Early-Released Interleukin-10 Significantly Inhibits Lipopolysaccharide-Elicited Neuroinflammation In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Reagents
2.3. Primary Mouse Mixed Glial Cultures
2.4. Real-Time RT-PCR Analysis
2.5. Cytokine ELISAs
2.6. Statistical Analysis
3. Results
3.1. Bimodal Expression of Microglial IL-10 mRNA upon LPS Stimulation
3.2. Early-Phase Released Picomolar IL-10 Protein Exerts Potent Effects on the Expression of Proinflammatory Cytokines
3.3. Activation of β2-Adrenergic Receptor by Salmeterol Potentiates Early-Phase but Not Late-Phase of IL-10 Expression
3.4. Early-Phase Released IL-10 Is Crucial for the Anti-Inflammatory Function of Salmeterol in Both Repressing Proinflammatory Response and Promoting Arg1 Expression
4. Discussion
4.1. The Critical Role of Early-Phase Released IL-10 in Regulating Neuroinflammation from the Initial Stage
4.2. A Bimodal LPS-Elicited Increase in Expression of Microglial IL-10 mRNA in Mouse Primary Glial Cultures
4.3. The Pivotal Role of Quick-Primed IL-10 in β2-Adrenergic Receptor Antagonists-Modified Neuroinflammation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakagawa, Y.; Chiba, K. Role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals 2014, 7, 1028–1048. [Google Scholar] [CrossRef] [Green Version]
- Gilhus, N.; Deuschl, G. Neuroinflammation—A common thread in neurological disorders. Nat. Rev. Neurol. 2019, 15, 429–430. [Google Scholar] [CrossRef]
- Block, M.; Zecca, L.; Hong, J. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007, 8, 57–69. [Google Scholar] [CrossRef]
- Mosser, D.; Zhang, X. Interleukin-10: New perspectives on an old cytokine. Immunol. Rev. 2008, 226, 205–218. [Google Scholar] [CrossRef]
- Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Ip, W.; Hoshi, N.; Shouval, D.; Snapper, S.; Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 2017, 356, 513–519. [Google Scholar] [CrossRef]
- Hasnain, S.; Tauro, S.; Das, I.; Tong, H.; Chen, A.; Jeffery, P.; McDonald, V.; Florin, T.; McGuckin, M. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology 2013, 144, 357–368.e9. [Google Scholar] [CrossRef]
- Quiros, M.; Nishio, H.; Neumann, P.; Siuda, D.; Brazil, J.; Azcutia, V.; Hilgarth, R.; O’Leary, M.; Garcia-Hernandez, V.; Leoni, G.; et al. Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. J. Clin. Investig. 2017, 127, 3510–3520. [Google Scholar] [CrossRef]
- Couper, K.; Blount, D.; Riley, E. IL-10: The master regulator of immunity to infection. J. Immunol. 2008, 180, 5771–5777. [Google Scholar] [CrossRef]
- Ouyang, W.; Rutz, S.; Crellin, N.; Valdez, P.; Hymowitz, S. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 2011, 29, 71–109. [Google Scholar] [CrossRef]
- Lobo-Silva, D.; Carriche, G.; Castro, A.; Roque, S.; Saraiva, M. Balancing the immune response in the brain: IL-10 and its regulation. J. Neuroinflamm. 2016, 13, 297. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.; Chen, S.; Wang, Q.; Langenbach, R.; Li, H.; Zeldin, D.; Chen, S.; Wang, S.; Gao, H.; Lu, R.; et al. PGE2 Inhibits IL-10 Production via EP2-Mediated β-Arrestin Signaling in Neuroinflammatory Condition. Mol. Neurobiol. 2015, 52, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Lee, H.; Jin, B.; Lee, Y. Interleukin-10 endogenously expressed in microglia prevents lipopolysaccharide-induced neurodegeneration in the rat cerebral cortex in vivo. Exp. Mol. Med. 2007, 39, 812–819. [Google Scholar] [CrossRef] [Green Version]
- Saura, J. Microglial cells in astroglial cultures: A cautionary note. J. Neuroinflamm. 2007, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Welser-Alves, J.; Milner, R. Microglia are the major source of TNF-α and TGF-β1 in postnatal glial cultures; regulation by cytokines, lipopolysaccharide, and vitronectin. Neurochem. Int. 2013, 63, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Morin-Brureau, M.; Milior, G.; Royer, J.; Chali, F.; Le Duigou, C.; Savary, E.; Blugeon, C.; Jourdren, L.; Akbar, D.; Dupont, S.; et al. Microglial phenotypes in the human epileptic temporal lobe. Brain A J. Neurol. 2018, 141, 3343–3360. [Google Scholar] [CrossRef]
- Sheng, W.; Hu, S.; Kravitz, F.; Peterson, P.; Chao, C. Tumor necrosis factor alpha upregulates human microglial cell production of interleukin-10 in vitro. Clin. Diagn. Lab. Immunol. 1995, 2, 604–608. [Google Scholar] [CrossRef] [Green Version]
- Jack, C.; Arbour, N.; Manusow, J.; Montgrain, V.; Blain, M.; McCrea, E.; Shapiro, A.; Antel, J. TLR signaling tailors innate immune responses in human microglia and astrocytes. J. Immunol. 2005, 175, 4320–4330. [Google Scholar] [CrossRef] [Green Version]
- Rasley, A.; Tranguch, S.; Rati, D.; Marriott, I. Murine glia express the immunosuppressive cytokine, interleukin-10, following exposure to Borrelia burgdorferi or Neisseria meningitidis. Glia 2006, 53, 583–592. [Google Scholar] [CrossRef]
- Werry, E.; Liu, G.; Lovelace, M.; Nagarajah, R.; Hickie, I.; Bennett, M. Lipopolysaccharide-stimulated interleukin-10 release from neonatal spinal cord microglia is potentiated by glutamate. Neuroscience 2011, 175, 93–103. [Google Scholar] [CrossRef]
- Burmeister, A.; Marriott, I. The Interleukin-10 Family of Cytokines and Their Role in the CNS. Front. Cell. Neurosci. 2018, 12, 458. [Google Scholar] [CrossRef] [Green Version]
- Nathan, C. Points of control in inflammation. Nature 2002, 420, 846–852. [Google Scholar] [CrossRef]
- Serhan, C.; Chiang, N.; Van Dyke, T. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Tu, D.; Yang, R.; Chu, C.; Hong, J.; Gao, H. Through Reducing ROS Production, IL-10 Suppresses Caspase-1-Dependent IL-1β Maturation, thereby Preventing Chronic Neuroinflammation and Neurodegeneration. Int. J. Mol. Sci. 2020, 21, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, K.M.; Harkin, A. Regulation of beta2-adrenoceptors in brain glia: Implications for neuroinflammatory and degenerative disorders. Neural. Regen. Res. 2020, 15, 2035–2036. [Google Scholar] [PubMed]
- Qian, L.; Wu, H.; Chen, S.; Zhang, D.; Ali, S.; Peterson, L.; Wilson, B.; Lu, R.; Hong, J.; Flood, P. β2-adrenergic receptor activation prevents rodent dopaminergic neurotoxicity by inhibiting microglia via a novel signaling pathway. J. Immunol. 2011, 186, 4443–4454. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Arbabzada, N.; Flood, P. Mechanism underlying β2-AR agonist-mediated phenotypic conversion of LPS-activated microglial cells. J. Neuroimmunol. 2019, 332, 37–48. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Y.; Zhou, R.; Li, Y.; Gao, Y.; Tu, D.; Wilson, B.; Song, S.; Feng, J.; Hong, J.; et al. A novel role of NLRP3-generated IL-1β in the acute-chronic transition of peripheral lipopolysaccharide-elicited neuroinflammation: Implications for sepsis-associated neurodegeneration. J. Neuroinflamm. 2020, 17, 64. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Oyarzabal, E.; Sung, Y.; Chu, C.; Wang, Q.; Chen, S.; Lu, R.; Hong, J. Microglial regulation of immunological and neuroprotective functions of astroglia. Glia 2015, 63, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Hao, C.; Guilbert, L.; Fedoroff, S. Production of colony-stimulating factor-1 (CSF-1) by mouse astroglia in vitro. J. Neurosci. Res. 1990, 27, 314–323. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Z.; Peng, Y.; Qiu, Y. Interleukin-10 inhibits neuroinflammation-mediated apoptosis of ventral mesencephalic neurons via JAK-STAT3 pathway. Int. Immunopharmacol. 2017, 50, 353–360. [Google Scholar] [CrossRef]
- Tan, J.; Indelicato, S.; Narula, S.; Zavodny, P.; Chou, C. Characterization of interleukin-10 receptors on human and mouse cells. J. Biol. Chem. 1993, 268, 21053–21059. [Google Scholar] [CrossRef]
- Wendeln, A.; Degenhardt, K.; Kaurani, L.; Gertig, M.; Ulas, T.; Jain, G.; Wagner, J.; Häsler, L.; Wild, K.; Skodras, A.; et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 2018, 556, 332–338. [Google Scholar] [CrossRef]
- Chang, E.; Guo, B.; Doyle, S.; Cheng, G. Cutting edge: Involvement of the type I IFN production and signaling pathway in lipopolysaccharide-induced IL-10 production. J. Immunol. 2007, 178, 6705–6709. [Google Scholar] [CrossRef] [Green Version]
- Koscsó, B.; Csóka, B.; Selmeczy, Z.; Himer, L.; Pacher, P.; Virág, L.; Haskó, G. Adenosine augments IL-10 production by microglial cells through an A2B adenosine receptor-mediated process. J. Immunol. 2012, 188, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Laureys, G.; Gerlo, S.; Spooren, A.; Demol, F.; De Keyser, J.; Aerts, J.L. Beta(2)-adrenergic agonists modulate TNF-alpha induced astrocytic inflammatory gene expression and brain inflammatory cell populations. J. Neuroinflamm. 2014, 11, 21. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yu, P.; Li, Y.; Zhao, Z.; Wu, X.; Zhang, L.; Feng, J.; Hong, J.-S. Early-Released Interleukin-10 Significantly Inhibits Lipopolysaccharide-Elicited Neuroinflammation In Vitro. Cells 2021, 10, 2173. https://doi.org/10.3390/cells10092173
Wang Y, Yu P, Li Y, Zhao Z, Wu X, Zhang L, Feng J, Hong J-S. Early-Released Interleukin-10 Significantly Inhibits Lipopolysaccharide-Elicited Neuroinflammation In Vitro. Cells. 2021; 10(9):2173. https://doi.org/10.3390/cells10092173
Chicago/Turabian StyleWang, Yubao, Pei Yu, Yi Li, Zhan Zhao, Xiaomei Wu, Lu Zhang, Jing Feng, and Jau-Shyong Hong. 2021. "Early-Released Interleukin-10 Significantly Inhibits Lipopolysaccharide-Elicited Neuroinflammation In Vitro" Cells 10, no. 9: 2173. https://doi.org/10.3390/cells10092173
APA StyleWang, Y., Yu, P., Li, Y., Zhao, Z., Wu, X., Zhang, L., Feng, J., & Hong, J. -S. (2021). Early-Released Interleukin-10 Significantly Inhibits Lipopolysaccharide-Elicited Neuroinflammation In Vitro. Cells, 10(9), 2173. https://doi.org/10.3390/cells10092173