Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules
Abstract
:1. Introduction
2. Results
2.1. Magnetic Concentration-Gradient Force
2.2. A Magnetic Field’s Effect on the Diffusion of Paramagnetic and Diamagnetic Molecules
2.3. Diffusion of Biologically Active Molecules in Specific Examples of Biomedical Applications
2.3.1. Diffusion of Hemoglobin and Oxygen in Red Blood Cells
2.3.2. Diffusion of Molecules Used in Medicine and Paramagnetic Drugs
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, S.; Sharma, R. 21 Tesla Mri Microscopy of Mice Kidney, Heart and Skin: Quantitation of Mri Visible Features. Nat. Preced. 2009. [Google Scholar] [CrossRef]
- Magdoom, K.N.; Brown, A.; Rey, J.; Mareci, T.H.; King, M.A.; Sarntinoranont, M. Mri of Whole Rat Brain Perivascular Network Reveals Role for Ventricles in Brain Waste Clearance. Sci. Rep. 2019, 9, 11480. [Google Scholar] [CrossRef] [PubMed]
- Waskaas, M. Short-Term Effects of Magnetic Fields on Diffusion in Stirred and Unstirred Paramagnetic Solutions. J. Phys. Chem. 1993, 97, 6470–6476. [Google Scholar] [CrossRef]
- Kinouchi, Y.; Tanimoto, S.; Ushita, T.; Sato, K.; Yamaguchi, H.; Miyamoto, H. Effects of Static Magnetic Fields on Diffusion in Solutions. Bioelectromagnetics 1988, 9, 159–166. [Google Scholar] [CrossRef]
- Xin, Z.; Yarema, K.; Xu, A. Impact of Static Magnetic Fields (Smfs) on Cells. In Biological Effects of Static Magnetic Fields; Springer: Singapore, 2017; pp. 81–131. [Google Scholar] [CrossRef]
- Miyakoshi, J. Effects of Static Magnetic Fields at the Cellular Level. Prog. Biophys. Mol. Biol. 2005, 87, 213–223. [Google Scholar] [CrossRef]
- Hideki, H.; Nakahara, T.; Zhang, Q.; Yonei, S.; Miyakoshi, J. Static Magnetic Field with a Strong Magnetic Field Gradient (47.7 T/M) Induces C-Jun Expression in Hl-60 Cells. Vitr. Cell. Dev. Biol.-Anim. 2003, 39, 348–352. [Google Scholar] [CrossRef]
- Tian, X.F.; Wang, D.M.; Feng, S.; Zhang, L.; Ji, X.M.; Wang, Z.; Lu, Q.Y.; Xi, C.Y.; Pi, L.; Zhang, X. Effects of 3.5–23.0 T Static Magnetic Fields on Mice: A Safety Study. Neuroimage 2019, 199, 273–280. [Google Scholar] [CrossRef]
- Oliveira, F.T.P.; Diedrichsen, J.; Verstynen, T.; Duque, J.; Ivry, R.B. Transcranial Magnetic Stimulation of Posterior Parietal Cortex Affects Decisions of Hand Choice. Proc. Natl. Acad. Sci. USA 2010, 107, 17751–17756. [Google Scholar] [CrossRef] [Green Version]
- Zablotskii, V.; Lunov, O.; Novotna, B.; Churpita, O.; Trosan, P.; Holan, V.; Sykova, E.; Dejneka, A.; Kubinova, S. Down-Regulation of Adipogenesis of Mesenchymal Stem Cells by Oscillating High-Gradient Magnetic Fields and Mechanical Vibration. Appl. Phys. Lett. 2014, 105, 103702. [Google Scholar] [CrossRef]
- Jarek, W.; Chen, W.; Qin, K.; Ghobrial, R.M.; Kubiak, J.Z.; Kloc, M. Magnetic Field Changes Macrophage Phenotype. Biophys. J. 2018, 114, 2001–2013. [Google Scholar] [CrossRef] [Green Version]
- Xingxing, Y.; Song, C.; Zhang, L.; Wang, J.; Yu, X.; Yu, B.; Zablotskii, V.; Zhang, X. An Upward 9.4 T Static Magnetic Field Inhibits DNA Synthesis and Increases Ros-P53 to Suppress Lung Cancer Growth. Transl. Oncol. 2021, 14, 101103. [Google Scholar] [CrossRef]
- Dini, L.; Abbro, L. Bioeffects of Moderate-Intensity Static Magnetic Fields on Cell Cultures. Micron 2005, 36, 195–217. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.; Polyakova, T.; Dejneka, A.; Zablotskii, V.; Zhang, X. Effect of Static Magnetic Field on DNA Synthesis: The Interplay between DNA Chirality and Magnetic Field Left-Right Asymmetry. FASEB BioAdvances 2020, 2, 254–263. [Google Scholar] [CrossRef]
- Ayala, M.R.; Syrovets, T.; Hafner, S.; Zablotskii, V.; Dejneka, A.; Simmet, T. Spatiotemporal Magnetic Fields Enhance Cytosolic Ca2+ Levels and Induce Actin Polymerization Via Activation of Voltage-Gated Sodium Channels in Skeletal Muscle Cells. Biomaterials 2018, 163, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.X.; Hilburn, I.A.; Wu, D.-A.; Mizuhara, Y.; Cousté, C.P.; Abrahams, J.N.H.; Bernstein, S.E.; Matani, A.; Shimojo, S.; Kirschvink, J.L. Transduction of the Geomagnetic Field as Evidenced from Alpha-Band Activity in the Human Brain. eNeuro 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Barbic, M. Possible Magneto-Mechanical and Magneto-Thermal Mechanisms of Ion Channel Activation in Magnetogenetics. eLife 2019, 8, e45807. [Google Scholar] [CrossRef]
- Hong, L.; Pan, Y.; Wu, R.; Lv, Y. Innate Immune Regulation under Magnetic Fields with Possible Mechanisms and Therapeutic Applications. Front. Immunol. 2020, 11, 2705. [Google Scholar] [CrossRef]
- Grant, A.; Metzger, G.J.; Van de Moortele, P.-F.; Adriany, G.; Olman, C.; Zhang, L.; Koopermeiners, J.; Eryaman, Y.; Koeritzer, M.; Adams, M.E.; et al. 10.5 t Mri Static Field Effects on Human Cognitive, Vestibular, and Physiological Function. Magn. Reson. Imaging 2020, 73, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Ivan, T.; Benneyworth, M.A.; Nichols-Meade, T.; Steuer, E.L.; Larson, S.N.; Metzger, G.J.; Uğurbil, K. Long-Term Behavioral Effects Observed in Mice Chronically Exposed to Static Ultra-High Magnetic Fields. Magn. Reson. Med. 2021, 86, 1544–1559. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, Y.; Li, Z.; Ji, X.; Wang, Z.; Wang, H.; Tian, X.; Yu, F.; Yang, Z.; Pi, L.; et al. 27 T Ultra-High Static Magnetic Field Changes Orientation and Morphology of Mitotic Spindles in Human Cells. eLife 2017, 6, e22911. [Google Scholar] [CrossRef]
- Yue, L.; Fan, Y.; Tian, X.; Yu, B.; Song, C.; Feng, C.; Zhang, L.; Ji, X.; Zablotskii, V.; Zhang, X. The Anti-Depressive Effects of Ultra-High Static Magnetic Field. J. Magn. Reson. Imaging 2021. [Google Scholar] [CrossRef]
- Hinds, G.; Coey, J.M.D.; Lyons, M.E.G. Influence of Magnetic Forces on Electrochemical Mass Transport. Electrochem. Commun. 2001, 3, 215–218. [Google Scholar] [CrossRef]
- Zablotskii, V.; Lunov, O.; Kubinova, S.; Polyakova, T.; Sykova, E.; Dejneka, A. Effects of High-Gradient Magnetic Fields on Living Cell Machinery. J. Phys. D Appl. Phys. 2016, 49, 493003. [Google Scholar] [CrossRef]
- Zablotskii, V.; Polyakova, T.; Dejneka, A. Cells in the Non-Uniform Magnetic World: How Cells Respond to High-Gradient Magnetic Fields. BioEssays 2018, 40, 1800017. [Google Scholar] [CrossRef] [PubMed]
- Dunne, P.; Mazza, L.; Coey, J.M.D. Magnetic Structuring of Electrodeposits. Phys. Rev. Lett. 2011, 107, 024501. [Google Scholar] [CrossRef]
- Leventis, N.; Dass, A. Demonstration of the Elusive Concentration-Gradient Paramagnetic Force. J. Am. Chem. Soc. 2005, 127, 4988–4989. [Google Scholar] [CrossRef] [PubMed]
- Vitalii, Z.; Polyakova, T.; Dejneka, A. Modulation of the Cell Membrane Potential and Intracellular Protein Transport by High Magnetic Fields. Bioelectromagnetics 2021, 42, 27–36. [Google Scholar] [CrossRef]
- Ayansiji, A.O.; Dighe, A.V.; Linninger, A.A.; Singh, M.R. Constitutive Relationship and Governing Physical Properties for Magnetophoresis. Proc. Natl. Acad. Sci. USA 2020, 117, 30208–30214. [Google Scholar] [CrossRef]
- Waskaas, M. On the Origin of the Magnetic Concentration Gradient Force and Its Interaction Mechanisms with Mass Transfer in Paramagnetic Electrolytes. Fluids 2021, 6, 114. [Google Scholar] [CrossRef]
- Sear, R.P. Diffusiophoresis in Cells: A General Nonequilibrium, Nonmotor Mechanism for the Metabolism-Dependent Transport of Particles in Cells. Phys. Rev. Lett. 2019, 122, 128101. [Google Scholar] [CrossRef] [Green Version]
- McRobbie, D.W. 3.01—Fundamentals of Mr Imaging. In Comprehensive Biomedical Physics; Brahme, A., Ed.; Elsevier: Oxford, UK, 2014; pp. 1–19. [Google Scholar]
- Tikhonov, A.N. Equations of Mathematical Physics; Pergamon Press: Oxford, UK, 1963. [Google Scholar]
- Lifshitz, E.M.; Pitaevskii, L.P. Physical Kinetics: Volume 10; Elsevier Science: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Hardt, S.; Hartmann, J.; Zhao, S.C.; Bandopadhyay, A. Electric-Field-Induced Pattern Formation in Layers of DNA Molecules at the Interface between Two Immiscible Liquids. Phys. Rev. Lett. 2020, 124, 064501. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1975. [Google Scholar]
- Wolfram Research, Inc. Mathematica. Available online: https://www.wolfram.com/mathematica (accessed on 23 December 2021).
- Kang, M.-Y.; Katz, I.; Sapoval, B. A New Approach to the Dynamics of Oxygen Capture by the Human Lung. Respir. Physiol. Neurobiol. 2015, 205, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, D.G. Some Comments on Multicomponent Diffusion: Negative Main Term Diffusion Coefficients, Second Law Constraints, Solvent Choices, and Reference Frame Transformations. J. Phys. Chem. 1986, 90, 1509–1519. [Google Scholar] [CrossRef]
- Clark, W.M.; Rowley, R.L. Ternary Liquid Diffusion Coefficients near Plait Points. Int. J. Thermophys. 1985, 6, 631–642. [Google Scholar] [CrossRef]
- Daniela, B.; Buzatu, F.D.; Paduano, L.; Sartorio, R. Diffusion Coefficients for the Ternary System Water + chloroform + acetic Acid at 25 °C. J. Solut. Chem. 2007, 36, 1373–1384. [Google Scholar] [CrossRef]
- Vitagliano, V.; Sartorio, R.; Scala, S.; Spaduzzi, D. Diffusion in a Ternary System and the Critical Mixing Point. J. Solut. Chem. 1978, 7, 605–622. [Google Scholar] [CrossRef]
- Kozlova, S.; Mialdun, A.; Ryzhkov, I.; Janzen, T.; Vrabec, J.; Shevtsova, V. Do Ternary Liquid Mixtures Exhibit Negative Main Fick Diffusion Coefficients? Phys. Chem. Chem. Phys. 2019, 21, 2140–2152. [Google Scholar] [CrossRef] [Green Version]
- Reguera, G. When Microbial Conversations Get Physical. Trends Microbiol. 2011, 19, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spees, W.M.; Yablonskiy, D.A.; Oswood, M.C.; Ackerman, J.J.H. Water Proton Mr Properties of Human Blood at 1.5 Tesla: Magnetic Susceptibility, T-1, T-2, T-2* and Non-Lorentzian Signal Behavior. Magn. Reson. Med. 2001, 45, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Yazer, M.H.; Chalmers, J.J.; Zborowski, M. Quantification of Changes in Oxygen Release from Red Blood Cells as a Function of Age Based on Magnetic Susceptibility Measurements. Analyst 2011, 136, 2996–3003. [Google Scholar] [CrossRef] [Green Version]
- Voitländer, J. Diamagnétisme et Paramagnétisme, von G. Foëx. Relaxation Paramagnétique, von C.-J. Gorter und L.-J. Smits. Reihe: Tables de Constantes et Données Numériques, begründet v. Ch. Marie. Verlag Masson & Cie., Paris 1957. 1. Aufl., 317 S., geb. Ffrs. 9.700.-. Angew. Chem. 1959, 71, 204. [Google Scholar]
- Rosensweig, R.E. Ferrohydrodynamics; Dover Books on Physics, Dover Publications: Mineola, NY, USA, 2014. [Google Scholar]
- Longeville, S.; Stingaciu, L.R. Hemoglobin Diffusion and the Dynamics of Oxygen Capture by Red Blood Cells. Sci. Rep. 2017, 7, 10448. [Google Scholar] [CrossRef] [Green Version]
- Adams, L.R.; Fatt, I. The Diffusion Coefficient of Human Hemoglobin at High Concentrations. Respir. Physiol. 1967, 2, 293–301. [Google Scholar] [CrossRef]
- Wang, Y.M.; Austin, R.H.; Cox, E.C. Single Molecule Measurements of Repressor Protein 1d Diffusion on DNA. Phys. Rev. Lett. 2006, 97, 048302. [Google Scholar] [CrossRef] [Green Version]
- Hook, C.; Yamaguchi, K.; Scheid, P.; Piiper, J. Oxygen-Transfer of Red Blood-Cells—Experimental-Data and Model Analysis. Respir. Physiol. 1988, 72, 65–82. [Google Scholar] [CrossRef]
- Piiper, J.; Hook, C.; Yamaguchi, K.; Scheid, P. Modeling of Oxygen-Transfer Kinetics of Red Blood-Cells. FASEB J. 1988, 2, A925. [Google Scholar]
- Di Caprio, G.; Stokes, C.; Higgins, J.M.; Schonbrun, E. Single-Cell Measurement of Red Blood Cell Oxygen Affinity. Proc. Natl. Acad. Sci. USA 2015, 112, 9984–9989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, D.R.; Bronzino, J.D. Biomechanics: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Yamaguchi, K.; Nguyen-Phu, D.; Scheid, P.; Piiper, J. Kinetics of O2 Uptake and Release by Human Erythrocytes Studied by a Stopped-Flow Technique. J. Appl. Physiol. 1985, 58, 1215–1224. [Google Scholar] [CrossRef]
- Earl, D.R.; Geis, I. Hemoglobin: Structure, Function, Evolution, and Pathology; Benjamin/Cummings Pub. Co.: Menlo Park, CA, USA, 1983. [Google Scholar]
- Cerdonio, M.; Congiu-Castellano, A.; Calabrese, L.; Morante, S.; Pispisa, B.; Vitale, S. Room-Temperature Magnetic Properties of Oxy- and Carbonmonoxyhemoglobin. Proc. Natl. Acad. Sci. USA 1978, 75, 4916–4919. [Google Scholar] [CrossRef] [Green Version]
- Hillman, R.; Finch, C. The Red Cell Manual; F.A. Davis, Co.: Philadelphia, PA, USA, 1996. [Google Scholar]
- Wei, X.; Moore, L.R.; Nakano, N.; Chalmers, J.J.; Zborowski, M. Single Cell Magnetometry by Magnetophoresis Vs. Bulk Cell Suspension Magnetometry by Squid-Mpms—A Comparison. J. Magn. Magn. Mater. 2019, 474, 152–160. [Google Scholar] [CrossRef]
- Hongyuan, J.; Sun, S.X. Cellular Pressure and Volume Regulation and Implications for Cell Mechanics. Biophys. J. 2013, 105, 609–619. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.P.; Helenius, J.; Toyoda, Y.; Ramanathan, S.P.; Muller, D.J.; Hyman, A.A. Hydrostatic Pressure and the Actomyosin Cortex Drive Mitotic Cell Rounding. Nature 2011, 469, 226–230. [Google Scholar] [CrossRef]
- Li, F.F.; Chan, C.U.; Ohl, C.D. Yield Strength of Human Erythrocyte Membranes to Impulsive Stretching. Biophys. J. 2013, 105, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Iwasaka, M. Deformation of Cellular Components of Bone Forming Cells When Exposed to a Magnetic Field. AIP Adv. 2019, 9, 035327. [Google Scholar] [CrossRef] [Green Version]
- Zablotskii, V.; Syrovets, T.; Schmidt, Z.W.; Dejneka, A.; Simmet, T. Modulation of Monocytic Leukemia Cell Function and Survival by High Gradient Magnetic Fields and Mathematical Modeling Studies. Biomaterials 2014, 35, 3164–3171. [Google Scholar] [CrossRef] [PubMed]
- Nouri, S.; Sharif, M.R.; Sahba, S. The Effect of Ferric Chloride on Superficial Bleeding. Trauma Mon. 2015, 20, e18042. [Google Scholar] [CrossRef] [Green Version]
- Eckly, A.; Hechler, B.; Freund, M.; Zerr, M.; Cazenave, J.-P.; Lanza, F.; Mangin, P.H.; Gachet, C. Mechanisms Underlying Fecl3-Induced Arterial Thrombosis. J. Thromb. Haemost. 2011, 9, 779–789. [Google Scholar] [CrossRef]
- Li, Q.; Liao, Z.; Gu, L.; Zhang, L.; Zhang, L.; Tian, X.; Li, J.; Fang, Z.; Zhang, X. Moderate Intensity Static Magnetic Fields Prevent Thrombus Formation in Rats and Mice. Bioelectromagnetics 2020, 41, 52–62. [Google Scholar] [CrossRef]
- Merbach, A.E.; Toth, E. The Chemistry of Contrast Iagents in Medical Magnetic Resonance Imaging; John Wiley & Sons, Ltd.: New York, NY, USA, 2001. [Google Scholar]
- Klaassen, N.J.M.; Arntz, M.J.; Gil Arranja, A.; Roosen, J.; Nijsen, J.F.W. The Various Therapeutic Applications of the Medical Isotope Holmium-166: A Narrative Review. EJNMMI Radiopharm. Chem. 2019, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Cristea, D.; Krishtul, S.; Kuppusamy, P.; Baruch, L.; Machluf, M.; Blank, A. New Approach to Measuring Oxygen Diffusion and Consumption in Encapsulated Living Cells, Based on Electron Spin Resonance Microscopy. Acta Biomater. 2020, 101, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Tamagno, P.; Costa-Almeida, R.; Gomes, M.E. Magnetotherapy: The Quest for Tendon Regeneration. J. Cell. Physiol. 2018, 233, 6395–6405. [Google Scholar] [CrossRef]
- Lv, Y.; Shi, Y.; Scientific Committee of the First International Conference of Magnetic Surgery. Xi’an Consensus on Magnetic Surgery. Hepatobiliary Surg. Nutr. 2019, 8, 177–178. [Google Scholar] [CrossRef]
- Parfenov, V.A.; Khesuani, Y.D.; Petrov, S.V.; Karalkin, P.A.; Koudan, E.V.; Nezhurina, E.K.; DAS Pereira, F.; Krokhmal, A.A.; Gryadunova, A.A.; Bulanova, E.A.; et al. Magnetic Levitational Bioassembly of 3d Tissue Construct in Space. Sci. Adv. 2020, 6, eaba4174. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zablotskii, V.; Polyakova, T.; Dejneka, A. Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules. Cells 2022, 11, 81. https://doi.org/10.3390/cells11010081
Zablotskii V, Polyakova T, Dejneka A. Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules. Cells. 2022; 11(1):81. https://doi.org/10.3390/cells11010081
Chicago/Turabian StyleZablotskii, Vitalii, Tatyana Polyakova, and Alexandr Dejneka. 2022. "Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules" Cells 11, no. 1: 81. https://doi.org/10.3390/cells11010081
APA StyleZablotskii, V., Polyakova, T., & Dejneka, A. (2022). Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules. Cells, 11(1), 81. https://doi.org/10.3390/cells11010081