Integrins: An Important Link between Angiogenesis, Inflammation and Eye Diseases
Abstract
:1. Introduction
2. Integrin Structure
3. Integrin Activation
4. Integrin Classification
5. Integrin Function
6. Integrins and the Eye
6.1. Integrins and Cornea
6.2. Integrins and Allergic Eye Diseases
6.3. Integrins and Dry Eye Disease
6.4. Integrins and Eye Infection in the Course of COVID-19
6.5. Integrins and the Lens
6.6. Integrins and Glaucoma
6.7. Integrins and the Retina
6.8. Integrins and Myopia
6.9. Future Directions and Anti-Integrin Therapy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mezu-Ndubuisi, O.J.; Maheshwari, A. The role of integrins in inflammation and angiogenesis. Pediatr. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.D.; Humphries, M.J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 2011, 3, a004994. [Google Scholar] [CrossRef] [Green Version]
- Sigrist, C.J.; Bridge, A.; Le Mercier, P. A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral. Res. 2020, 177, 104759. [Google Scholar] [CrossRef]
- Bednarczyk, M.; Stege, H.; Grabbe, S.; Bros, M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int. J. Mol. Sci. 2020, 21, 1402. [Google Scholar] [CrossRef] [Green Version]
- Mould, A.P.; Akiyam, S.K.; Humphries, M.J. Regulationof integrin α5β1-fobronectin interactions by divalent cations.Evidence for distinct chesses of binding sites for Mn2+,Mg2+ and Ca2+. J. Biol. Chem. 1995, 270, 26270–26277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, K.S.; Naidoo, R.; Chetty, R. Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J. Clin. Pathol. 2005, 58, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Foo, S.Y.; Tan, S.M. A structural hypothesis for the transition between bent and extended conformations of the leukocyte beta2 integrins. J. Biol. Chem. 2007, 282, 30198–30206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiatkowska, M.; Szymański, J.; Padula, G. Interaction and functional association of protein disulfide isomerase with alphaVbeta3 integrin on endothelial cells. FEBS J. 2008, 275, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Fagerholm, S.C.; Guenther, C.; Asens, M.L.; Savinko, T.; Uotila, L.M. Beta2-integrins and interacting proteins in leukocyte trafficking, immune suppression, and immunodeficiency disease. Front. Immunol. 2019, 10, 254. [Google Scholar] [CrossRef] [Green Version]
- Bunting, M.; Harris, E.S.; McIntyre, T.M.; Prescott, S.M.; Zimmerman, G.A. Leukocyte adhesion deficiency syndromes: Adhesion and tethering defects involving beta 2 integrins and selectin ligands. Curr. Opin. Hematol. 2002, 9, 30–35. [Google Scholar] [CrossRef]
- Yonekawa, K.; Harlan, J.M. Targeting leukocyte integrins in human diseases. J. Leukoc. Biol. 2005, 77, 129–140. [Google Scholar] [CrossRef]
- Stewart, P.; Nemerov, G. Cell integrins:commonly used receptors for diverse viral pathogens. Trends Microbiol. 2007, 15, 500–507. [Google Scholar] [CrossRef]
- Larsen, M.; Artym, V.; Green, J.A. The matrix reorganized: Extracellular matrix remogeling and integrin signaling. Curr. Opin. Cell Biol. 2006, 185, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Kourtzelis, I.; Mitroulis, I.; von Renesse, J. From leukocyte recruitment to resolution of inflammation: The cardinal role of integrins. J. Leukoc. Biol. 2017, 102, 677–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salazar-Noratto, G.E.; De Nijs, N.; Stevens, H.Y. Regional gene expression analysis of multiple tissues in an experimental animal model of post-traumatic osteoarthritis. Osteoarthr. Cartil. 2019, 27, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, S.; Katz, B.; Lafrenie, R. Fibronectin and integrins in cell adhesion, signaling and morphogenesis. Ann. N. Y. Acad. Sci. 1998, 857, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.B.; Grunkemeier, J.M.; McFarland, C.D. Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand’s factor. J. Biomed. Mater. Res. 2002, 60, 348–359. [Google Scholar] [CrossRef]
- Hauck, C.R.; Agerer, F.; Muenzner, P. Cellular adhesion molecules as targets for bacterial infection. Eur. J. Cell Biol. 2006, 85, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorina, R.; Lyck, R.; Vestweber, D.; Engelhardt, B. β2 integrin-mediated crawling on endothelial ICAM-1 and ICAM-2 is a prerequisite for transcellular neutrophil diapedesis across the inflamed blood-brain barrier. J. Immunol. 2014, 192, 324–337. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.C.; Chen, P.C.; Lin, Y.F.; Su, C.M.; Liu, J.F.; Lin, T.H.; Chuang, S.M.; Tang, C.H. Osteoblast-secreted WISP-1 promotes adherence of prostate cancer cells to bone via the VCAM-1/integrin α4β1 system. Cancer Lett. 2018, 426, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Sackstein, R. The lymphocyte homing receptors: Gatekeepers of the multistep paradigm. Curr. Opin. Hematol. 2005, 12, 444–450. [Google Scholar] [CrossRef]
- Gutiérrez-González, A.; Aguilera-Montilla, N.; Ugarte-Berzal, E. α4β1 integrin associates with VEGFR2 in (CLL) cells and contributes to VEGF binding and intracellular signaling. Blood Adv. 2019, 3, 2144–2148. [Google Scholar] [CrossRef] [Green Version]
- Ruoslahti, E. Integrins as signaling molecules and targets for tumor therapy. Kidney Int. 1997, 51, 1413–1417. [Google Scholar] [CrossRef] [Green Version]
- Patriarca, C.; Alfano, R.M.; Sonnenberg, A. Integrin laminin receptor profile of pulmonary squamous cell adenocarcinomas. Hum. Pathol. 1998, 29, 1208–1215. [Google Scholar] [CrossRef]
- Savoiu, P.; Trusoino, L.; Pepino, E. Expression and topography of integrins and basement membrane proteins in epidermal carcinomas. J. Investig. Dermatol. 1993, 101, 352–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogg, N.; Bates, P.A. Genetic analysis of integrin function in man:LAD-1 and other Syndromes. Matrix Biol. 2000, 19, 211–222. [Google Scholar] [CrossRef]
- Pulkkinen, L.; Kim, D.; Uitto, J. Epidermolysis bullosa with pyloric artresia: Novel mutations in the β4 integrin gene (ITGB4). Am. J. Pathol. 1998, 152, 157–166. [Google Scholar]
- Ruzzi, L.; Gagnoux-Palacios, L.; Pinola, M. A homozygous mutation in the integrin α6 gene in junctional epidermolysis bullosa with pyrolic atresia. J. Clin. Investig. 1997, 99, 2826–2831. [Google Scholar] [CrossRef]
- Dua, H.S.; Faraj, L.A.; Said, D.G.; Gray, T.; Lowe, J. Human corneal anatomy redefined: A novel pre-Descemet’s layer (Dua’s layer). Ophthalmology 2013, 120, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.E. Bowman’s layer in the cornea–structure and function and regeneration. Exp. Eye Res. 2020, 195, 108033. [Google Scholar] [CrossRef]
- McKay, T.B.; Schlötzer-Schrehardt, U.; Pal-Ghosh, S.; Stepp, M.A. Integrin: Basement membrane adhesion by corneal epithelial and endothelial cells. Exp. Eye Res. 2020, 198, 108138. [Google Scholar] [CrossRef]
- Klenkler, B.; Sheardown, H. Growth factors in the anterior segment:role in tissue maintenance, wound healing and ocular pathology. Exp. Eye Res. 2004, 79, 677–688. [Google Scholar] [CrossRef]
- Petrescu, M.S.; Larry, C.L.; Bowden, R.A. Neutrophil interactions with keratocytes during corneal epithelial wound healing:a role for CD18 integrins. Investig. Ophthalmol. Vis. Sci. 2007, 48, 5023–5029. [Google Scholar] [CrossRef]
- Hanlon, S.D.; Smith, C.W.; Sauter, M.N. Integrin-dependent neutrophil migration in the injured mouse cornea. Exp. Eye Res. 2014, 120, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S. Analysis of the keratocyte apoptosis, keratocyte proliferation, and myofibroblast transformation responses after photorefractive keratectomy and laser in situ keratomileusis. Trans. Am. Ophthalmol. Soc. 2002, 100, 411–433. [Google Scholar] [PubMed]
- Sunil, K.; Hodge, W. The integrin needle in the stromal haystack:emerging role in corneal physiology and pathology. J. Cell Commun. Signal. 2014, 8, 113–124. [Google Scholar]
- Wilson, S.E.; Mohan, R.R.; Hutcheon, A.E. Effect of ectopic epithelial tissue within the stroma on keratocyte apoptosis, mitosis, and myofibroblast transformation. Exp. Eye Res. 2003, 76, 193–201. [Google Scholar] [CrossRef]
- Meek, K.M.; Knupp, C. Corneal structure and transparency. Prog. Ret. Eye Res. 2015, 49, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puthawala, K.; Hadjiangelis, N.; Jacoby, S.C. Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 2008, 177, 82–90. [Google Scholar] [CrossRef]
- Wu, W.; Hutcheon, A.E.K.; Sriram, S. Initiation of fibrosis in the integrin Avβ6 knockout mice. Exp. Eye Res. 2019, 180, 23–28. [Google Scholar] [CrossRef]
- Rodius, S.; Indra, G.; Thibault, C.; Pfister, V.; Georges-Labouesse, E. Loss of α6 integrins in keratinocytes leads to an increase in TGFβ and AP1 signaling and in expression of differentiation genes. J. Cell. Physiol. 2007, 212, 439–449. [Google Scholar] [CrossRef]
- Jonsson, F.; Byström, B.; Davidson, A.E.; Backman, L.J.; Kellgren, T.G.; Tuft, S.J.; Koskela, T.; Rydén, P.; Sandgren, O.; Danielson, P.; et al. Mutations in Collagen, Type XVII, Alpha 1 (COL17A1) Cause Epithelial Recurrent Erosion Dystrophy (ERED). Hum. Mut. 2015, 36, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zhang, X.; Lu, Y.; Gong, L. TGFBIp mediates lymphatic sprouting in corneal lymphangiogenesis. J. Cell Mol. Med. 2019, 23, 7602–7616. [Google Scholar] [CrossRef]
- Rashid, K.A.; Foster, C.S.; Ahmed, A.R. Identification of Epitopes Within Integrin β4 for Binding of Auto-Antibodies in Ocular Cicatricial and Mucous Membrane Pemphigoid: Preliminary Report. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7707–7716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, J.M.; Zenkel, M.; Schlötzer-Schrehardt, U.; Bachmann, B.O.; Tourtas, T.; Kruse, F.E. Extracellular Matrix Alterations in Late-Onset Fuchs’ Corneal Dystrophy. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3700–3708. [Google Scholar] [CrossRef]
- Ecoiffier, T.; Annan, E.L.; Rasnid, S. Modulation of integrin α4β1. Arch. Ophthalmol. 2008, 126, 1695–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baiula, M.; Bedini, A.; Carbonari, G.; Dattoli, S.D.; Spampinato, S. Therapeutic targeting of eosinophil adhesion and accumulation in allergic conjunctivitis. Front. Pharmacol. 2012, 3, 203. [Google Scholar] [CrossRef] [Green Version]
- Storm, R.J.; Persson, B.D.; Skalman, L.N. Human Adenovirus Type 37 Uses αVβ1 and α3β1 Integrins for Infection of Human Corneal Cells. J. Virol. 2017, 91, e02019-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K. TFOS DEWS II definition and classification report. Ocul. Surf. 2017, 15, 276–2830. [Google Scholar] [CrossRef]
- Pflugfelder, S.C.; Stern, M.; Zhang, S. LFA-1/ICAM-1 Interaction as a Therapeutic Target in Dry Eye Disease. J. Ocul. Pharmacol. Ther. 2017, 33, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the ACE2 receptor. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Xu, Z.; Castiglione, G.M.; Soiberman, U.S.; Eberhart, C.G.; Duh, E.J. ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. Ocul. Surf. 2020, 18, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Collin, J.; Queen, R.; Zerti, D.; Dorgau, B.; Georgiou, M.; Djidrovski, I.; Hussain, R.; Coxhead, J.M.; Joseph, A.; Rooney, P.; et al. Co-expression of SARS-CoV-2 entry genes in the superficial adult human conjunctival, limbal and corneal epithelium suggests an additional route of entry via the ocular surface. Ocul Surf. 2021, 19, 190–200. [Google Scholar] [CrossRef]
- Hussein, H.A.M.; Walker, L.R.; Abdel-Raouf, U.M.; Desouky, S.A.; Montasser, A.K.M.; Akula, S.M. Beyond RGD: Virus interactions with integrins. Arch. Virol. 2015, 160, 2669–2681. [Google Scholar] [CrossRef]
- Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005, 309, 1864–1868. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese centers for disease control and prevention. JAMA 2020, 323, 1239. [Google Scholar] [CrossRef]
- Chen, L.; Deng, C.; Chen, X. Ocular manifestations and clinical characteristics of 534 cases of COVID-19 in China: A cross-sectional study. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.; Menko, A.S. Integrins in lens development and disease. Exp. Eye Res. 2009, 88, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbour, W.; Saika, S.; Miyamoto, T.; Ohkawa, K.; Utsunomiya, H.; Ohnishi, Y. Expression patterns of beta1-related alpha integrin subunits in murine lens during embryonic development and wound healing. Curr. Eye Res. 2004, 29, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lovicu, F.J.; Shin, E.H.; McAvoy, J.W. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp. Eye Res. 2016, 142, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Kubo, E.; Shibata, T.; Singh, D.P. Roles of TGF β and FGF Signals in the Lens: Tropomyosin Regulation for Posterior Capsule Opacity. Int. J. Mol. Sci. 2018, 19, 3093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, D.M.; Pokrovskaya, O.; O’Brien, C.J. The function of matricellular proteins in the lamina cribosa and trabecular meshwork in glaucoma. J. Ocul. Pharmacol. Ther. 2015, 31, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Gagen, D.; Faralli, J.A.; Filla, M. The role of integrins in the trabecular meshwork. J. Ocul. Pharmacol. Ther. 2014, 30, 110–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filla, M.S.; Faralli, J.A.; Peotter, J.L. The role of integrins in glaucoma. Exp. Eye Res. 2017, 158, 24–136. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Yen, M.Y.; Hsu, W.M. Induction of vitronectin and integrin alpha in the retina after optic nerve injury. Mol. Vis. 2006, 12, 76–84. [Google Scholar]
- Dickerson, J.E.; Steely, H.T.; English-Wright, S.L. The effect of dexamethasone on integrin and laminin expression in cultured human trabecular meshwork cells. Exp. Eye Res. 1998, 6, 731–738. [Google Scholar] [CrossRef]
- Faralli, J.A.; Gagen, D.; Filla, M.S. Dexamethasone increases αvβ3 integrin expression and affinity through a calcineurin/NFAT pathway. BBA Mol. Cell Res. 2013, 1833, 3306–3313. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yan, W.; Lu, X.; Qian, C.; Zhang, J.; Li, P.; Shi, L.; Zhao, P.; Fu, Z.; Pu, P.; et al. Overexpression of osteopontin induces angiogenesis of endothelial progenitor cells via the αvβ3/PI3K/AKT/eNOS/NO signaling pathway in glioma cells. Eur. J. Cell Biol. 2011, 90, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Stamer, W.D.; Bertrand, J.; Read, A.T.; Marando, C.M.; Ethier, C.R.; Overby, D.R. Role of nitric oxide in murine conventional outflow physiology. Am. J. Physiol. Cell Physiol. 2015, 309, C205–C214. [Google Scholar] [CrossRef] [Green Version]
- Brem, R.B.; Robbins, S.G.; Wilson, D.J. Immunolocalization of integrins in the human retina. Investig. Ophthalmol. Vis. Sci. 1994, 35, 3466–3474. [Google Scholar]
- Jose-Andres, C.; Okenka, G.; Kern, T.S.; Subauste, C.S. Identification of primary retinol cells and ex vivo detection of proinflammatory molecules using flow cytometry. Mol. Vis. 2009, 15, 1383–1389. [Google Scholar]
- McLeod, D.S.; Lefer, D.J.; Merges, C. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am. J. Pathol. 1995, 147, 642–653. [Google Scholar]
- Mastej, K.; Adamiec, R. Neutrophil surface expression of CD11b and CD62L in diabetic microangiopathy. Acta Diabetol. 2008, 45, 183–190. [Google Scholar] [CrossRef]
- Fogelstrand, L.; Hulthe, J.; Hulten, L.M. Monocytic expression of CD14 and CD18, circulating adhesion molecules and inflammatory markers in women with diabetes mellitus and impaired glucose tolerance. Diabetology 2004, 47, 1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.; Wang, S.L.; Hui, Y. Expression of CD18 on the neutrophils of patients with diabeticretinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2007, 245, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Kretowski, A.; Myśliwiec, J.; Kinalska, I. The alterations of CD11A expression on peripheral blood lymphocytes/monocytes and CD62L expression on peripheral blood lymphocytes in Graves’ disease and type 1 diabetes. Rocz. Akad. Med. Bialym. 1999, 44, 151–159. [Google Scholar]
- Mezu-Ndubuisi, O.J. In vivo angiography quantifies oxygen-induced retinopathy vascular recovery. Optom. Vis. Sci. 2016, 93, 1268–1279. [Google Scholar] [CrossRef] [Green Version]
- Mezu-Ndubuisi, O.J. Intravitreal delivery of VEGF-A165-loaded PLGA microparticles reduces retinal vaso-obliteration in an in vivo mouse model of retinopathy of prematurity. Curr. Eye Res. 2019, 44, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M. Expression of pro-and anti-angiogenic isoforms of VEGF in the mouse model of oxygen-induced retinopathy. Exp. Eye Res. 2011, 93, 921–926. [Google Scholar] [CrossRef]
- Wilkinson-Berka, J.L.; Jones, D.; Taylor, G.; Jaworski, K.; Kelly, D.J.; Ludbrook, S.B.; Willette, R.N.; Kumar, S.; Gilbert, R.E. SB-267268, a nonpeptidic antagonist of alpha(v)beta3 and alpha(v)beta5 integrins, reduces angiogenesis and VEGF expression in a mouse model of retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1600–1605. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, J.W. An integrin approach to axon regeneration. Eye Lond. 2017, 31, 206–208. [Google Scholar] [CrossRef]
- McBrien, N.A.; Metlapally, R.; Jobling, A.I. Expression of collagen-binding integrin receptors in the mammalian sclera and their regulation during the development of myopia. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4674–4682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.D.; Cheng, Y.X.; Liu, G.B. Expressions of type I collagen, alpha2 integrin and beta1 integrin in sclera of guinea pig with defocus myopia and inhibitory effects of bFGF on the formation of myopia. Int. J. Ophthalmol. 2013, 6, 54–58. [Google Scholar] [PubMed]
- Wang, K.K.; Metlapally, R.; Wildsoet, C.F. Expression Profile of the Integrin Receptor Subunits in the Guinea Pig Sclera. Curr. Eye Res. 2017, 42, 857–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dattoli, S.D.; Baiula, M.; De Marco, R. DS-70, a novel and potent α4 integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in guinea pigs. Br. J. Pharmacol. 2018, 175, 3891–3910. [Google Scholar] [CrossRef] [Green Version]
- Perez, V.L.; Pflugfelder, S.C.; Zhang, S. Lifitegrast, a novel integrin antagonist for treatment of dry eye disease. Ocul. Surf. 2016, 14, 207–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, K.K.; Donnenfeld, E.D.; Karpecki, P.M.; Hovanesian, J.A.; Raychaudhuri, A.; Shojaei, A.; Zhang, S. Safety and tolerability of lifitegrast ophthalmic solution 5.0%: Pooled analysis of five randomized controlled trials in dry eye disease. Eur. J. Ophthalmol. 2019, 29, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Mamuya, F.A.; Wang, Y.; Roop, V.H. The roles of αV integrins in lens EMT and posterior capsular opacification. J. Cell Mol. Med. 2014, 18, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Narranjo, J.L. A Safety and Efficacy Study of ALG-1001 in Human Subjects with Wet Age-Related Macular Degeneration. ClinicalTrials.gov. U.S. National Institutes of Health. Available online: https://www.clinicaltrials.gov/ct2/show/NCT01749891?term=ALG-1001&rank=1 (accessed on 12 December 2017).
- Karageozian, V. A Safety and Efficacy Study of Alg-1001 in Human Subjects with Symptomatic Focal Vitreomacular Adhesion. ClinicalTrials.gov. U.S. National Institutes of Health. Available online: https://www.clinicaltrials.gov/ct2/show/NCT02153476?term=ALG-1001&rank=2 (accessed on 22 December 2016).
- Karageozian, V. Phase A 2 Randomized, Controlled, Double Masked, Multicenter Clinical Trial Designed to Evaluate the Safety and Exploratory Efficacy of Luminate® (ALG-1001) as Compared to Avastin® and Focal Laser Photocoagulation in the Treatment of Diabetic Macular Edema. ClinicalTrials.gov. U.S. National Institutes of Health. Available online: https://www.clinicaltrials.gov/ct2/show/NCT02348918?term=ALG-1001&rank=4 (accessed on 2 January 2017).
- Kuppermann, B.D. A Dual-Mechanism Drug for Vitreoretinal Diseases. Retina Today. Available online: http://retinatoday.com/pdfs/0715RT_Cover_Kupperman.pdf (accessed on 29 January 2017).
- Madamanchi, A.; Capozzi, M.; Ling Genget, L. Mitigation of oxygen-induced retinopathy in α2β1 integrin-deficient mice. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4338–4347. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.J.; Li, X.H.; Wang, L.F.; Kuang, X.; Hang, Z.X.; Deng, Y.; Du, J.R. Therapeutic efficacy of a novel non-peptide αvβ3 integrin antagonist for pathological retinal angiogenesis in mice. Exp. Eye Res. 2014, 129, 119–126. [Google Scholar] [CrossRef]
Part of the Eye/Disease | Integrins |
---|---|
Cornea/ | |
normal expression | α2β1, α3β1, αVβ5, α6β4 |
injury | αVβ6 |
healing process of the injury | α2, β1 |
corneal lymphangiogenesis | α5β1 |
cicatricial pemphigoid | α6β4 |
epidemic keratoconjunctivitis | αVβ1, αVβ5, α3β1 |
Conjunctiva and cornea/ | |
allergic conjunctivitis | α4β1, α4β7, αMβ2, αLβ2 |
epidemic keratoconjunctivitis | αVβ1, αVβ5, α3β1 |
dry eye disease | αLβ2 |
COVID-19 | αVβ1, αVβ3, αVβ5, αVβ6, αVβ8, α5β1, α8β1, αIIbβ3 |
Lens/ | |
normal development | α3β1, α6β1, α6β4, α1β1, α2β1, α5β1, αVβ3 |
Cataract | αVβ5, αVβ6, αVβ3 |
Trabecular meshwork or optic nerve head/ | |
Glaucoma | αVβ3 |
Retina/ | |
diabetic retinopathy | αLβ2 |
retinopathy of prematurity | αVβ3 |
regeneration of the axons of the optic nerve | α9β1 |
sclera/ | |
myopia | α1, β1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrugacz, M.; Bryl, A.; Falkowski, M.; Zorena, K. Integrins: An Important Link between Angiogenesis, Inflammation and Eye Diseases. Cells 2021, 10, 1703. https://doi.org/10.3390/cells10071703
Mrugacz M, Bryl A, Falkowski M, Zorena K. Integrins: An Important Link between Angiogenesis, Inflammation and Eye Diseases. Cells. 2021; 10(7):1703. https://doi.org/10.3390/cells10071703
Chicago/Turabian StyleMrugacz, Małgorzata, Anna Bryl, Mariusz Falkowski, and Katarzyna Zorena. 2021. "Integrins: An Important Link between Angiogenesis, Inflammation and Eye Diseases" Cells 10, no. 7: 1703. https://doi.org/10.3390/cells10071703
APA StyleMrugacz, M., Bryl, A., Falkowski, M., & Zorena, K. (2021). Integrins: An Important Link between Angiogenesis, Inflammation and Eye Diseases. Cells, 10(7), 1703. https://doi.org/10.3390/cells10071703