Biomarkers of Favorable vs. Unfavorable Responses in Locally Advanced Rectal Cancer Patients Receiving Neoadjuvant Concurrent Chemoradiotherapy
Abstract
:1. Introduction
2. Circulating Tumor Cells
3. DNA and RNA
4. Oncogenes and Tumor Suppressors
5. Epigenetics-Gene Methylation Transcriptome/Epigenome
6. Impaired DNA Mismatch Repair
7. Patient-Derived Xenograft (PDX) and In Vitro Tumor Organoid (PDO)
8. Immunity
9. Microbiome
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Wang, J.-Y.; Wang, J.-W.; Chai, C.-Y. Preoperative endoscopic tattooing technique improved lymph node retrieval in rectal cancer patients receiving neoadjuvant concurrent chemoradiotherapy. J. Clin. Pathol. 2020, 73, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-W.; Tsai, H.-L.; Yeh, Y.-S.; Su, W.-C.; Huang, M.-Y.; Huang, C.-M.; Chang, Y.-T.; Wang, J.-Y. Robotic-assisted total mesorectal excision with the single-docking technique for patients with rectal cancer. BMC Surg. 2017, 17, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.-W.; Yeh, Y.-S.; Su, W.-C.; Tsai, H.-L.; Choy, T.-K.; Huang, M.-Y.; Huang, C.-M.; Wu, I.-C.; Hu, H.-M.; Hsu, W.-H.; et al. Robotic surgery with high dissection and low ligation technique for consecutive patients with rectal cancer following preoperative concurrent chemoradiotherapy. Int. J. Color. Dis. 2016, 31, 1169–1177. [Google Scholar] [CrossRef]
- Huang, C.-W.; Yeh, Y.-S.; Ma, C.-J.; Choy, T.-K.; Huang, M.-Y.; Huang, C.-M.; Tsai, H.-L.; Hsu, W.-H.; Wang, J.-Y. Robotic colorectal surgery for laparoscopic surgeons with limited experience: Preliminary experiences for 40 consecutive cases at a single medical center. BMC Surg. 2015, 15, 73. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-Y.; Lee, H.-H.; Tsai, H.-L.; Huang, C.-W.; Yeh, Y.-S.; Ma, C.-J.; Huang, C.-M.; Chen, C.-Y.; Huang, J.-J.; Wang, J.-Y. Comparison of efficacy and safety of preoperative Chemoradiotherapy in locally advanced upper and middle/lower rectal cancer. Radiat. Oncol. 2018, 13, 53. [Google Scholar] [CrossRef]
- Ghadimi, B.M.; Grade, M.; Difilippantonio, M.J.; Varma, S.; Simon, R.; Montagna, C.; Füzesi, L.; Langer, C.; Becker, H.; Liersch, T.; et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J. Clin. Oncol. 2005, 23, 1826–1838. [Google Scholar] [CrossRef] [Green Version]
- Tie, J.; Cohen, J.D.; Wang, Y.; Li, L.; Christie, M.; Simons, K.; Elsaleh, H.; Kosmider, S.; Wong, R.; Yip, D.; et al. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: A prospective biomarker study. Gut 2019, 68, 663–671. [Google Scholar] [CrossRef]
- Alkan, A.; Hofving, T.; Angenete, E.; Yrlid, U. Biomarkers and cell-based models to predict the outcome of neoadjuvant therapy for rectal cancer patients. Biomark. Res. 2021, 9, 60. [Google Scholar] [CrossRef]
- Oronsky, B.; Reid, T.; Larson, C.; Knox, S.J. Locally advanced rectal cancer: The past, present, and future. Semin. Oncol. 2020, 47, 85–92. [Google Scholar] [CrossRef]
- Picard, E.; Verschoor, C.P.; Ma, G.W.; Pawelec, G. Relationships between immune landscapes, genetic subtypes and responses to immunotherapy in CRC. Front. Immunol. 2020, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; Li Destri, G.; Basile, G.; Agodi, A. Epigenetic biomarkers in CRC patients receiving adjuvant or neoadjuvant therapy: A systematic review of epidemiological studies. Int. J. Mol. Sci. 2019, 20, 3842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.-J.; Cao, L.; Li, Z.-W.; Zhao, L.; Wu, H.-F.; Yue, D.; Yang, J.-L.; Zhou, Z.-R.; Liu, S.-X. Fluorouracil-based neoadjuvant chemoradiotherapy with or without oxaliplatin for treatment of locally advanced rectal cancer: An updated systematic review and meta-analysis. Oncotarget 2016, 7, 45513–45524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, J.E.; Warrier, S.K.; Lynch, A.C.; Ramsay, R.G.; Phillips, W.A.; Heriot, A.G. Predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: A systematic review. Color. Dis. 2016, 18, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-C.; Yan, J.-P.; He, Q.; An, X.; Pan, Z.-Z.; Ding, P.-R. Effect of Neoadjuvant Chemoradiotherapy with Capecitabine versus fluorouracil for locally advanced rectal Cancer: A Meta-analysis. Gastroenterol. Res. Pract. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rödel, C.; Cervantes, A.; Arnold, D. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28 (Suppl. S4), IV24–IV40. [Google Scholar] [CrossRef]
- Engell, H.C. Cancer cells in the circulating blood; a clinical study on the occurrence of cancer cells in the peripheral blood and in venous blood draining the tumour area at operation. Acta Chir. Scand. Suppl. 1955, 201, 1–70. [Google Scholar]
- Huang, M.-Y.; Tsai, H.-L.; Huang, J.-J.; Wang, J.-Y. Clinical Implications and Future Perspectives of Circulating Tumor Cells and Biomarkers in Clinical Outcomes of CRC. Transl. Oncol. 2016, 9, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.-T.; Huang, M.-Y.; Yeh, Y.-S.; Huang, C.-W.; Tsai, H.-L.; Cheng, T.-L.; Wang, J.-Y. A Prospective Study of Comparing Multi-Gene Biomarker Chip and Serum Carcinoembryonic Antigen in the Postoperative Surveillance for Patients with Stage I-III CRC. PLoS ONE 2016, 11, e0163264. [Google Scholar] [CrossRef]
- Huang, M.-Y.; Wang, H.-M.; Tok, T.-S.; Chang, H.-J.; Chang, M.-S.; Cheng, T.-L.; Wang, J.-Y.; Lin, S.-R. EVI2B, ATP2A2, S100B, TM4SF3, and OLFM4 as potential prognostic markers for postoperative Taiwanese CRC patients. DNA Cell Biol. 2012, 31, 625–635. [Google Scholar] [CrossRef]
- Wang, J.Y.; Yeh, C.S.; Chen, Y.F.; Wu, C.H.; Hsieh, J.S.; Huang, T.J.; Huang, S.Y.; Lin, S.R. Development and evaluation of a colorimetric membrane-array method for the detection of circulating tumor cells in the peripheral blood of Taiwanese patients with CRC. Int. J. Mol. Med. 2006, 17, 737–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, E.K.O.; Chong, W.W.S.; Jin, H.; Lam, E.K.Y.; Shin, V.Y.; Yu, J.; Poon, T.C.W.; Ng, S.S.M.; Sung, J.J.Y. Differential expression of microRNAs in plasma of patients with CRC: A potential marker for CRC screening. Gut 2009, 58, 1375–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosaka, N.; Iguchi, H.; Ochiya, T. Circulating microRNA in body fluid: A new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010, 101, 2087–2092. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Huang, T.; Li, G.; Shen, W.; Zhu, J.; Jin, Q.; Zhao, J.; Jia, C.; Zhang, Z. The advantage of circulating tumor cells over serum carcinoembryonic antigen for predicting treatment responses in rectal cancer. Future Oncol. 2013, 9, 1489–1500. [Google Scholar] [CrossRef]
- Sun, W.; Sun, Y.; Zhu, M.; Wang, Z.; Zhang, H.; Xin, Y.; Jiang, G.; Guo, X.; Zhang, Z.; Liu, Y. The role of plasma cell-free DNA detection in predicting preoperative chemoradiotherapy response in rectal cancer patients. Oncol. Rep. 2014, 31, 1466–1472. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Li, G.; Wan, J.; Zhu, J.; Shen, W.; Zhang, Z. Circulating tumor cells: A promising marker of predicting tumor response in rectal cancer patients receiving neoadjuvant chemo-radiation therapy. Oncotarget 2016, 7, 69507–69517. [Google Scholar] [CrossRef] [Green Version]
- Magni, E.; Botteri, E.; Ravenda, P.S.; Cassatella, M.C.; Bertani, E.; Chiappa, A.; Luca, F.; Zorzino, L.; Bianchi, P.P.; Adamoli, L.; et al. Detection of circulating tumor cells in patients with locally advanced rectal cancer undergoing neoadjuvant therapy followed by curative surgery. Int. J. Color. Dis. 2014, 29, 1053–1059. [Google Scholar] [CrossRef]
- McDuff, S.G.R.; Hardiman, K.M.; Ulintz, P.J.; Parikh, A.R.; Zheng, H.; Kim, D.W.; Lennerz, J.K.; Hazar-Rethinam, M.; Van Seventer, E.E.; Fetter, I.J.; et al. Circulating Tumor DNA Predicts Pathologic and Clinical Outcomes Following Neoadjuvant Chemoradiation and Surgery for Patients with Locally Advanced Rectal Cancer. JCO Precis. Oncol. 2021, 5, 123–132. [Google Scholar] [CrossRef]
- Li, N.; Yu, J.; Luo, A.; Tang, Y.; Liu, W.; Wang, S.; Liu, Y.; Song, Y.; Fang, H.; Chen, B.; et al. LncRNA and mRNA signatures associated with neoadjuvant chemoradiotherapy downstaging effects in rectal cancer. J. Cell. Biochem. 2019, 120, 5207–5217. [Google Scholar] [CrossRef]
- Ferrando, L.; Cirmena, G.; Garuti, A.; Scabini, S.; Grillo, F.; Mastracci, L.; Isnaldi, E.; Marrone, C.; Gonella, R.; Murialdo, R.; et al. Development of a long non-coding RNA signature for prediction of response to neoadjuvant chemoradiotherapy in locally advanced rectal adenocarcinoma. PLoS ONE 2020, 15, e0226595. [Google Scholar] [CrossRef]
- Palma, P.; Cano, C.; Conde-Muiño, R.; Comino, A.; Bueno, P.; Ferrón, J.A.; Cuadros, M. Expression profiling of rectal tumors defines response to neoadjuvant treatment related genes. PLoS ONE 2014, 9, e112189. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.S.; Harris, D.A.; Beynon, J.; Jenkins, G.J.S. Review of the development of DNA methylation as a marker of response to neoadjuvant therapy and outcomes in rectal cancer. Clin. Epigenet. 2015, 7, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- do Canto, L.M.; Barros-Filho, M.C.; Rainho, C.A.; Marinho, D.; Kupper, B.E.C.; de Souza Begnami, M.D.F.; Scapulatempo-Neto, C.; Havelund, B.M.; Lindebjerg, J.; Marchi, F.A.; et al. Comprehensive analysis of DNA methylation and prediction of response to neoadjuvanttherapy in locally advanced rectal cancer. Cancers 2020, 12, 3079. [Google Scholar] [CrossRef]
- Thi, H.T.H.; Kim, H.-Y.; Kim, Y.-M.; Hong, S. MicroRNA-130a modulates a radiosensitivity of rectal cancer by targeting SOX4. Neoplasia 2019, 21, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Schütte, M.; Risch, T.; Abdavi-Azar, N.; Boehnke, K.; Schumacher, D.; Keil, M.; Yildiriman, R.; Jandrasits, C.; Borodina, T.; Amstislavskiy, V.; et al. Molecular dissection of CRC in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat. Commun. 2017, 8, 14262. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-Y.; Wu, C.-H.; Huang, C.-M.; Chung, F.-Y.; Huang, C.-W.; Tsai, H.-L.; Chen, C.-F.; Lin, S.-R.; Wang, J.-Y. DPYD, TYMS, TYMP, TK1, and TK2 genetic expressions as response markers in locally advanced rectal cancer patients treated with fluoropyrimidine-based chemoradiotherapy. Biomed Res. Int. 2013, 2013, 931028. [Google Scholar] [CrossRef] [Green Version]
- Oh, B.Y.; Lee, W.Y.; Jung, S.; Hong, H.K.; Nam, D.-H.; Park, Y.A.; Huh, J.W.; Yun, S.H.; Kim, H.C.; Chun, H.-K.; et al. Correlation between tumor engraftment in patient-derived xenograft models and clinical outcomes in CRC patients. Oncotarget 2015, 6, 16059–16068. [Google Scholar] [CrossRef] [Green Version]
- Adell, G.; Sun, X.-F.; Stål, O.; Klintenberg, C.; Sjödahl, R.; Nordenskjöld, B. p53 status: An indicator for the effect of preoperative radiotherapy of rectal cancer. Radiother. Oncol. 1999, 51, 169–174. [Google Scholar] [CrossRef]
- Kim, N.K.; Park, J.K.; Lee, K.Y.; Yang, W.I.; Yun, S.H.; Sung, J.; Min, J.S. p53, BCL-2, and Ki-67 expression according to tumor response after concurrent chemoradiotherapy for advanced rectal cancer. Ann. Surg. Oncol. 2001, 8, 418–424. [Google Scholar] [CrossRef]
- Chen, M.-B.; Wu, X.-Y.; Yu, R.; Li, C.; Wang, L.-Q.; Shen, W.; Lu, P.-H. P53 status as a predictive biomarker for patients receiving neoadjuvant radiation-based treatment: A meta-analysis in rectal cancer. PLoS ONE 2012, 7, e45388. [Google Scholar] [CrossRef] [Green Version]
- Sakai, K.; Kazama, S.; Nagai, Y.; Murono, K.; Tanaka, T.; Ishihara, S.; Sunami, E.; Tomida, S.; Nishio, K.; Watanabe, T. Chemoradiation provides a physiological selective pressure that increases the expansion of aberrant TP53 tumor variants in residual rectal cancerous regions. Oncotarget 2014, 5, 9641–9649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, J.K.; Callahan, R.E.; Hothem, Z.A.; Cousineau, C.S.; Kawak, S.; Thibodeau, B.J.; Bergeron, S.; Li, W.; Peeples, C.E.; Wasvary, H.J. Genomic variation as a marker of response to neoadjuvant therapy in locally advanced rectal cancer. Mol. Cell. Oncol. 2020, 7, 1716618. [Google Scholar] [CrossRef] [PubMed]
- Béganton, B.; Coyaud, E.; Laurent, E.M.N.; Mangé, A.; Jacquemetton, J.; Le Romancer, M.; Raught, B.; Solassol, J. Proximal Protein Interaction Landscape of RAS Paralogs. Cancers 2020, 12, 3326. [Google Scholar] [CrossRef] [PubMed]
- Malapelle, U.; Passiglia, F.; Cremolini, C.; Reale, M.L.; Pepe, F.; Pisapia, P.; Avallone, A.; Cortinovis, D.; De Stefano, A.; Fassan, M.; et al. RAS as a positive predictive biomarker: Focus on lung and CRC patients. Eur. J. Cancer 2021, 146, 74–83. [Google Scholar] [CrossRef]
- Malapelle, U.; Bellevicine, C.; Salatiello, M.; de Luca, C.; Rispo, E.; Riccio, P.; Sparano, L.; De Stefano, A.; Carlomagno, C.; Maiello, F.M.; et al. Sanger sequencing in routine KRAS testing: A review of 1720 cases from a pathologist’s perspective. J. Clin. Pathol. 2012, 65, 940–944. [Google Scholar] [CrossRef] [Green Version]
- Bedeir, A.; Krasinskas, A.M. Molecular diagnostics of CRC. Arch. Pathol. Lab. Med. 2011, 135, 578–587. [Google Scholar] [CrossRef]
- Zhou, Y.; Gorfe, A.A.; Hancock, J.F. RAS Nanoclusters Selectively Sort Distinct Lipid Headgroups and Acyl Chains. Front. Mol. Biosci. 2021, 8, 489. [Google Scholar] [CrossRef]
- Kawazoe, A.; Shitara, K.; Fukuoka, S.; Kuboki, Y.; Bando, H.; Okamoto, W.; Kojima, T.; Fuse, N.; Yamanaka, T.; Doi, T.; et al. A retrospective observational study of clinicopathological features of KRAS, NRAS, BRAF and PIK3CA mutations in Japanese patients with metastatic CRC. BMC Cancer 2015, 15, 258. [Google Scholar] [CrossRef] [Green Version]
- Favazza, L.A.; Parseghian, C.M.; Kaya, C.; Nikiforova, M.N.; Roy, S.; Wald, A.I.; Landau, M.S.; Proksell, S.S.; Dueker, J.M.; Johnston, E.R.; et al. KRAS amplification in metastatic colon cancer is associated with a history of inflammatory bowel disease and may confer resistance to anti-EGFR therapy. Mod. Pathol. 2020, 33, 1832–1843. [Google Scholar] [CrossRef]
- Iseas, S.; Sendoya, J.M.; Robbio, J.; Coraglio, M.; Kujaruk, M.; Mikolaitis, V.; Rizzolo, M.; Cabanne, A.; Ruiz, G.; Salanova, R.; et al. Prognostic Impact of An Integrative Landscape of Clinical, Immune, and Molecular Features in Non-Metastatic Rectal Cancer. Front. Oncol. 2021, 11, 801880. [Google Scholar] [CrossRef]
- Luna-Pérez, P.; Segura, J.; Alvarado, I.; Labastida, S.; Santiago-Payán, H.; Quintero, A. Specific c-K-ras gene mutations as a tumor-response marker in locally advanced rectal cancer treated with preoperative chemoradiotherapy. Ann. Surg. Oncol. 2000, 7, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Chow, O.S.; Kuk, D.; Keskin, M.; Smith, J.J.; Camacho, N.; Pelossof, R.; Chen, C.T.; Chen, Z.; Avila, K.; Weiser, M.R.; et al. KRAS and combined KRAS/TP53 mutations in locally advanced rectal Cancer are independently associated with decreased response to Neoadjuvant therapy. Ann. Surg. Oncol. 2016, 23, 2548–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.M.; Trembath, D.; Deal, A.M.; Funkhouser, W.K.; Calvo, B.F.; Finnegan, T.; Weck, K.E.; Tepper, J.E.; O’Neil, B.H. Phospho-ERK and AKT status, but not KRAS mutation status, are associated with outcomes in rectal cancer treated with chemoradiotherapy. Radiat. Oncol. 2011, 6, 114. [Google Scholar] [CrossRef] [Green Version]
- Wanigasooriya, K.; Tyler, R.; Barros-Silva, J.D.; Sinha, Y.; Ismail, T.; Beggs, A.D. Radiosensitising Cancer using Phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT) or mammalian target of Rapamycin (mTOR) inhibitors. Cancers 2020, 12, 1278. [Google Scholar] [CrossRef] [PubMed]
- Alix-Panabières, C.; Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014, 14, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Komuro, Y.; Kiyomatsu, T.; Kanazawa, T.; Kazama, Y.; Tanaka, J.; Tanaka, T.; Yamamoto, Y.; Shirane, M.; Muto, T.; et al. Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res. 2006, 66, 3370–3374. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Ramos, C.; Koyama, F.C.; Habr-Gama, A.; Salim, A.C.M.; Bettoni, F.; Asprino, P.F.; França, G.S.; Gama-Rodrigues, J.; Parmigiani, R.B.; Perez, R.O.; et al. Comprehensive evaluation of the effectiveness of gene expression signatures to predict complete response to neoadjuvant chemoradiotherapy and guide surgical intervention in rectal cancer. Cancer Genet. 2015, 208, 319–326. [Google Scholar] [CrossRef]
- Rimkus, C.; Friederichs, J.; Al, B.; Theisen, J.; Mages, J.; Becker, K.; Nekarda, H.; Rosenberg, R.; Janssen, K.P.; Siewert, J.R. Microarray-based prediction of tumor response to Neoadjuvant Radiochemotherapy of patients with locally advanced rectal Cancer. Clin. Gastroenterol. Hepatol. 2008, 6, 53–61. [Google Scholar] [CrossRef]
- Watanabe, T.; Kobunai, T.; Akiyoshi, T.; Matsuda, K.; Ishihara, S.; Nozawa, K. Prediction of response to preoperative Chemoradiotherapy in rectal Cancer by using reverse transcriptase polymerase chain reaction analysis of four genes. Dis. Colon Rectum 2014, 57, 23–31. [Google Scholar] [CrossRef]
- He, H.-L.; Lee, Y.-E.; Chen, H.-P.; Hsing, C.-H.; Chang, I.-W.; Shiue, Y.-L.; Lee, S.-W.; Hsu, C.-T.; Lin, L.-C.; Wu, T.-F.; et al. Overexpression of DNAJC12 predicts poor response to neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Exp. Mol. Pathol. 2015, 98, 338–345. [Google Scholar] [CrossRef]
- Huang, M.-Y.; Lin, C.-H.; Huang, C.-M.; Tsai, H.-L.; Huang, C.-W.; Yeh, Y.-S.; Chai, C.-Y.; Wang, J.-Y. Relationships between SMAD3 expression and preoperative fluoropyrimidine-based chemoradiotherapy response in locally advanced rectal cancer patients. World J. Surg. 2015, 39, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-Y.; Lee, H.-H.; Huang, C.-W.; Huang, C.-M.; Ma, C.-J.; Yin, T.-C.; Tsai, H.-L.; Chai, C.-Y.; Chen, Y.-T.; Wang, J.-Y. ERCC overexpression associated with a poor response of cT4b CRC with FOLFOX-based neoadjuvant concurrent chemoradiation. Oncol. Lett. 2020, 20, 212. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-Y.; Huang, J.-J.; Huang, C.-M.; Lin, C.-H.; Tsai, H.-L.; Huang, C.-W.; Chai, C.-Y.; Lin, C.-Y.; Wang, J.-Y. Relationship Between Expression of Proteins ERCC1, ERCC2, and XRCC1 and Clinical Outcomes in Patients with Rectal Cancer Treated with FOLFOX-Based Preoperative Chemoradiotherapy. World J. Surg. 2017, 41, 2884–2897. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.-J.; Lim, S.-B.; Kang, H.C.; Chang, H.J.; Ahn, S.-A.; Park, H.-W.; Jang, S.-G.; Park, J.-H.; Kim, D.Y.; Jung, K.H.; et al. Microarray gene expression profiling for predicting complete response to preoperative Chemoradiotherapy in patients with advanced rectal Cancer. Dis. Colon Rectum 2007, 50, 1342–1353. [Google Scholar] [CrossRef] [PubMed]
- He, H.-L.; Lee, Y.-E.; Shiue, Y.-L.; Lee, S.-W.; Lin, L.-C.; Chen, T.-J.; Wu, T.-F.; Hsing, C.-H.; Huang, H.-Y.; Wang, J.-Y.; et al. Overexpression of REG4 confers an independent negative prognosticator in rectal cancers receiving concurrent chemoradiotherapy. J. Surg. Oncol. 2014, 110, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.P.; Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 1983, 301, 89–92. [Google Scholar] [CrossRef]
- Molinari, C.; Casadio, V.; Foca, F.; Zingaretti, C.; Giannini, M.; Avanzolini, A.; Lucci, E.; Saragoni, L.; Passardi, A.; Amadori, D.; et al. Gene methylation in rectal cancer: Predictive marker of response to chemoradiotherapy? J. Cell. Physiol. 2013, 228, 2343–2349. [Google Scholar] [CrossRef]
- Li, C.-F.; He, H.-L.; Wang, J.-Y.; Huang, H.-Y.; Wu, T.-F.; Hsing, C.-H.; Lee, S.-W.; Lee, H.-H.; Fang, J.-L.; Huang, W.-T.; et al. Fibroblast growth factor receptor 2 overexpression is predictive of poor prognosis in rectal cancer patients receiving neoadjuvant chemoradiotherapy. J. Clin. Pathol. 2014, 67, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Bracht, K.; Nicholls, A.M.; Liu, Y.; Bodmer, W.F. 5-fluorouracil response in a large panel of CRC cell lines is associated with mismatch repair deficiency. Br. J. Cancer 2010, 103, 340–346. [Google Scholar] [CrossRef] [Green Version]
- de Rosa, N.; Rodriguez-Bigas, M.A.; Chang, G.J.; Veerapong, J.; Borras, E.; Krishnan, S.; Bednarski, B.; Messick, C.A.; Skibber, J.M.; Feig, B.W.; et al. DNA mismatch repair deficiency in rectal Cancer: Benchmarking its impact on prognosis, Neoadjuvant response prediction, and clinical Cancer genetics. J. Clin. Oncol. 2016, 34, 3039–3046. [Google Scholar] [CrossRef]
- Charara, M.; Edmonston, T.B.; Burkholder, S.; Walters, R.; Anne, P.; Mitchell, E.; Fry, R.; Boman, B.; Rose, D.; Fishel, R.; et al. Microsatellite status and cell cycle associated markers in rectal cancer patients undergoing a combined regimen of 5-FU and CPT-11 chemotherapy and radiotherapy. Anticancer Res. 2004, 24, 3161–3168. [Google Scholar] [PubMed]
- Llosa, N.J.; Cruise, M.; Tam, A.; Wicks, E.C.; Hechenbleikner, E.M.; Taube, J.M.; Blosser, R.L.; Fan, H.; Wang, H.; Luber, B.S.; et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015, 5, 43–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanani, A.; Veen, T.; Søreide, K. Neoadjuvant immunotherapy in primary and metastatic CRC. Br. J. Surg. 2021, 108, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- André, T.; Shiu, K.K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.; Smith, D.; Garcia-Carbonero, R.; Benavides, M.; Gibbs, P.; et al. Pembrolizumab in microsatellite-instability-high advanced CRC. N. Engl. J. Med. 2020, 383, 2207–2218. [Google Scholar] [CrossRef]
- Shamseddine, A.; Zeidan, Y.H.; El Husseini, Z.; Kreidieh, M.; Al Darazi, M.; Turfa, R.; Kattan, J.; Khalifeh, I.; Mukherji, D.; Temraz, S.; et al. Efficacy and safety-in analysis of short-course radiation followed by mFOLFOX-6 plus avelumab for locally advanced rectal adenocarcinoma. Radiat. Oncol. 2020, 15, 233. [Google Scholar] [CrossRef]
- Wang, H.-C.; Chou, C.-L.; Yang, C.-C.; Huang, W.-L.; Hsu, Y.-C.; Luo, C.-W.; Chen, T.-J.; Li, C.-F.; Pan, M.-R. Over-Expression of CHD4 Is an Independent Biomarker of Poor Prognosis in Patients with Rectal Cancers Receiving Concurrent Chemoradiotherapy. Int. J. Mol. Sci. 2019, 20, 4087. [Google Scholar] [CrossRef] [Green Version]
- Cercek, A.; Santos, F.G.; Roxburgh, C.S.; Ganesh, K.; Ng, S.; Sanchez-Vega, F.; Yaeger, R.; Segal, N.H.; Reidy-Lagunes, D.L.; Varghese, A.M.; et al. Mismatch repair-deficient rectal Cancer and resistance to Neoadjuvant chemotherapy. Clin. Cancer Res. 2020, 26, 3271–3279. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.; Renz, P.; Wegner, R.E.; Finley, G.; Raj, M.; Monga, D.; McCormick, J.; Kirichenko, A. Microsatellite instability (MSI) as an independent predictor of pathologic complete response (PCR) in locally advanced rectal Cancer: A National Cancer Database (NCDB) analysis. Ann. Surg. 2020, 271, 716–723. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Luo, C.-W.; Huang, W.-L.; Wu, C.-C.; Chou, C.-L.; Chen, C.-I.; Chang, S.-J.; Chai, C.-Y.; Wang, H.-C.; Chen, T.-Y.; et al. BMI1-KLF4 axis deficiency improves responses to neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Radiother. Oncol. 2020, 149, 249–258. [Google Scholar] [CrossRef]
- O’Connell, E.; Reynolds, I.S.; McNamara, D.A.; Prehn, J.H.M.; Burke, J.P. Microsatellite instability and response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Surg. Oncol. 2020, 34, 57–62. [Google Scholar] [CrossRef]
- Sakata, S.; Larson, D.W. Targeted Therapy for CRC. Surg. Oncol. Clin. N. Am. 2022, 31, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Demisse, R.; Damle, N.; Kim, E.; Gong, J.; Fakih, M.; Eng, C.; Oesterich, L.; McKenny, M.; Ji, J.; Liu, J.; et al. Neoadjuvant Immunotherapy-Based Systemic Treatment in MMR-Deficient or MSI-High Rectal Cancer: Case Series. J. Natl. Compr. Cancer Netw. 2020, 18, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, F.; Zhao, L.; Fu, X.; Shang, Y.; Gao, Q. Long-term survival of a patient with microsatellite-stable refractory CRC with regorafenib and PD-1 inhibitor sintilimab: A case report and review of literature. BMC Gastroenterol. 2021, 21, 399. [Google Scholar] [CrossRef] [PubMed]
- Trojan, J.; Stintzing, S.; Haase, O.; Koch, C.; Ziegler, P.; Demes, M.; Jelas, I. Complete Pathological Response After Neoadjuvant Short-Course Immunotherapy with Ipilimumab and Nivolumab in Locally Advanced MSI-H/dMMR Rectal Cancer. Oncologist 2021, 26, e2110–e2114. [Google Scholar] [CrossRef] [PubMed]
- Seo, I.; Lee, H.W.; Byun, S.J.; Park, J.Y.; Min, H.; Lee, S.H.; Lee, J.S.; Kim, S.; Bae, S.U. Neoadjuvant chemoradiation alters biomarkers of anticancer immunotherapy responses in locally advanced rectal cancer. J. Immunother. Cancer 2021, 9, e001610. [Google Scholar] [CrossRef]
- Lin, Z.; Cai, M.; Zhang, P.; Li, G.; Liu, T.; Li, X.; Cai, K.; Nie, X.; Wang, J.; Liu, J.; et al. Phase II, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer. J. Immunother. Cancer 2021, 9, e003554. [Google Scholar] [CrossRef]
- Huang, W.-L.; Luo, C.-W.; Chou, C.-L.; Yang, C.-C.; Chen, T.-J.; Li, C.-F.; Pan, M.-R. High Expression of UBE2B as a Poor Prognosis Factor in Patients with Rectal Cancer Following Chemoradiotherapy. Anticancer Res. 2020, 40, 6305–6317. [Google Scholar] [CrossRef]
- Guenot, D.; Guérin, E.; Aguillon-Romain, S.; Pencreach, E.; Schneider, A.; Neuville, A.; Chenard, M.P.; Duluc, I.; Manoir, S.; Brigand, C.; et al. Primary tumour genetic alterations and intra-tumoral heterogeneity are maintained in xenografts of human colon cancers showing chromosome instability. J. Pathol. 2006, 208, 643–652. [Google Scholar] [CrossRef]
- Hidalgo, M.; Amant, F.; Biankin, A.V.; Budinská, E.; Byrne, A.T.; Caldas, C.; Clarke, R.B.; Jong, S.; Jonkers, J.; Mælandsmo, G.M.; et al. Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 2014, 4, 998–1013. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Larsson, P.; Ljuslinder, I.; Öhlund, D.; Myte, R.; Löfgren-Burström, A.; Zingmark, C.; Ling, A.; Edin, S.; Palmqvist, R. Ex vivo Organoid cultures reveal the importance of the tumor microenvironment for maintenance of CRC stem cells. Cancers 2020, 12, 923. [Google Scholar] [CrossRef]
- Nunes, M.; Vrignaud, P.; Vacher, S.; Richon, S.; Lièvre, A.; Cacheux, W.; Weiswald, L.B.; Massonnet, G.; Chateau-Joubert, S.; Nicolas, A.; et al. Evaluating patient-derived CRC xenografts as preclinical models by comparison with patient clinical data. Cancer Res. 2015, 75, 1560–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, C.-W.; Wang, J.-Y.; Hung, W.-C.; Peng, G.; Tsai, Y.-L.; Chang, T.-M.; Chai, C.-Y.; Lin, C.-H.; Pan, M.-R. G9a governs colon cancer stem cell phenotype and chemoradioresistance through PP2A-RPA axis-mediated DNA damage response. Radiother. Oncol. 2017, 124, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; Houdt, W.; Gorp, J.; Taylor-Weiner, A.; Kester, L.; et al. Prospective derivation of a living organoid biobank of CRC patients. Cell 2015, 161, 933–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neal, J.T.; Li, X.; Zhu, J.; Giangarra, V.; Grzeskowiak, C.L.; Ju, J.; Liu, I.H.; Chiou, S.H.; Salahudeen, A.A.; Smith, A.R.; et al. Organoid Modeling of the Tumor Immune Microenvironment. Cell 2018, 175, 1972–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Sun, L.; Liu, M.; Mao, Y. Patient-derived organoids: A promising model for personalized cancer treatment. Gastroenterol. Rep. 2018, 6, 243–245. [Google Scholar] [CrossRef] [Green Version]
- Ganesh, K.; Wu, C.; O’Rourke, K.P.; Szeglin, B.C.; Zheng, Y.; Sauvé, C.G.; Adileh, M.; Wasserman, I.; Marco, M.R.; Kim, A.S.; et al. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 2019, 25, 1607–1614. [Google Scholar] [CrossRef]
- Pasch, C.A.; Favreau, P.F.; Yueh, A.E.; Babiarz, C.P.; Gillette, A.A.; Sharick, J.T.; Karim, M.R.; Nickel, K.P.; DeZeeuw, A.K.; Sprackling, C.M.; et al. Patient-derived Cancer Organoid cultures to predict sensitivity to chemotherapy and radiation. Clin. Cancer Res. 2019, 25, 5376–5387. [Google Scholar] [CrossRef]
- Janakiraman, H.; Zhu, Y.; Becker, S.A.; Wang, C.; Cross, A.; Curl, E.; Lewin, D.; Hoffman, B.J.; Warren, G.W.; Hill, E.G.; et al. Modeling rectal cancer to advance neoadjuvant precision therapy. Int. J. Cancer 2020, 147, 1405–1418. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, X.; Yang, L.; Zhu, J.; Wan, J.; Shen, L.; Xia, F.; Fu, G.; Deng, Y.; Pan, M.; et al. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer. Cell Stem Cell 2020, 26, 17–26. [Google Scholar] [CrossRef]
- Johnson, K.A.; DeStefanis, R.A.; Emmerich, P.B.; Grogan, P.T.; Kratz, J.D.; Makkar, S.K.; Clipson, L.; Deming, D.A. Human Colon Organoids and other laboratory strategies to enhance patient treatment selection. Curr. Treat. Options Oncol. 2020, 21, 35. [Google Scholar] [CrossRef]
- Amodio, V.; Yaeger, R.; Arcella, P.; Cancelliere, C.; Lamba, S.; Lorenzato, A.; Arena, S.; Montone, M.; Mussolin, B.; Bian, Y.; et al. EGFR Blockade Reverts Resistance to KRAS(G12C) Inhibition in CRC. Cancer Discov. 2020, 10, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Matsutani, S.; Shibutani, M.; Maeda, K.; Nagahara, H.; Fukuoka, T.; Nakao, S.; Hirakawa, K.; Ohira, M. Significance of tumor-infiltrating lymphocytes before and after neoadjuvant therapy for rectal cancer. Cancer Sci. 2018, 109, 966–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirjolet, C.; Charon-Barra, C.; Ladoire, S.; Arbez-Gindre, F.; Bertaut, A.; Ghiringhelli, F.; Leroux, A.; Peiffert, D.; Borg, C.; Bosset, J.F.; et al. Tumor lymphocyte immune response to preoperative radiotherapy in locally advanced rectal cancer: The LYMPHOREC study. Oncoimmunology 2018, 7, e1396402. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, K.; Nirei, T.; Sunami, E.; Nagawa, H.; Kitayama, J. Density of CD4(+) and CD8(+) T lymphocytes in biopsy samples can be a predictor of pathological response to chemoradiotherapy (CRT) for rectal cancer. Radiat. Oncol. 2011, 6, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, F.; Mu, D.; Meng, X.; Kong, L.; Zhu, H.; Liu, S.; Zhang, J.; Yu, J. Tumor infiltrating lymphocytes (TILs) before and after neoadjuvant chemoradiotherapy and its clinical utility for rectal cancer. Am. J. Cancer Res. 2015, 5, 2064–2074. [Google Scholar]
- Jarosch, A.; Sommer, U.; Bogner, A.; Reißfelder, C.; Weitz, J.; Krause, M.; Folprecht, G.; Baretton, G.B.; Aust, D.E. Neoadjuvant radiochemotherapy decreases the total amount of tumor infiltrating lymphocytes, but increases the number of CD8+/Granzyme B+ (GrzB) cytotoxic T-cells in rectal cancer. Oncoimmunology 2018, 7, e1393133. [Google Scholar] [CrossRef] [Green Version]
- Miyakita, H.; Sadahiro, S.; Suzuki, T.; Chan, L.F.; Ogimi, T.; Okada, K.; Yamamoto, S.; Kajiwara, H. Tumor-infiltrating lymphocytes in biopsy specimens obtained 7 days after starting Chemoradiotherapy for rectal Cancer are predictors of the response to Chemoradiotherapy. Oncology 2020, 98, 869–875. [Google Scholar] [CrossRef]
- Akiyoshi, T.; Tanaka, N.; Kiyotani, K.; Gotoh, O.; Yamamoto, N.; Oba, K.; Fukunaga, Y.; Ueno, M.; Mori, S. Immunogenomic profiles associated with response to neoadjuvant chemoradiotherapy in patients with rectal cancer. Br. J. Surg. 2019, 106, 1381–1392. [Google Scholar] [CrossRef]
- Akiyoshi, T.; Gotoh, O.; Tanaka, N.; Kiyotani, K.; Yamamoto, N.; Ueno, M.; Fukunaga, Y.; Mori, S. T-cell complexity and density are associated with sensitivity to neoadjuvant chemoradiotherapy in patients with rectal cancer. Cancer Immunol. Immunother. 2021, 70, 509–518. [Google Scholar] [CrossRef]
- Salama, P.; Phillips, M.; Grieu, F.; Morris, M.; Zeps, N.; Joseph, D.; Platell, C.; Iacopetta, B. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in CRC. J. Clin. Oncol. 2009, 27, 186–192. [Google Scholar] [CrossRef]
- Frey, D.M.; Droeser, R.A.; Viehl, C.T.; Zlobec, I.; Lugli, A.; Zingg, U.; Oertli, D.; Kettelhack, C.; Terracciano, L.; Tornillo, L. High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient CRC patients. Int. J. Cancer 2010, 126, 2635–2643. [Google Scholar] [PubMed]
- Shinto, E.; Hase, K.; Hashiguchi, Y.; Sekizawa, A.; Ueno, H.; Shikina, A.; Kajiwara, Y.; Kobayashi, H.; Ishiguro, M.; Yamamoto, J. CD8+ and FOXP3+ tumor-infiltrating T cells before and after chemoradiotherapy for rectal cancer. Ann. Surg. Oncol. 2014, 21, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Posselt, R.; Erlenbach-Wünsch, K.; Haas, M.; Jeßberger, J.; Büttner-Herold, M.; Haderlein, M.; Hecht, M.; Hartmann, A.; Fietkau, R.; Distel, L.V. Spatial distribution of FoxP3+ and CD8+ tumour infiltrating T cells reflects their functional activity. Oncotarget 2016, 7, 60383–60394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, T.; Nishikawa, H.; Wada, H.; Nagano, Y.; Sugiyama, D.; Atarashi, K.; Maeda, Y.; Hamaguchi, M.; Ohkura, N.; Sato, E.; et al. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of CRCs. Nat. Med. 2016, 22, 679–684. [Google Scholar] [CrossRef] [PubMed]
- McCoy, M.J.; Hemmings, C.; Anyaegbu, C.C.; Austin, S.J.; Lee-Pullen, T.F.; Miller, T.J.; Bulsara, M.K.; Zeps, N.; Nowak, A.K.; Lake, R.A.; et al. Tumour-infiltrating regulatory T cell density before neoadjuvant chemoradiotherapy for rectal cancer does not predict treatment response. Oncotarget 2017, 8, 19803–19813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolf, J.; Büttner-Herold, M.; Erlenbach-Wünsch, K.; Posselt, R.; Jessberger, J.; Haderlein, M.; Hecht, M.; Hartmann, A.; Fietkau, R.; Distel, L. Regulatory T cells and cytotoxic T cells close to the epithelial-stromal interface are associated with a favorable prognosis. Oncoimmunology 2020, 9, 1746149. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, S.B.; Powell, A.G.; McSorley, S.T.; Waterston, A.; Going, J.J.; Edwards, J.; McMillan, D.C.; Horgan, P.G. The pretreatment systemic inflammatory response is an important determinant of poor pathologic response for patients undergoing Neoadjuvant therapy for rectal Cancer. Ann. Surg. Oncol. 2017, 24, 1295–1303. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-M.; Huang, M.-Y.; Tsai, H.-L.; Huang, C.-W.; Su, W.-C.; Chang, T.-K.; Chen, Y.-C.; Li, C.-C.; Wang, J.-Y. Pretreatment Neutrophil-to-Lymphocyte Ratio Associated with Tumor Recurrence and Survival in Patients Achieving a Pathological Complete Response Following Neoadjuvant Chemoradiotherapy for Rectal Cancer. Cancers 2021, 13, 4589. [Google Scholar] [CrossRef]
- Caputo, D.; Caricato, M.; Coppola, A.; Vaccara, V.; Fiore, M.; Coppola, R. Neutrophil to lymphocyte ratio (NLR) and derived neutrophil to lymphocyte ratio (d-NLR) predict non-responders and postoperative complications in patients undergoing radical surgery after neo-adjuvant radio-chemotherapy for rectal adenocarcinoma. Cancer Investig. 2016, 34, 440–451. [Google Scholar] [CrossRef]
- Fülöp, Z.Z.; Gurzu, S.; Fülöp, R.L.; Bara, T.; Tímár, J.; Drágus, E.; Jung, I. Prognostic impact of the neutrophil-to-lymphocyte and lymphocyte-to-monocyte ratio, in patients with rectal Cancer: A retrospective study of 1052 patients. J. Pers. Med. 2020, 10, 173. [Google Scholar] [CrossRef]
- Perez, R.O.; São Julião, G.P.; Habr-Gama, A.; Kiss, D.; Proscurshim, I.; Campos, F.G.; Gama-Rodrigues, J.J.; Cecconello, I. The role of carcinoembriogenic antigen in predicting response and survival to neoadjuvant chemoradiotherapy for distal rectal cancer. Dis. Colon Rectum 2009, 52, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Skibber, J.M.; Rodriguez-Bigas, M.A.; Feig, B.W.; Chang, G.J.; Wolff, R.A.; Eng, C.; Krishnan, S.; Janjan, N.A.; Crane, C.H. Predictors of tumor response and downstaging in patients who receive preoperative chemoradiation for rectal cancer. Cancer 2007, 109, 1750–1755. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Liu, Z.; Zhou, X.; Wang, B.; Li, F.; Ma, Y.; Wang, W.; Ma, J.; Wang, Y.; Wang, H.; et al. Preoperative Fibrinogen-Albumin Ratio Index (FARI) is a Reliable Prognosis and Chemoradiotherapy Sensitivity Predictor in Locally Advanced Rectal Cancer Patients Undergoing Radical Surgery Following Neoadjuvant Chemoradiotherapy. Cancer Manag. Res. 2020, 12, 8555–8568. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Liu, Z.; Wang, B.; Li, F.; Meng, Y.; Wang, J.; Wang, Y.; Wang, H.; Zhou, X.; Fu, W. High CFP score indicates poor prognosis and chemoradiotherapy response in LARC patients. Cancer Cell Int. 2021, 21, 205. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Zhang, B.; Song, W.; Zhou, G.; Xie, L.; Yu, D. Pretreatment Inflammatory-Nutritional Biomarkers Predict Responses to Neoadjuvant Chemoradiotherapy and Survival in Locally Advanced Rectal Cancer. Front. Oncol. 2021, 11, 479. [Google Scholar] [CrossRef]
- Fong, W.; Li, Q.; Yu, J. Gut microbiota modulation: A novel strategy for prevention and treatment of CRC. Oncogene 2020, 39, 4925–4943. [Google Scholar] [CrossRef]
- Cheng, W.Y.; Wu, C.-Y.; Yu, J. The role of gut microbiota in cancer treatment: Friend or foe? Gut 2020, 69, 1867–1876. [Google Scholar] [CrossRef]
- Toomey, S.; Gunther, J.; Carr, A.; Weksberg, D.C.; Thomas, V.; Salvucci, M.; Bacon, O.; Sherif, E.M.; Fay, J.; Kay, E.W.; et al. Genomic and transcriptomic characterisation of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cancers 2020, 12, 1808. [Google Scholar] [CrossRef]
- Hamada, T.; Zhang, X.; Mima, K.; Bullman, S.; Sukawa, Y.; Nowak, J.A.; Kosumi, K.; Masugi, Y.; Twombly, T.S.; Cao, Y.; et al. Fusobacterium nucleatum in CRC Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunol. Res. 2018, 6, 1327–1336. [Google Scholar] [CrossRef] [Green Version]
- Jang, B.-S.; Chang, J.H.; Chie, E.K.; Kim, K.; Park, J.W.; Kim, M.J.; Song, E.-J.; Nam, Y.D.; Kang, S.W.; Jeong, S.-Y.; et al. Gut Microbiome Composition Is Associated with a Pathologic Response After Preoperative Chemoradiation in Patients with Rectal Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 736–746. [Google Scholar] [CrossRef]
- Yi, Y.; Shen, L.; Shi, W.; Xia, F.; Zhang, H.; Wang, Y.; Zhang, J.; Wang, Y.; Sun, X.; Zhang, Z.; et al. Gut microbiome components predict response to Neoadjuvant Chemoradiotherapy in patients with locally advanced rectal Cancer: A prospective, Longitudinal Study. Clin. Cancer Res. 2021, 27, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Li, Y.; Xiao, H.; Zhang, S.; Wang, B.; Wang, H.; Li, Y.; Fan, S.; Cui, M. Oral microbiota affects the efficacy and prognosis of radiotherapy for CRC in mouse models. Cell Rep. 2021, 37, 109886. [Google Scholar] [CrossRef] [PubMed]
Author (Reference No.) | Study Year | CTC Type | Correlation with pCR or TRG | Patient Number |
---|---|---|---|---|
Tie et al. [8] * Prospective | 2019 | ctDNA | NO | n = 159 |
Sun et al. [25] | 2013 | 400-/100-bp DNA ratio | YES | n = 103 |
Sun et al. [26] | 2014 | ∆%CTC | YES | n = 34 |
Magni et al. [27] * Prospective | 2014 | ∆CTC | YES | n = 85 |
McDuff et al. [28] | 2021 | ctDNA | YES | n = 29 |
Author (Reference No.) | Study Year | Genes | Patient Number |
---|---|---|---|
Huang et al. [30] | 2013 | DPYD, TYMS, TYMP, TK1 and TK2 | n = 60 |
Kim et al. [33] | 2001 | Ki-67 | n = 23 |
Chen et al. [34] | 2012 | p53 | n = 1830 |
Douglas et al. [36] | 2020 | ARID1A, PMS2, JAK1, CREBBP, MTOR, RB1, PRKAR1A, FBXW7, ATM C11orf65 and KMT2D | n = 17 |
Luna-Pérez et al. [45] | 2000 | KRAS | n = 37 |
Chow et al. [46] | 2016 | KRAS | n = 229 |
Davies et al. [47] | 2011 | Phospho-ERK, AKT | n = 70 |
Li et al. [50] | 2019 | KRAS, PDPK1, PPP2R5C, PPP2R1B and YES1 | n = 6 |
Watanabe et al. [55] | 2014 | LRRIQ3, FRMD3, SAMD5 and TMC7 | n = 52 |
He et al. [56] | 2015 | DNAJC12 | n = 172 |
Huang et al. [57] | 2015 | SMAD3 | n = 86 |
Huang et al. [58] | 2020 | ERCC | n = 20 |
Huang et al. [59] | 2017 | ERCC | n = 86 |
Kim et al. [60] | 2007 | 95 genes | n = 46 |
He et al. [61] | 2014 | REG4 | n = 172 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-H.; Chen, C.-H.; Huang, Y.-H.; Chiang, C.-H.; Huang, M.-Y. Biomarkers of Favorable vs. Unfavorable Responses in Locally Advanced Rectal Cancer Patients Receiving Neoadjuvant Concurrent Chemoradiotherapy. Cells 2022, 11, 1611. https://doi.org/10.3390/cells11101611
Lee H-H, Chen C-H, Huang Y-H, Chiang C-H, Huang M-Y. Biomarkers of Favorable vs. Unfavorable Responses in Locally Advanced Rectal Cancer Patients Receiving Neoadjuvant Concurrent Chemoradiotherapy. Cells. 2022; 11(10):1611. https://doi.org/10.3390/cells11101611
Chicago/Turabian StyleLee, Hsin-Hua, Chien-Hung Chen, Yu-Hsiang Huang, Cheng-Han Chiang, and Ming-Yii Huang. 2022. "Biomarkers of Favorable vs. Unfavorable Responses in Locally Advanced Rectal Cancer Patients Receiving Neoadjuvant Concurrent Chemoradiotherapy" Cells 11, no. 10: 1611. https://doi.org/10.3390/cells11101611
APA StyleLee, H. -H., Chen, C. -H., Huang, Y. -H., Chiang, C. -H., & Huang, M. -Y. (2022). Biomarkers of Favorable vs. Unfavorable Responses in Locally Advanced Rectal Cancer Patients Receiving Neoadjuvant Concurrent Chemoradiotherapy. Cells, 11(10), 1611. https://doi.org/10.3390/cells11101611