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Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor that
reduces oxidative stress. When reactive oxygen species (ROS) or reactive nitrogen species (RNS) are
detected, Nrf2 translocates from the cytoplasm into the nucleus and binds to the antioxidant response
element (ARE), which regulates the expression of antioxidant and anti-inflammatory genes. Nrf2
impairments are observed in the majority of neurodegenerative disorders, including Alzheimer’s dis-
ease (AD). The classic hallmarks of AD include β-amyloid (Aβ) plaques, and neurofibrillary tangles
(NFTs). Oxidative stress is observed early in AD and is a novel therapeutic target for the treatment of
AD. The nuclear translocation of Nrf2 is impaired in AD compared to controls. Increased oxidative
stress is associated with impaired memory and synaptic plasticity. The administration of Nrf2 activa-
tors reverses memory and synaptic plasticity impairments in rodent models of AD. Therefore, Nrf2
activators are a potential novel therapeutic for neurodegenerative disorders including AD.

Keywords: NF-κB; neurodegeneration; oxidative stress; reactive oxygen species; inflammation

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia and is the 6th leading
cause of death in the United States (Centers for Disease Control and Prevention). There
are close to 50 million individuals with AD globally, and ~6 million individuals in the
United States alone (Alzheimer’s Disease International) [1,2]. Neuropathologically, AD is
defined by the accumulation of senile plaques, largely composed of extracellular deposits
of β-amyloid (Aβ) peptide, and neurofibrillary tangles (NFTs), composed of intracellular
filamentous aggregates of hyperphosphorylated tau protein [3–6]. The time-dependent
appearance of Aβ plaque deposits followed by NFTs are well-established hallmarks of
AD, leading to synapse loss and neuronal death [7,8]. The time-dependent appearance of
Aβ plaque deposits, followed by NFTs, leads to synapse loss and neuronal death. Many
experimental drugs attempt to inhibit the formation of Aβ plaques and tau proteins or
promote their disposal. Recently, aducanumab was approved to treat Alzheimer’s Disease
by removing Aβ plaques in the brain. Aβ plaques do not always lead to AD, which raises
concerns over the effectiveness of aducanumab. Other approved drugs for AD mask the
symptoms of AD and do not provide disease modification. The majority of approved drugs
for AD are acetylcholinesterase inhibitors, which increase the levels of acetylcholine by
inhibiting the enzyme acetylcholinesterase that breaks down acetylcholine. Therefore, the
investigation of novel therapeutic targets, such as regulating oxidative stress is of great
importance to the development of novel AD treatments.

Oxidative stress can be considered an imbalance between free radicals and antioxi-
dants. Oxidative stress is also an early observation in AD [9]. Free radicals are molecules
with an unpaired electron in their outer orbit. The brain is highly susceptible to oxidative
stress, given its high oxygen consumption and the high content of polyunsaturated fatty
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acids [10]. The excessive production of free radicals can result in the accumulation of
β-amyloid (Aβ) and tau proteins, which are also hallmarks in AD [11]. At normal phys-
iological concentrations, free radicals are necessary for synaptic plasticity and therefore
learning and memory [12]. However, in neurodegenerative diseases, such as AD, when
oxidative stress is increased, synaptic plasticity and memory are impaired [12]. Oxidative
stress is widely studied as a therapeutic target to treat the learning and memory impair-
ment in AD. Nuclear and mitochondrial levels of 8-Hydroxy-deoxyguanosine (8-OHdG), a
biomarker of DNA oxidative damage, are elevated in AD patients and animal models of
AD [13]. Mitochondrial dysfunction and inflammation are associated with oxidation of
nucleic acids, protein, and lipids [14,15]. Copper is a metal involved with oxidative damage
and associated with AD. However, copper can have beneficial effects depending on the
metal delivery. In animal models, treatment with copper (II)-Bis (thiosemicarbazonato)
improved cognition and decreased Aβ [16,17].

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that
regulates oxidative stress with a basic-region leucine zipper (bZIP) in the cap-n-collar
(CNC) family. In the absence of oxidative stress, Nrf2 is bound to its cytoplasmic inhibitor
Kelch-like ECH-associating protein 1 (Keap1). Keap1 suppresses activation of Nrf2 by
sequestering it in the cytoplasm, and by targeting it for ubiquitination [18–21]. In addition
to functioning as an inhibitor of Nrf2, Keap1 also senses oxidants via its redox-sensitive
cysteine residues [22–24]. Oxidative stress ends the inhibition of Nrf2 by Keap1 via an
impairment of the ability of Keap1 to target Nrf2 for ubiquitination [25–27]. Nrf2 declines
with age and the loss of Nrf2 allows unmitigated oxidative stress that drives age-related
pathologies, such as a loss of proteostasis, genomic instability, telomere attrition, epigenetic
alterations, cellular senescence, and mitochondrial dysfunction [28].

2. Nrf2 and its Role in Alzheimer’s Disease

Oxidative stress is involved with the occurrence and progression of AD. Aβ elevation
is associated with increased levels of oxidation products from proteins, lipids and nucleic
acids in the hippocampus and cortex of humans with AD [29]. In contrast, lower Aβ

levels in the brain are correlated with lower oxidative stress markers [30]. Aβ plaques can
reduce Ca2+ storage in the endoplasmic reticulum, which results in an excess of Ca2+ in the
cytosol [31]. Due to the excess of cytosolic Ca2+, glutathione (GSH) levels are decreased and
reactive oxygen species (ROS) can accumulate in the neurons [32]. The oxidative stress in
AD patients may be a result of excitotoxicity from the glutamatergic N-methyl-D-aspartate
(NMDA) receptors. NMDA receptor activation in AD has been shown to result in an
excessive influx of Ca2+ by increasing cell permeability and generation of ROS and reactive
nitrogen species [33,34]. In addition, Aβ can initiate free radical formation by activating
NADPH oxidase [35]. Furthermore, abnormal aggregates composed of p-Tau protein lead
to increased ROS production in AD. ROS was the key result of impaired axonal transport
and caused by abnormal p-Tau protein [15].

Nrf2 is a key endogenous modulator in the protection against oxidative stress. In
response to oxidative stress, Nrf2 translocates from the cytoplasm into the nucleus and
transactivates genetic expression with antioxidant activity. AD patients had less nuclear
Nrf2 in the CA1 region of their hippocampus than the controls despite oxidative stress
markers in the hippocampal neurons of patients with AD [36]. This indicates that Nrf2
was not translocating from the cytoplasm into the nucleus in hippocampal neurons in
patients with AD, despite oxidative stress markers in these neurons and an abundance of
nuclear Nrf2 in the neurologically normal age matched controls (see Figure 1). Therefore,
some process may be blocking Nrf2 nuclear activity, which may contribute to neuronal
dysfunction. The levels of cytoplasmic Nrf2 are not different between age-matched controls
and patients with AD. Albeit, the nuclear impairment is not the result of a general loss of
Nrf2 protein but could reflect dysfunctional nuclear trafficking. Since the two hallmarks of
AD are misfolded proteins, Aβ plaques and NFT, it is likely that endoplasmic reticulum
stress is active in the hippocampus during the progression of AD, which may alter the Nrf2
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pathway in the hippocampus. Methylene blue treatment in a mouse model of tauopathy
increased the activation of Nrf2 and reduced tauopathy and oxidative stress [37]. Treatment
with methylene blue was also associated with improved behavior with reduced locomotor
abnormality, reduced anxiety abnormality, and improvement in learning and memory.
Therefore, methylene blue may be a novel treatment option for people with AD because
methylene blue reduces tau, which is one of the hallmarks of AD.

Cells 2021, 10, x FOR PEER REVIEW 3 of 23 
 

 

dysfunction. The levels of cytoplasmic Nrf2 are not different between age-matched con-

trols and patients with AD. Albeit, the nuclear impairment is not the result of a general 

loss of Nrf2 protein but could reflect dysfunctional nuclear trafficking. Since the two hall-

marks of AD are misfolded proteins, Aβ plaques and NFT, it is likely that endoplasmic 

reticulum stress is active in the hippocampus during the progression of AD, which may 

alter the Nrf2 pathway in the hippocampus. Methylene blue treatment in a mouse model 

of tauopathy increased the activation of Nrf2 and reduced tauopathy and oxidative stress 

[37]. Treatment with methylene blue was also associated with improved behavior with 

reduced locomotor abnormality, reduced anxiety abnormality, and improvement in learn-

ing and memory. Therefore, methylene blue may be a novel treatment option for people 

with AD because methylene blue reduces tau, which is one of the hallmarks of AD. 

 

Figure 1. In the absence of oxidative stress. Kelch-like ECH-associating protein 1 (Keap1) suppresses the activation of 

nuclear factor erythroid 2-related factor 2 (Nrf2) and targets Nrf2 for ubiquitination (Ub). When Keap1 detects oxidative 

stress via reactive oxygen species (ROS) or reactive nitrogen species (RNS), as shown in the top right portion of the figure, 

Keap1 ends the inhibition of Nrf2, and Nrf2 translocates into the nucleus. Nrf2 binds to the antioxidant response element 

(ARE), which regulates the expression of antioxidant and anti-inflammatory genes. In Alzheimer’s disease (AD), nuclear 

translocation in response to ROS/RNS is impaired, which results in oxidative damage and inflammation. 

Initially, ROS was thought to only have negative physiological effects. However, oth-

ers have observed the beneficial effects of ROS on mitochondria and in various cellular 

pathways [38,39]. Low levels of ROS are shown to have beneficial effects while high levels 

of ROS are associated with AD, suggesting a threshold determines whether ROS is bene-

ficial or harmful [40]. The low levels of ROS regulate various cellular pathways, such as 

H2O2 regulating various signaling pathways with proteins containing cysteine residues 

Figure 1. In the absence of oxidative stress. Kelch-like ECH-associating protein 1 (Keap1) suppresses the activation of
nuclear factor erythroid 2-related factor 2 (Nrf2) and targets Nrf2 for ubiquitination (Ub). When Keap1 detects oxidative
stress via reactive oxygen species (ROS) or reactive nitrogen species (RNS), as shown in the top right portion of the figure,
Keap1 ends the inhibition of Nrf2, and Nrf2 translocates into the nucleus. Nrf2 binds to the antioxidant response element
(ARE), which regulates the expression of antioxidant and anti-inflammatory genes. In Alzheimer’s disease (AD), nuclear
translocation in response to ROS/RNS is impaired, which results in oxidative damage and inflammation.

Initially, ROS was thought to only have negative physiological effects. However,
others have observed the beneficial effects of ROS on mitochondria and in various cellular
pathways [38,39]. Low levels of ROS are shown to have beneficial effects while high
levels of ROS are associated with AD, suggesting a threshold determines whether ROS
is beneficial or harmful [40]. The low levels of ROS regulate various cellular pathways,
such as H2O2 regulating various signaling pathways with proteins containing cysteine
residues [41]. Given the beneficial effects of low levels of ROS, Nrf2 activators should only
be considered when ROS levels have crossed the threshold from beneficial into harmful.

3. Synaptic Plasticity and Reactive Oxygen Species

Synaptic plasticity is measured via the change of strength in synapses. Synaptic
plasticity is associated with learning and memory [42]. Long term potentiation (LTP), a
sustained increase in synaptic strength is associated with learning and memory. Many
studies have been conducted to elucidate the effect ROS has in LTP. Superoxide and H2O2
are two forms of ROS that have effects on LTP. The treatment of hippocampal neurons with
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NMDA, AMPA, and kainic acid increases superoxide production [43]. NMDA receptor
activation causes an influx of Ca2+ into the neurons, which is critical for most forms of LTP.
Superoxide regulates the activities of the extracellular signal-regulated kinase (ERK) [44]
and protein kinase C (PKC) [45]; both are essential for normal LTP. Both pharmacological
blockage of NADPH oxidase and transgenic mice without NADPH oxidase proteins had
impaired LTP [46]. Transgenic mice that overexpressed superoxide dismutase (SOD), a
superoxide scavenger, had LTP impairment in mice overexpressing either the extracellular
SOD (EC-SOD), or the SOD-1 isoforms [47,48]. There are three different SOD isoforms,
SOD1 being cytosolic, SOD2 is mitochondrial, and SOD3 is the extracellular isoform [49,50].
Both SOD1 and SOD3 isoforms use copper and zinc as cofactors. The mechanism re-
sponsible for the LTP impairments are different between the SOD isoforms. Mice that
overexpressed extracellular SOD had LTP impairment due to a reduction of superoxide
in the hippocampus [51]. However, mice that overexpressed SOD-1 had an LTP deficit
because of increased H2O2 production due to superoxide dismutation [47].

H2O2 has been shown to cross membranes via select aquaporin channels [52]. Aquaporin-
4 is the predominant water channel in the central nervous system (CNS). LTP is impaired in
transgenic mice with null aquaporin-4, which suggests that aquaporin channels are involved
with synaptic plasticity [53]. However, these results do not show that H2O2 contributes
to the impaired synaptic plasticity via aquaporin channels. In the CA1 region of the rat
hippocampus, H2O2 inhibited LTP and caused a reduction in the population spike amplitudes
and excitatory postsynaptic potential (EPSPs) parameters [54]. In contrast, H2O2 caused an
increase in the activity of sympathetic preganglionic neurons [55]. These conflicting results
may be due to the dose of H2O2 (mM in the Katsuki and colleagues’ study compared to
nmol in Lin and colleagues’ study). H2O2 modulates LTP in a dose-dependent manner with
1 µM treatment increasing LTP, whereas 20 µM treatment did not affect the expression of
established LTP [56].

4. Memory and Reactive Oxygen Species

ROS is a so-called double-edged sword with normal levels important for learning and
memory, but increases in ROS resulting in impaired learning and memory. The Morris
Water maze (MWM), which assesses spatial learning and memory has been used to examine
the role of ROS in learning and memory. Over a number of trials, the rodent learns the
position of a submerged platform in the MWM. Transgenic mice overexpressing SOD-1
took significantly longer to locate the hidden platform [57]. When the mice completed
the test with a visible platform, both wild type and transgenic mice located the platform
in equal time, suggesting that the overexpression of SOD-1 results in a spatial learning
impairment rather than a perceptual or motor impairment. The spatial learning in the
MWM is hippocampal dependent and as previously discussed SOD-1 transgenic mice
have impaired LTP, suggesting superoxide is required for intact memory and synaptic
plasticity [47]. SODs are involved with the dismutation of superoxide into H2O2.

EC-SOD mice have been examined on learning and memory behavioral tasks. The
radial-arm maze assesses spatial memory and is shown to be dependent on the hippocam-
pus. The radial-arm maze consists of eight arms, each of which is baited with a food
reward. The choice accuracy measure is the number of correct arm entries before an error
is made. Response latency is another measure that is assessed in the radial-arm maze.
EC-SOD mice at 27 months and 30 months old had significantly higher choice accuracy
levels than the control mice [58]. Therefore, EC-SOD overexpressing mice maintained their
high levels of accuracy while the control mice had an aging-induced decline in accuracy.
The response latency did not differ between the groups, suggesting that motor function
did not contribute to the differences between the groups. In a fear-learning task, EC-SOD
transgenic mice exhibit deficient hippocampal dependent associative memory. Contextual
fear conditioning over a long retention interval was significantly impaired in EC-SOD
transgenic mice [48].
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Overexpression of SOD-2 in young or old mice does not affect memory in the MWM [59].
Consistent with these results, LTP was unaffected in mice overexpressing SOD-2. In addition
to the regulatory role that ROS plays in memory and synaptic plasticity in neurologically
normal brains, ROS has a pathological role in AD, as previously discussed.

5. The Role of Nrf2 in Synapse Plasticity

There is accumulating data, which shows an involvement of Nrf2 in synaptic plasticity.
Nrf2 knock out mice have a deficiency in LTP of the perforant pathway in vivo [60,61].
Nrf2 knock out mice that combined amyloidopathy and tauopathy had impaired LTP
in vivo [61]. In hippocampal slices, Nrf2 knock out mice had dysfunctional LTP [62]. Nrf2
knock out mice also exhibited decreased synaptic density and dendritic complexity [63].
Lipopolysaccharide (LPS) is a cell-wall immunostimulatory component of Gram-negative
bacteria. The administration of LPS is frequently used to examine neuroinflammation-
associated diseases in rodents. LPS injections are shown to impair LTP [64]. Nrf2 activators,
including dimethyl fumarate and naringenin, decreased LPS toxicity [65,66]. APP/PS1
transgenic mice received the Nrf2 activator Dl-3-n-butylphthalide, which ameliorated
synaptic plasticity deficits in an AD mouse model [67]. Linalool activates Nrf2, and was
shown to reverse the decreased expression of synaptic plasticity-related proteins, includ-
ing calcium-calmodulin-dependent protein kinase II (CaMKII), p-CaMKII, brain derived
neurotrophic factor (BDNF), and tropomyosin-related kinase B (TrkB) in the hippocampus
in an oxidative stress AD mouse model [68]. These studies demonstrate a link between the
impairment of Nrf2 and the reduction of LTP. Furthermore, these studies show that the
activation of Nrf2 is associated with the improvement of LTP.

BDNF is a small dimeric protein that has high affinity binding with the tyrosine kinase,
TrkB. BDNF and TrkB are broadly distributed across the subregions of the hippocampus.
During late-LTP, protein synthesis occurs, which regulates the long-lasting changes in
synaptic plasticity. BDNF is a key regulator in late-LTP [69]. High frequency stimulation
results in BDNF secreted in a manner dependent on Ca2+ influx through NMDA subtype
glutamate receptors or voltage-gated Ca2+ channels [70–74]. Lower hippocampal levels
of BDNF in rats resulted in decreased nuclear translocation of Nrf2, leading to persistent
oxidative stress [75]. The Nrf2 activator sulforaphane (SFN) prevented BDNF downregula-
tion [76]. SFN induces nuclear translocation via its electrophilic property and regulates the
phosphorylation of Nrf2 with different kinases [77]. In a triple transgenic mouse model of
AD, SFN increased neuronal BDNF expression and increased levels of neuronal and synap-
tic plasticity molecules including microtubule-associated protein 2 (MAP2), synaptophysin,
postsynaptic density protein 95 (PSD95), cAMP response element-binding protein (CREB),
CaMKII, ERK, and Akt [78]. Short term fructose feeding, which results in an imbalanced
redox homeostasis was associated with lower levels of BDNF, a lower amount of Nrf2,
and decreases in the proteins involved with synaptic plasticity, including synaptophysin,
synapsin I, and synaptotagmin I [79]. The GABAA receptor antagonist gabazine and K+

channel antagonist 4-aminopyridine increased neuronal firing frequency and Ca2+ influx
associated with the activation of synaptic NMDA receptors. This treatment activated Nrf2
signaling in cultured hippocampal cells [80]. When Nrf2 activation is induced by gabazine
and 4-aminopyridine, it requires a developed synaptic network, including action potential
firing, NMDA receptors, AMPA receptors, and metabotropic glutamate (mGlu) receptor ac-
tivity. Nrf2 activation by gabazine and 4-aminopyridine was inhibited by blocking NMDA
receptors, AMPA receptors and mGlu receptors [80]. These results show that glutamatergic
receptors are important for regulating synaptic plasticity pathways. Figure 2 illustrates the
signaling mechanism of the Nrf2 pathway during LTP.
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Figure 2. Putative Nrf2 signaling pathway during long-term potentiation (LTP) in the CA1 region of the hippocampus.
Membrane depolarization and glutamate binding to the postsynaptic membrane receptors induce N-methyl-D-aspartate
receptor (NMDAR) activation, and result in Ca2+ entry into the postsynaptic membrane. Ca2+ activates calmodulin
(CaM) and calcium-calmodulin-dependent protein kinase II (CaMKII) and results in α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) phosphorylation. When glutamate binds to AMPAR, they become permeable
to Na+, which is important for stable activation of NMDAR. Ca2+ activates MAP kinase pathways (Ras/Raf/MEK1/2-
ERK1/2-Rsk), which phosphorylate cAMP response element-binding protein (CREB). CREB induces mRNA transcription
for synapse growth. Extracellular signal-regulated kinases (ERK1/2) can phosphorylate nuclear factor erythroid 2–related
factor 2 (Nrf2). Keap1 is a negative regulator of Nrf2. Reactive oxygen species (ROS) inactivate Keap1, which allows Nrf2
to become active. NADPH oxidase is an ROS source that can be activated by Ca2+, and is translocated into neurons via
NMDA receptors.

6. The Role of Nrf2 in Memory

Various types of Nrf2 activators have been used to examine their effects on many
different learning and memory tasks in rodents. The Nrf2 activators trans-cinnamaldehyde
and curcumin reversed LPS-induced Aβ aggregation and the memory impairment in
the MWM and in the novel object recognition task (NORT) [81]. The NORT measures
nonspatial memory and takes advantage of the rodent’s innate preference for novelty.
Rodents are allowed to explore identical items during the sample phase. After a delay
period, the rodent is placed back into the area with one of the familiar objects replaced
with a novel object. As rodents prefer novelty, memory is measured via the amount of time
spent near the novel object compared to the time spent near the familiar object.

Carnosine is a dipeptide that is found in mammalian skeletal muscle and synthesized
by carnosine synthase from the substrates beta-alanine and histidine [82]. Carnosine
increased Nrf2 in the nucleus and improved memory in the Y-maze task [83]. The Y-maze
task relies on the rodent’s innate preference to spontaneously alternate directions on each
arm of the Y-maze. The rodent is placed at the end of one arm and allowed to move to the
center where it can make a choice of which arm to go down. Rodents with intact memory
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will spontaneously alternate directions on each arm of the Y-maze whereas rodents with
poor memory will perform the alternation at chance.

Nrf2 activators improve cognition in preclinical rodent models of AD. Dietary sup-
plementation with the Nrf2 activator anthocyanin improved memory of the MWM in a
mouse model of AD [84]. The Nrf2 activator, ellagic acid, dose dependently improved
memory in a rat model of AD [85]. In addition, expression levels of nuclear factor kappa
B (NF-κB) in the hippocampus were increased with ellagic acid treatment. Ellagic acid
treatment restored the nuclear/cytoplasmic ratio of Nrf2. Agmatine, an Nrf2 activator,
improved memory in the MWM in a Streptozotocin-induced AD rat model [86]. Agmatine
also suppressed the accumulation of Aβ and promoted the Nrf2-mediated antioxidant
pathway. Quinovic acid improved memory on the MWM and Y-maze tasks in an Aβ

mouse model of AD [87]. Moreover, quinovic acid downregulated phospho-NF-κB in the
cortex and hippocampus. NXPZ-2 is a small-molecule compound that directly inhibits
the Keap1-Nrf2 protein−protein interaction. NXPZ-2 treatment ameliorated learning and
memory dysfunction in the Y-maze task in Aβ1–42-treated mice [88]. NXPZ-2 treatment
increased serum Nrf2 and decreased serum Aβ1–42 levels in mice. Nrf2 deletion was
associated with impaired memory in the MWM in APP/PS1 transgenic mice [89,90]. Aβ

and p-tau were also increased in the hippocampus of APP/PS1 transgenic mice with
an Nrf2 knockout. The Nrf2 activator coniferaldehyde reversed memory impairments
in the MWM in APP/PS1 mice [91]. P-hydroxybenzyl alcohol has protective effects on
Aβ-induced cell death and reversed memory impairments in the NORT and MWM [92].
Furthermore, p-hydroxybenzyl alcohol prevented decreased Nrf2 levels induced by Aβ42.
The cocaine- and amphetamine-regulated transcript (CART) peptide is an extensively dis-
tributed neuropeptide in the (CNS) and is an activator of Nrf2. CART treatment improved
spatial memory in the MWM task in rats infused with Aβ 1–42 into the hippocampus [93].
Mineralocorticoid receptor antagonists reduced memory impairment in the MWM task in
mice with a brain infusion of Aβ 1–42 [94]. Mineralocorticoid receptor antagonists also
activated the Nrf2-dependent antioxidant system.

Peroxiredoxin 6 is an antioxidant protein that interacts with Nrf2. Peroxiredoxin
is a major cellular antioxidant enzyme, but there are conflicting reports regarding the
changes in activities of this enzyme in AD [95]. Mice overexpressing peroxiredoxin and
infused with Aβ 1–42 had impaired memory on the MWM compared to Aβ 1–42 infusion
alone and the control group [96]. Translocation of Nrf2 into the nucleus was increased
in mice overexpressing peroxiredoxin with Aβ-infusions. Gracilins are sponge derived
diterpenoid compounds that induce Nrf2 translocation. Conflicting results were obtained
with a treatment of different gracilins in the MWM with one compound showing an
improvement in memory and the other compound showing no effect on memory in
3 × Tg-AD mice [97]. These results may be due to the low sample size in the experiment.
Treatment with sitagliptin and quercetin improved memory in the MWM in Aβ injected
rats [98]. Additionally, the Nrf2 pathway was activated in brains of rats by sitagliptin
and quercetin. Sitagliptin and quercetin treatment reduced the levels of Aβ in rat brains.
Plumbagin protects against oxidative stress and inflammation by activating the Nrf2
pathway. Treatment with plumbagin, prior to streptozotocin brain infusions to model
AD, prevented memory deficits in the MWM [99]. Inonotus obliquus polysaccharide
reduces Keap1 levels, which enhances Nrf2 levels [100]. Treatment with inonotus obliquus
polysaccharide in APP/PS1 transgenic mice improved memory in the MWM.

RTA-408, a covalent Keap1 inhibitor, is a potent activator of Nrf2, inhibitor of NF-κB
and is in phase 2 for the treatment of mitochondrial myopathy [101,102]. Propofol decreases
consciousness and memory and is used as a general anesthesia. RTA-408 protected against
propofol-induced memory impairment assessed with the MWM and increased activation
of Nrf2 and the inhibition of NF-κB p65 nuclear translocation [103]. Other studies have
shown that RTA-408 increases Nrf2 and decreases NF-κB [104–108]. RTA-408 is a promising
therapeutic for mitochondrial myopathy and immune disorders such as multiple sclerosis
(MS) and Alzheimer’s disease.
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Treatment with dimethyloxalylglycine in Aβ injected rats reversed memory impair-
ment in the MWM and increased Nrf2 activation [109]. Activation of the Nrf2 pathway
with SFN improved memory in the MWM in a mouse model of AD [110]. In contrast,
blocking the Nrf2 pathway resulted in oxidative injury and decreased the cell viability of
PS1V97L-Tg neurons. Antroquinonol is a ubiquinone derivative isolated from Antrodia
camphorate and is shown to reduce oxidative stress and inflammatory cytokines via acti-
vating the Nrf2 pathway. Antroquinonol treatment for two months improved memory in
the MWM and reduced hippocampal Aβ levels in APP transgenic mice [111]. Infusion of a
viral vector expressing Nrf2 improved memory on the MWM in APP/PS1 mice [112]. In-
tranasal administration with a viral vector encoding human Nrf2 improved spatial memory
impairment and diminished Aβ deposition in APP/PS1 mice [113]. Osthole is an extract
from Cnidium monnieri fruits and is an anti-inflammatory agent that activates the Nrf2
pathway. APP/PS1 mice treated with osthole had improved memory on the MWM [114].
Carnosic acid is a proelectrophilic compound that is converted to its active form by ox-
idative stress, which stimulates the Nrf2 transcription pathway. Carnosic acid improved
memory in the MWM in human amyloid precursor protein transgenic mice and 3 × Tg-AD
mice [115]. Caffeic acid phenethyl ester is a natural bioactive compound found in many
plants and activates Nrf2. Caffeic acid phenethyl ester treatment, after Aβ1–42 infusion,
improved memory in the MWM but did not affect memory in the NORT [10]. Differences
between the tasks may have contributed to the discrepant results such as the MWM de-
pending on spatial cues in the environment and the NORT without environmental spatial
cues. Kavalactone has been shown to reduce Aβ toxicity by inducing Nrf2 activity [116].
Kavalactone administration in APP/Psen1 mice reversed the memory impairments in
the MWM [117]. Artemisinin is used as a malaria treatment and is an activator of the
Nrf2 pathway. Artemisinin administered to 3 × Tg-AD mice improved memory on the
MWM [118]. APP/PS1 transgenic mice received the Nrf2 activator Dl-3-n-butylphthalide,
which improved memory in the NORT, MWM, and the Y-maze test [67].

Lifestyle can affect the expression of Nrf2 with diet and exercise contributing to Nrf2
expression in mouse models of AD. High-fat diet-induced obesity is a risk factor for AD.
3 × Tg-AD mice who had a high-fat diet had impaired memory in the MWM compared to
3 × Tg-AD mice who had a normal diet. The high-fat diet reduced the activation of Nrf2
by suppressing its upstream regulatory protein kinase B/Akt and the downstream targets
such as heme oxygenase-1 and manganese SOD in mice. Exercise is shown to increase Nrf2
activity in rats. Exercise was also shown to improve memory in the NORT in a rat model
of AD [119]. These studies suggest that lifestyle modifications such as diet and exercise
influence Nrf2 expression.

7. The Role and Regulation of NF-κB

Inflammatory mediators stimulate transcription factor NF-κB, which is a key regulator
in the development of inflammation [120,121]. The NF-κB family of transcription factors
is composed of several members such as: NF-κBp50/105, NF-κBp52/100 (RelB), NF-
κBp65 (RelA), and NF-κBp75 (c-Rel) with dimers bound by the inhibitory protein IκB.
NF-κB proteins are frequently located within the cytoplasm in an inactive state [122]. The
activation of NF-κB involves canonical and noncanonical signaling pathways, which are
critical for regulating immunity and inflammation; the activation of NF-κB has been well
described [120,122,123]. In the canonical activation pathway, NF-κB p50, RelA and c-Rel
become activated, whereas in the noncanonical pathway, NF-κB p52/100 (RelB) selectively
becomes activated [124]. The canonical NF-κB pathway is stimulated through binding to
innate and adaptive immune receptors such as: tumor necrosis factor receptor (TNFR),
interlukin-1 receptor (IL-1R), toll-like receptors (TLR) ligand such as CD40L, and LPS.
Binding with any one of these receptors activates the IκB kinase (IKK) trimeric complex
(IKKα, IKKβ, and IKKγ (NEMO), which in turn leads to phosphorylation of IκBα, and
subsequent degradation [124]. As a result, NF-κB p50/RelA dimers translocate from the
cytoplasm into the nucleus, where they bind to the IκB site of chromosomes to regulate



Cells 2021, 10, 1884 9 of 22

NF-κB-dependent targeted genes [123]. This differs from the noncanonical NF-κB pathway,
which is triggered by a B-cell activating factor belonging to TNF family receptor (BAFFR),
lymphotoxin β-receptor (LTβR), TNFR2, CD40L, and receptor activator for NF-κB (RANK).
This binding, via several intermediate steps, leads to an interaction with IKKα, which
then leads to the phosphorylation of NF-κB p100, and subsequently results in NF-κB p100
degradation. Once degraded, NF-κB p52/RelB dimers translocate into the nucleus to
regulate and activate NF-κB targeted genes [124]. Transcriptional activity of NF-κB is also
regulated by transcription coactivators and corepressors, such as CREB binding protein
(CBP)/P300-associated factor, nuclear receptor corepressor, histone deacetylase (HDAC),
p160 proteins (SRC-1, SRC-2, SRC-3), and SMRT.

Short periods of inflammation in response to infection or tissue damage is benefi-
cial. However, sustained inflammation can result in tissue injury and is associated with
inflammatory diseases such as neurodegenerative disorders. NF-κB has various roles
in innate immune cells including macrophages, dendritic cells and neutrophils. These
innate immune cells express pattern recognition receptors (PRRs), which detect various
microbes known as pathogen-associated molecular patterns (PAMPs). PAMPs are critical
for the survival of the pathogen, and recognition of PAMPs by PRR result in antimicro-
bial immune activation via inflammatory cytokines and chemokines [125,126]. Necrotic
cells release damage-associated molecular patterns (DAMPs), which PRRs detect [127].
PRRs are diverse and have specific properties that allow them to respond to different
PAMPs and DAMPs. PRRs can activate the canonical NF-κB pathway and induce direct
inflammation via chemokines and cytokines or indirectly via inflammatory T cells. Trans-
forming growth factor-β-activated kinase 1 (TAK1) is involved with the signaling pathway
of PRRs for NF-kB activation [128,129]. TAK1 can activate IKK, which regulates IκBα
phosphorylation [130].

NF-κB regulates molecular pathways in adaptive immune cells, including CD4+ T-
helper (Th) cells. RelA and C-Rel, which are two subunits in the canonical pathway of
NF-κB, regulate T-cell receptor (TCR) and T-cell activation [131]. NF-κB mediates the
regulatory T cell (Tregs) suppression of function via lack of 3-phosphoinositide-dependent
kinase 1 (PDK1), which prevents NF-κB activation [131]. PDK1 regulates activation of PKC,
which recruits and activates the IKK complex [132]. The noncanonical NF-κB pathway is
necessary for differentiation and effector/memory of T cells [133,134]. Therefore, both the
canonical and noncanonical NF-κB pathways are important for the regulation of T cells.

Accumulating studies have shown that the activity of NF-κB is significantly enhanced
during the neurodegenerative process [123,135–137]. NF-κB subunits have been detected
in neuronal and glial cells derived from AD brains [138]. Furthermore, a downstream
target of NF-κB, transcription factor Nrf2, protect cells from various injuries via their
antioxidant and anti-inflammatory effects, thus influencing the progression of disease [139].
Similar to NF-κB, Nrf2 is expressed in both neurons and glia [36,140]. It is reported that
the NF-κB and Nrf2 signaling pathways regulate the expression of over 400 and 600 genes,
respectively, that are associated with inflammation, neurodegenerative disorders, and other
disorders [141,142]. An imbalance between the Nrf2 and NF-κB signaling pathways is asso-
ciated with neurodegeneration [135,136]. Growing evidence suggests a cross-talk between
the NF-κB and Nrf2 signaling pathways [143]. The molecular mechanisms underlining
NF-κB/Nrf2 cross-talk depends on the cell type as well as the tissue context [144]. The
complexity of Nrf2 and NF-κB cross-talk is discussed below.

8. Cross-Talk between the NF-kB and Nrf2 Signaling Pathways

Nrf2 signaling contributes to the anti-inflammatory process by regulating target genes
via the antioxidant response element (ARE) and Keap1 system [145]. The Keap1/Nrf2/ARE
signaling pathway mostly regulates the expression of anti-inflammatory genes and ulti-
mately blocks the progression of inflammation [145]. Oxidative-stress mediated NF-κB
activation can be blocked by the Keap1/Nrf2/ARE pathway [146,147]. NF-κB impacts the
Keapl/Nrf2/ARE signaling pathway in three parts. First, Keap1 degrades IKK, which
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prevents the phosphorylation of NF-κB [146]. Second, oxidative stress, which activates
IKK leads to phosphorylation of NF-κB and translocation of NF-κB from the cytoplasm
into the nucleus stimulates the production of proinflammatory cytokines such as IL-1, IL-6,
TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) [148,149].
Ultimately, COX-2 reacts with Keap1 and activates Nrf2, which leads to the suppression
of oxidative stress-mediated NF-κB activation [141]. Third, Nrf2 binds to CBP and other
transcriptional machinery to begin ARE-driven gene transcription [150]. However, NF-
κB inhibits Nrf2 activation by competing with Nrf2 for CBP and ultimately reducing
ARE gene expression [150]. Overall, the Keap1/Nrf2/ARE signaling pathway inhibits
the production of proinflammation [141]. Moreover, it has been demonstrated that Nrf2
directly regulates the expression of anti-inflammatory mediators such as CD36, IL-17D,
macrophage receptor, and G protein-coupled receptor (GPCR) kinase, which suppresses
the progression of inflammatory responses [151–153]. Nrf2 induces the anti-inflammatory
phenotype of microglia and macrophages, while it decreases LPS-induced transcription of
other NF-κB target genes [154,155]. Nrf2 increases cysteine and GSH levels in macrophages.
However, depletion of GSH triggers macrophages to Nrf2 activation by LPS [156]. These
findings show that Nrf2 acts as an anti-inflammatory marker, which is critical for regulating
inflammatory responses.

9. Anti-Inflammatory Role of the Nrf2/HO-1 Signaling Pathway

From a functional perspective, Nrf2 negatively regulates oxidative-stress mediated
NF-κB activation through the hemoxygenase-1 (HO-1) pathway [147]. Under normal
physiological conditions, Nrf2 is bound to Keap1 in the cytosol. Under oxidative stress
conditions, the sulfhydryl groups on Keap1 are oxidized, which changes the Keap1 config-
uration and releases Nrf2. Thus, Nrf2 translocates from the cytoplasm into the nucleus,
which then binds with ARE genes such as HO-1 along with small musculoaponeurotic
fibrosarcoma (Maf) proteins [147]. HO-1 is an essential enzyme involved in Nrf2-mediated
NF-κB inhibition. Overexpression of HO-1 blocks IκB-α degradation, which inhibits NF-κB
activity. HO-1 also inhibits the TNF-α-dependent activation of NF-κB [157]. Conversely,
cells over-expressing NF-κB showed reduced HO-1, which confirms that NF-κB activation
can act as an Nrf2 repressor [158]. HO-1 exerts anti-inflammatory functions via the produc-
tion of carbon monoxide (CO). HO-1 catalyzes the heme into iron, CO, and bilirubin. CO
acts as an NF-κB inhibitor, which leads to the reduced production of pro-inflammatory re-
sponses. Overall, the Nrf2/HO-1 pathway directly inhibits proinflammatory cytokines and
activates anti-inflammatory cytokines [159]. These findings further suggest that the Nrf2
directed increase in the expression of HO-1 is crucial for cross-talk between Nrf2 and NF-κB.
Furthermore, NF-κB increases the recruitment of histone deacetylase3 (HDAC3) to the
ARE region by binding to Maf proteins and therefore interferes with the Nrf2 transcription
factor [143].

10. Nrf2 Activating Compounds

Dihydroquercetin (DHQ) treatment significantly inhibited the upregulation of TNF-α,
interferon-γ (IFN-γ), and TLR-4 after LPS stimulation in a macrophage-like cell line derived
from BALB/c mice [160]. Additionally, DHQ mediates LPS-mediated anti-inflammatory
responses via the Nrf2/HO-1 pathway in these cells. Taurine chloramine (TauCl) upregu-
lates the Nrf2/HO-1 pathway, which reduces the expression of pro-inflammatory cytokines
(e.g., IL-1β, IL-6, TNF- TNF-α), inhibition of phosphorylation and translocation of NF-κB
in hippocampal H22 neurons and mouse BV2 microglia [161,162]. These outcomes sug-
gest that TauCl is neuroprotective initiated by neuroinflammation. Furthermore, the Nrf2
activator, Nardochinoid C (DC), activates the Nrf2/HO-1 signaling pathway to inhibit
inflammation and oxidative stress to contribute to its anti-inflammatory and antioxidant
effects, which were inhibited by the Nrf2 siRNA and HO-1 blocker [163]. This suggests
that the Nrf2/HO-1 axis plays a major role in anti-inflammatory functions and activation
of Nrf2 is a potential treatment for prevention of diseases linked to inflammation and
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oxidative stress. Both in vitro and ex vivo data show that flavokawain A (FKA) remarkably
suppressed the proinflammatory cytokine and increased the level of anti-inflammatory
cytokine in BALB/c mouse-derived primary splenocytes [164]. FKA induced the HO-1
expression by increasing Nrf2 translocation into the nucleus via the Nrf2/ARE signal-
ing pathway in these cells. Additionally, FKA treatment significantly downregulated
the LPS-induced ROS production and blocked NF-κB activity [164]. Both in vitro and
in vivo studies revealed that the active form of an electrophilic compound such as carnosic
acid (CA) activates the Keap1/Nrf2 pathway, which provides neuroprotection benefits
in AD models [115]. Yoshida et al., reported that CA reduced levels of Aβ42 in a neural
cell line [165]. Additionally, upregulation of Nrf2 improved neuroprotection against Aβ

neurotoxicity in an AD mouse model [89]. Further activation of Nrf2 reduced the level
of phospho-tau protein [166]. The expression pattern of Nrf2 was completely distorted
in the hippocampal neurons of AD, PD, and Lewy body dementia [36]. Another study
showed that Nrf2 activation via triterpenoids decreased inflammation, oxidative stress, and
memory deficits in AD mice. These findings revealed a clear link between Nrf2 and AD-
mediated cognitive decline. A previous study revealed that Nrf2 activity is low in human
neurons [167]. Further studies revealed that the beneficial effect of an Nrf2 injection in the
CNS was based on the actions of astroglia [140]. Nrf2 activation can diminish the activity
of microglia [168]. A deficiency of Nrf2 was associated with enhanced microglial responses
in hippocampal tissue of AD mouse models [89]. Additionally, reduced microglial activity
was revealed in an ALS mouse model when crossed with glial fibrillary acidic protein
(GFAP)-Nrf2 mice [169]. These findings display an opposite connection between Nrf2 and
microglial activation, thus supporting the concept that Nrf2 regulates neuroinflammation.
Another study revealed that Nrf2 −/− mice did not express HO-1 in microglia, which led to
increased microgliosis PD [168]. This finding demonstrates that Nrf2 modulates microglia
dynamics in neurodegenerative disorders.

Deletion of Nrf2 has been linked with enhanced inflammatory responses, which is
regulated by NF-κB [170]. Astroglia and microglia treated with LPS displayed upregulated
NF-κB activity compared with nontreated cells. Thus, activated NF-κB enhanced the
cytokine production that contributes to astrogliosis and neuronal loss, which are a cause
of the neurodegenerative phenotype [171]. Nrf2 has the potential to reduce numbers of
hyperactive astroglia and microglia, which actively contribute to the pathology of the
CNS. Therefore, the risk of neurodegeneration arises when the balance between Nrf2 and
NF-κB signaling pathways is disrupted. More specifically, a decline in Nrf2 activity and
increase in NF-κB activity can lead to neuroinflammation and increased oxidative stress.
Neuroinflammation due to upregulated NF-κB can activate astroglia and microglia, which
further increases the production of proinflammatory cytokines [149]. A lack of Nrf2 is
associated with enhanced IKKβ activity, which increases the phosphorylation of IκBα
and its subsequent degradation leading to the activation of NF-κB [172]. Deletion of Nrf2
triggers the activity of NF-κB, thus elevating the cytokine production that is associated with
astrogliosis and neuronal death, which is an underlying cause of neurological deficits. Both
in vitro and in vivo studies revealed activation of Nrf2 decreased oxidative stress, neuronal
apoptosis, and inflammatory responses through the blockage of the ROS/NF-κB pathway.

Further, Nrf2−/− mice treated with LPS and TNFα displayed downregulated IKK
activity, which led to increased phosphorylation and degradation of IκB [173]. This finding
suggested that the NF-κB response is subsequently activated when Nrf2 is suppressed. Several
studies have demonstrated that Nrf2 upregulates the expression of HO-1, which leads to the
inhibition of NF-κB signaling that protects cells from H2O2 cytotoxicity [174,175].

Due to oxidative stress and inflammation, the expression and activity of Nrf2 is signif-
icantly decreased in neurodegenerative disorders. In fact, several chemopreventive agents
have been identified as Nrf2 activators such as curcumin, phenethyl isothiocyanate (PEITC),
and SFN, which significantly inhibited LPS-induced NF-κB activation in human colon
HT-29 cancer cells [176]. Further, PEITC and SFN treatment in human prostate cancer PC-3
cells inhibits both phosphorylation of IKK/IκB and nuclear translocation of NF-κB p65
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subunit, which suppresses the NF-κB signaling pathway [177]. SFN activates Nrf2 through
activating the Keap1/Nrf2/ARE pathway and inhibiting NF-κB signaling [178,179]. Addi-
tionally, SFN alters mitochondrial dynamic proteins through Nrf2 mechanisms [180]. It
has also been demonstrated that SFN inhibited TNFα-induced NF-κB activation through
inhibiting IkB-α phosphorylation [181]. SFN revealed neuroprotective effects in both
in vitro and in vivo models of AD, TBI, PD, MS, and stroke [178,182–186]. Curcumin, as
a natural polyphenol compound, activates the Nrf2 signaling pathway through repress-
ing inflammatory and electrophilic modification of KEAP1 [187]. Another study showed
that curcumin protects brain cells from Aβ pathology and synaptic degradation, while
enhancing spatial learning in AD mouse models [188]. Curcumin treatment reduces the
expression of proinflammatory markers by inhibiting NF-κB activity in microglia [189].
Additionally, curcumin treatment downregulated the expression of NF-κB that leads to
an elevation of Nrf2 activity and thus reduced neurological dysfunction in a rat model of
cerebral ischemia and reperfusion [190]. Epigallocatechin gallate (EGCG) is another potent
Nrf2 activator that has been shown to block the activity of NF-κB, and reduce Aβ plaques
and memory decline [191,192]. Additionally, EGCG has shown beneficial effects on PD,
MS, and TBI models via augmentation of Nrf2 activity and reduction of inflammatory
responses [193,194].

Another Nrf2 activator, isoquercetin, upregulates antioxidant genes, attenuates in-
flammatory responses and regulates the NF-κB pathway in diabetic rats [195]. The neuro-
protective effects of isoquercetin have also been reported in in vitro and in vivo cerebral
ischemia/reperfusion injury models accompanied by increased Nrf2 activity and reduced
inflammatory responses by inhibiting NF-κB activation [196]. Other neuroprotective medi-
cations are isovitexin and sappanone that exhibit anti-inflammatory effects through activa-
tion of the Nrf2/HO-1 pathway and inactivation of the NF-κB signaling pathway [197,198].
Moreover, eriodictyol displays an anti-inflammatory function by activating Nrf2 and inac-
tivating NF-κB, which inhibits the expression of cytokines in macrophages [199].

Previous studies have shown that some pharmacological compounds such as mela-
tonin and resveratrol suppressed the activity of NF-κB and activated Nrf2 signaling in an
experimental diabetic neuropathy model. Treatment with melatonin and resveratrol in-
creased the levels of Nrf2/HO-1, which further reduced the expression of proinflammatory
markers such as IL-6, TNF-α levels, decreased expression of iNOS, COX-2, and reduced
apoptosis [200,201].

11. Nrf2 and NF-κB Crosstalk with Other Transcription Factors

In addition to the cross talk between Nrf2 and NF-κB, there is cross talk among
other immunomodulator transcription factors. Hypoxia-inducible factor 1 (HIF-1) is a
heterodimeric transcription factor involved with the response to hypoxia and metabolism.
HIF-1α is highly expressed in most innate and adaptive immune cells [202]. The HIF-1
and Nrf2 pathways are mediated by ROS and have many overlapping cellular pathways
including vascular endothelial growth factor (VEGF), erythropoietin (EPO), and angiopoi-
etin 2 (ANGPT2) [203]. The blockade of Nrf2 is associated with lowered HIF-1α at the
post-translational level suggesting that Nrf2 is involved with the modulation of the prolyl
hydroxylase domain containing proteins (PHDs) [204,205]. The Nrf2 genes are able to
increase HIF-1 signaling, which may have resulted in poor colorectal cancer patient sur-
vival [206]. Hypoxic cellular conditions results in NF-κB activation in phagocytes, which
activates HIF-1α [207–209]. HIF-1α increases neutrophil survival via activation of the
NF-κB pathway, which results in persistent inflammation [210].

Activator protein 1 (AP-1) is a family of bZIP transcription factors consisting of two
families of genes, Fos (c-Fos, FosB, Fra1, and Fra2) and Jun (c-Jun, JunB, and JunD) [211,212].
There is cross talk between AP-1 and Nrf2 with AP-1 activation decreased from the Nrf2
activators SFN and EGCG [213]. NF-κB and AP-1 transcription factors are modulated
via different mechanisms. However, they are both activated with many of the same
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stimuli [214]. Many genes are required for the coactivation of AP-1 and NF-κB, which
suggests they are working together [215].

The signal transducer and activator of transcription 3 (STAT3) is a transcription factor
involved with inflammation. Activation of Nrf2 increased the levels of small heterodimer
proteins (SHP) resulting in STAT3 repression [216]. The STAT3-NF-κB complex in the
fascin promoter contributes to transcription when exposed to IL-6 and TNF-α [217]. The
nuclear factor of activated T cells (NFAT) is a family of transcription factors involved
with immune response. The pathways between NFAT, Nrf2, and NF-κB interact on sev-
eral regulatory steps and are involved with tumor development and chemoresistance in
pancreatic cancer [218]. NF-κB and NFAT share similar DNA binding domains and fast
nuclear translocation when activated [219]. FOXO are a group of the Forkhead family
of transcription factors that have conserved DNA binding domains and have a key role
in immunoregulation. The activation of FOXO via ROS results in gene expression for
antioxidants and might attenuate the activity of Nrf2 [220]. The primary FOXO member,
FOXO3a inhibits NF-κB activation via Th activation [221].

12. Conclusions

More research is required to investigate the potential linkage between two crucial
transcription factors, Nrf2 and NF-κB in neurodegenerative diseases. It is believed that
investigating this linkage will greatly assist in developing therapeutic choices for slowing
and/or preventing the onset of neurodegenerative disorders such as AD; it will also assist
in preventing memory and synaptic plasticity impairments.
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