Available online: https://pubmed.ncbi.nlm.nih.gov/21072182/ (accessed on 26 April 2021). [CrossRef]
- Sabatier, F.; Camoin-Jau, L.; Anfosso, F.; Sampol, J.; Dignat-George, F. Circulating endothelial cells, microparticles and progenitors: Key players towards the definition of vascular competence. J. Cell. Mol. Med. 2009, 13, 454–471. Available online: https://pubmed.ncbi.nlm.nih.gov/19379144/ (accessed on 30 April 2021). [CrossRef]
- Mathew, R.; Dorai, T. Microvesicles and exosomes in pulmonary hypertension. Vessel Plus 2020, 4, 11. Available online: http://dx.doi.org/10.20517/2574-1209.2019.35 (accessed on 28 April 2021). [CrossRef]
- Amabile, N.; Guignabert, C.; Montani, D.; Yeghiazarians, Y.; Boulanger, C.M.; Humbert, M. Cellular microparticles in the pathogenesis of pulmonary hypertension. Eur. Respir. J. Eur. Respir. Soc. 2013, 42, 272–279. Available online: http://ow.ly/ksnT6www.erj.ersjournals.com (accessed on 30 April 2021). [CrossRef] [PubMed] [Green Version]
- Diehl, P.; Aleker, M.; Helbing, T.; Sossong, V.; Germann, M.; Sorichter, S.; Bode, C.; Moser, M. Increased platelet, leukocyte and endothelial microparticles predict enhanced coagulation and vascular inflammation in pulmonary hypertension. J. Thromb. Thrombolysis 2011, 31, 173–179. Available online: https://pubmed.ncbi.nlm.nih.gov/20680403/ (accessed on 28 April 2021). [CrossRef]
- Bakouboula, B.; Morel, O.; Faure, A.; Zobairi, F.; Jesel, L.; Trinh, A.; Zupan, M.; Canuet, M.; Grunebaum, L.; Brunette, A.; et al. Procoagulant membrane microparticles correlate with the severity of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2008, 177, 536–543. Available online: https://pubmed.ncbi.nlm.nih.gov/18006886/ (accessed on 28 April 2021). [CrossRef] [PubMed] [Green Version]
- Kurakula, K.; Smolders, V.F.E.D.; Tura-Ceide, O.; Wouter Jukema, J.; Quax, P.H.A.; Goumans, M.J. Endothelial dysfunction in pulmonary hypertension: Cause or consequence? Biomedicines 2021, 9, 57. Available online: https://pubmed.ncbi.nlm.nih.gov/33435311/ (accessed on 28 April 2021). [CrossRef]
- Evans, C.E.; Cober, N.D.; Dai, Z.; Stewart, D.J.; Zhao, Y.-Y. Endothelial cells in the pathogenesis of pulmonary arterial hypertension. Eur. Respir. J. 2021, 28, 2003957. Available online: https://erj.ersjournals.com/content/early/2021/01/21/13993003.03957-2020 (accessed on 28 April 2021). [CrossRef]
- Blair, L.A.; Haven, A.K.; Bauer, N.N. Circulating microparticles in severe pulmonary arterial hypertension increase intercellular adhesion molecule-1 expression selectively in pulmonary artery endothelium. Respir. Res. 2016, 17, 133. Available online: https://pubmed.ncbi.nlm.nih.gov/27765042/ (accessed on 28 April 2021). [CrossRef] [Green Version]
- Lammi, M.R.; Saketkoo, L.A.; Okpechi, S.C.; Ghonim, M.A.; Wyczechowska, D.; Bauer, N.; Pyakurel, K.; Saito, S.; deBoisblanc, B.P.; Boulares, A.H. Microparticles in systemic sclerosis: Potential pro-inflammatory mediators and pulmonary hypertension biomarkers. Respirology 2019, 24, 675–683. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/resp.13500 (accessed on 28 April 2021). [CrossRef]
- Guiducci, S.; Distler, J.H.W.; Jüngel, A.; Huscher, D.; Huber, L.C.; Michel, B.A.; Gay, R.E.; Pisetsky, D.S.; Gay, S.; Matucci-Cerinic, M.; et al. The relationship between plasma microparticles and disease manifestations in patients with systemic sclerosis. Arthritis Rheum. 2008, 58, 2845–2853. Available online: https://pubmed.ncbi.nlm.nih.gov/18759303/ (accessed on 28 April 2021). [CrossRef] [PubMed] [Green Version]
- Michalska-Jakubus, M.; Kowal-Bielecka, O.; Smith, V.; Cutolo, M.; Krasowska, D. Plasma endothelial microparticles reflect the extent of capillaroscopic alterations and correlate with the severity of skin involvement in systemic sclerosis. Microvasc. Res. 2017, 110, 24–31. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0026286216300978 (accessed on 28 April 2021). [CrossRef] [PubMed]
- Iversen, L.V.; Ostergaard, O.; Ullman, S.; Nielsen, C.T.; Halberg, P.; Karlsmark, T.; Heegaard, N.H.H.; Jacobsen, S. Circulating microparticles and plasma levels of soluble E- and P-selectins in patients with systemic sclerosis. Scand. J. Rheumatol. 2013, 42, 473–482. Available online: https://pubmed.ncbi.nlm.nih.gov/24016306/ (accessed on 28 April 2021). [CrossRef]
- Jung, C.; Drummer, K.; Oelzner, P.; Figulla, H.R.; Boettcher, J.; Franz, M.; Betge, S.; Foerster, M.; Wolf, G.; Pfeil, A. The association between endothelial microparticles and inflammation in patients with systemic sclerosis and Raynaud’s phenomenon as detected by functional imaging. Clin. Hemorheol. Microcirc. 2016, 61, 549–557. Available online: https://pubmed.ncbi.nlm.nih.gov/26410864/ (accessed on 28 April 2021). [CrossRef]
- Hijmans, J.G.; Stockelman, K.A.; Garcia, V.; Levy, M.V.; Madden Brewster, L.; Bammert, T.D.; Greiner, J.J.; Stauffer, B.L.; Connick, E.; DeSouza, C.A. Circulating microparticles are elevated in treated HIV-1 infection and are deleterious to endothelial cell function. J. Am. Heart Assoc. 2019, 8, e011134. Available online: https://pubmed.ncbi.nlm.nih.gov/30779672/ (accessed on 28 April 2021). [CrossRef] [PubMed]
- Hijmans, J.G.; Stockelman, K.; Levy, M.; Brewster, L.M.; Bammert, T.D.; Greiner, J.J.; Connick, E.; DeSouza, C.A. Effects of HIV-1 gp120 and TAT-derived microvesicules on endothelial cell function. J. Appl. Physiol. 2019, 126, 1242–1249. Available online: http://doi.org/10.1152/japplphysiol.01048.2018 (accessed on 30 June 2021). [CrossRef]
- Chi, D.; Henry, J.; Kelley, J.; Thorpe, R.; Smith, J.K.; Krishnaswamy, G. The effects of HIV infection on endothelial function. Endothel. J. Endothel. Cell Res. 2000, 7, 223–242. Available online: https://pubmed.ncbi.nlm.nih.gov/11201521/ (accessed on 28 April 2021). [CrossRef]
- Gomer, R.H. Circulating progenitor cells and scleroderma. Curr. Rheumatol. Rep. 2008, 10, 183–188. Available online: https://pubmed.ncbi.nlm.nih.gov/18638425/ (accessed on 28 April 2021). [CrossRef] [Green Version]
Variables | All PAH n = 144 | CL n = 47 | SSc n = 44 | HIV n = 22 |
---|---|---|---|---|
Age, years | 53.8 ± 15.2 * | 48.0 ± 14.3 | 53.9 ± 10.1 | 43.3 ± 9.3 |
Male sex n (%) | 41 (28.3%) | 20 (42.5%) | 5 (11.3%) † | 19 (86.3%) # |
BMI (Kg/m2) | 26.4 ± 5.7 | 25.3 ± 4.0 | 25.7 ± 4.4 | 25.3 ± 4.0 |
FVC (% predicted) | 95.6 ± 17.4 * | 101.3 ± 12.6 | 100.4 ± 15.3 | 105.8 ± 13.9 |
FEV1 (% predicted) | 81.4 ± 18.3 * | 102.8 ± 13.2 | 101.3 ± 12.8 | 97.6 ± 16.2 |
FEV1/FVC (%) | 74.4 ± 7.5 * | 83.6 ± 6.0 | 79.0 ± 5.3 † | 74.5 ± 8.1 # |
TLC (% predicted) | 89.7 ± 14.4 * | 103.2 ± 10.6 | 103.1 ± 16.0 | 105 ± 13.3 |
DLco (% predicted) | 52.7 ± 18.8 * | 91.9 ± 14.6 | 73.4 ± 12.2 † | 87.8 ± 9.4 |
DLCO/VA | 62.5 ± 18.8 * | 101 ± 21.9 | 78.3 ± 12.5 † | 86.5 ± 14.4 |
PaO2 (mmHg) | 67.5 ± 13.1 | ND | ND | ND |
mPAP (mmHg) | 54.6 ± 17.4 | ND | ND | ND |
PAWP (mmHg) | 10.2 ± 6.6 | ND | ND | ND |
RAP (mmHg) | 8.2 ± 4.0 | ND | ND | ND |
CI (L/min/m2) | 2.5 ± 0.7 | ND | ND | ND |
PVR (dyn·seg·cm5) | 810.2 ± 465.1 | ND | ND | ND |
BNP (pg/mL) | 324.1 ± 388.6 * | 16.8 ± 4.3 | 47.9 ± 51.5 † | 18.5 ± 22.6 |
WHO FC n, (%) | ||||
I | 22 (15.1) * | 47 (100) | 43 (97.7) | 18 (81.1) # |
II | 57 (39.3) | 0 (0) | 0 (0) | 2 (9.0) |
III-IV | 54 (37.2) | 0 (0) | 1 (2.2) | 2 (9.0) |
Variables | iPAH n = 52 | PAH-SSc n = 31 | PAH-CTD n = 15 | PAH-HIV n = 20 | PAH-PoH n = 17 |
---|---|---|---|---|---|
Age, years | 52.8 ± 16.4 | 64.4 ± 11.2 * | 50.1 ± 16.4 # | 46.2 ± 6.7 # | 56.5 ± 12.2 |
Male sex n (%) | 20 (38.4%) | 3 (9.6%) | 2 (13.3%) | 10 (50%) | 7 (41.1%) |
BMI (Kg/m2) | 27,9 ± 6.0 | 26.3 ± 4.7 | 26.7 ± 5.3 | 23.0 ± 4.3 *,$ | 28.3 ± 5.2 |
FVC (% predicted) | 86.6 ± 15.6 | 78.3 ± 18.9 | 81.8 ± 15.6 | 94.0 ± 16.2 | 88.0 ± 22.9 |
FEV1 (% predicted) | 81.5 ± 16.3 | 77.3 ± 19.5 | 79.5 ± 17.1 | 83.5 ± 17.9 | 79.8 ± 20.5 |
FEV1/FVC (%) | 72.7 ± 9.1 | 73.6 ± 6.4 | 76.1 ± 10.7 | 70.0 ± 9.9 | 70.4 ± 6.5 |
TLC (% predicted) | 94.2 ± 10.3 | 84.2 ± 15.7 | 82.6 ± 13.0 † | 98.7 ± 12.6 | 94.9 ± 17.9 |
Dlco (% predicted) | 56.7 ± 22.0 | 48.2 ± 16.8 * | 50.0 ± 19.7 | 53.1± 9.9 # | 55.0 ± 15.0 # |
DLCO/VA | 64.8 ± 23.6 | 63.9 ± 14.4 | 63.9 ± 21.9 | 58.6 ± 16.7 | 63.6 ± 13.3 |
PaO2 (mmHg) | 74.4 ± 18.2 | 63.9 ± 14.4 | 71.9 ± 19.9 | 76.5 ± 14.2 | 71.6 ± 13.1 |
PAPm (mmHg) | 53.8 ± 14.5 | 42.4 ± 13.5 * | 44.6 ± 11.5 | 51.3 ± 13.7 | 50.2 ± 16.0 |
PAWP (mmHg) | 9.2 ± 6.7 | 9.4 ± 3.1 | 7.1 ± 3.3 | 9.2 ± 4.3 | 9.7 ± 3.0 |
RAP (mmHg) | 8.0 ± 5.0 | 9.3 ± 5.6 | 6.2 ± 3.0 | 7.4 ± 4.4 | 6.0 ± 2.7 |
CI, (L·m2·min−1) | 2.2± 0.6 | 2.3± 0.5 | 2.5± 0.7 | 2.3± 0.7 | 2.7± 0.6 * |
PVR (dyn·seg·cm5) | 911.3 ± 373.4 | 682.3 ± 361.5 | 890.0 ± 503.3 | 894.5 ± 573.3 | 710.5 ± 360.3 |
BNP (pg/mL) | 251.9 ± 337.9 | 327 ± 314.2 | 166.1 ± 255.9 | 199.5 ± 296.5 | 134.1 ± 173.7 |
WHO FC n, (%) | |||||
I | 13 (25.0) | 1 (3.2) * | 2 (13.3) | 3 (15.0) | 3 (17.6) |
II | 22 (42.3) | 11 (35.4)) | 6 (40.0) | 11 (55.0) | 9 (52.9) |
III-IV | 17 (32.7) | 19 (61.3) | 7 (46.6) | 6 (30.0) | 5 (29.4) |
Patients and Controls (mean, (95% CI) | EMVs/µL PPP CD31+CD42b− | Activated-EMVs CD31+CD42b−CD62E+ | Lymphomonocytes, ×105 Events | PCs CD34+CD133+ CD45low%, Lymphocytes | Ratio EMVs/PCs |
---|---|---|---|---|---|
Healthy controls n = 47 | 564 (447.7, 680.2) | 18.5 (12.3, 24.6) | 9.1 × 105 (8.3 × 105, 9.9 × 105) | 0.04 (0.04, 0.05) | 1.8 × 104 (1 × 104, 2.5 × 104) |
All PAH n = 144 | 973.6 (830.5, 1117) * | 23.8 (15.5, 32.1) | 8.5 × 105 (8.0 × 105, 8.9 × 105) | 0.03 (0.03, 0.04) * | 29.6 × 104 (8.5 × 104, 50.7 × 104) * |
iPAH n = 52 | 957.8 (738.1, 1117) * | 20.7 (11.8, 29.7) | 8.8 × 105 (8.3 × 105, 9.4 × 105) | 0.03 (0.02, 0.04) * | 42 × 104 (8.6 × 104, 75.4 × 104) * |
PAH-SSc n = 31 | 1272 (847.9, 1695) * | 28.9 (17.1, 40.8) * | 7.8 × 105 (6.4 × 105, 9.3 × 105) | 0.04 (0.03, 0.05) | 48.5 × 104 (41 × 104, 138 × 104) * |
PAH-HIV n = 20 | 661.4 (494.5, 828.3) | 8.5 (5.0, 12.0) | 8.7 × 105 (7.3 × 105, 10.2 × 105) | 0.03 (0.01, 0.04) * | 5.8 × 104 (1 × 104, 12 × 104) * |
PAH-PoH n = 17 | 1179 (606.2, 1751) * | 9.4 (6.1, 12.7) | 9.0 × 105 (7.3 × 105, 10.8 × 105) | 0.02 (0.01, 0.03) * | 5.9 × 104 (2.4 × 104, 9.3 × 104) * |
PAH-CTD n = 15 | 870.3 (586.6, 1154) | 14.0 (6.9, 21.2) | 7.4 × 105 (5.7 × 105, 9.0 × 105) | 0.03 (0.01, 0.04) | 7.0 × 104 (1.9 × 104, 12.0 × 104) * |
PAH-h n = 9 | 698.6 (110, 1287) | 14.2 (4.9, 23.5) | 8.5 × 105 (7.0 × 105, 10.1 × 105) | 0.03 (0.01, 0.04) | 24 × 104 (−23.2 × 104, 71.4 × 104) * |
SSc without PAH n = 44 | 2247 (1028, 3466) * | 22.4 (8.3, 36.5) | 7.0 × 105 (5.0 × 105, 9.1 × 105) | 0.01 (0.04, 0.05) *# | 91 × 104 (33.2 × 104, 148 × 104) * |
HIV without PAH n = 22 | 1855 (1143, 2567) *,† | 5.2 (2.8, 7.6) * | 9.2 × 105 (8.3 × 105, 10.1 × 105) | 0.04 (0.04, 0.05) | 6.9 × 104 (3.2 × 104, 10.6 × 104) *,# |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tura-Ceide, O.; Blanco, I.; Garcia-Lucio, J.; del Pozo, R.; García, A.R.; Ferrer, E.; Crespo, I.; Rodríguez-Chiaradia, D.A.; Simeon-Aznar, C.P.; López-Meseguer, M.; et al. Circulating Cell Biomarkers in Pulmonary Arterial Hypertension: Relationship with Clinical Heterogeneity and Therapeutic Response. Cells 2021, 10, 1688. https://doi.org/10.3390/cells10071688
Tura-Ceide O, Blanco I, Garcia-Lucio J, del Pozo R, García AR, Ferrer E, Crespo I, Rodríguez-Chiaradia DA, Simeon-Aznar CP, López-Meseguer M, et al. Circulating Cell Biomarkers in Pulmonary Arterial Hypertension: Relationship with Clinical Heterogeneity and Therapeutic Response. Cells. 2021; 10(7):1688. https://doi.org/10.3390/cells10071688
Chicago/Turabian StyleTura-Ceide, Olga, Isabel Blanco, Jéssica Garcia-Lucio, Roberto del Pozo, Agustín Roberto García, Elisabet Ferrer, Isabel Crespo, Diego A. Rodríguez-Chiaradia, Carmen Pilar Simeon-Aznar, Manuel López-Meseguer, and et al. 2021. "Circulating Cell Biomarkers in Pulmonary Arterial Hypertension: Relationship with Clinical Heterogeneity and Therapeutic Response" Cells 10, no. 7: 1688. https://doi.org/10.3390/cells10071688
APA StyleTura-Ceide, O., Blanco, I., Garcia-Lucio, J., del Pozo, R., García, A. R., Ferrer, E., Crespo, I., Rodríguez-Chiaradia, D. A., Simeon-Aznar, C. P., López-Meseguer, M., Martín-Ontiyuelo, C., Peinado, V. I., & Barberà, J. A. (2021). Circulating Cell Biomarkers in Pulmonary Arterial Hypertension: Relationship with Clinical Heterogeneity and Therapeutic Response. Cells, 10(7), 1688. https://doi.org/10.3390/cells10071688