Adding Cyclooxygenase Inhibitors to Immune Checkpoint Inhibitors Did Not Improve Outcomes in Metastatic Renal Cell Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Study Measurement
2.3. Statistical Analyses
3. Results
3.1. Demographics and Clinical Characteristics
3.2. OS Analysis by Treatment Received
3.3. PFS Analysis by Treatment Received
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kasherman, L.; Siu, D.H.W.; Woodford, R.; Harris, C.A. Angiogenesis Inhibitors and Immunomodulation in Renal Cell Cancers: The Past, Present, and Future. Cancers 2022, 14, 1406. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Kathuria-Prakash, N.; Drolen, C.; Hannigan, C.A.; Drakaki, A. Immunotherapy and Metastatic Renal Cell Carcinoma: A Review of New Treatment Approaches. Life 2021, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- Zelenay, S.; van der Veen, A.G.; Böttcher, J.P.; Snelgrove, K.J.; Rogers, N.; Acton, S.E.; Chakravarty, P.; Girotti, M.R.; Marais, R.; Quezada, S.A.; et al. Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity. Cell 2015, 162, 1257–1270. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-J.; Khullar, K.; Kim, S.; Yegya-Raman, N.; Malhotra, J.; Groisberg, R.; Crayton, S.H.; Silk, A.W.; Nosher, J.L.; Gentile, M.A.; et al. Effect of cyclo-oxygenase inhibitor use during checkpoint blockade immunotherapy in patients with metastatic melanoma and non-small cell lung cancer. J. Immunother. Cancer 2020, 8, e000889. [Google Scholar] [CrossRef] [PubMed]
- Pu, D.; Yin, L.; Huang, L.; Qin, C.; Zhou, Y.; Wu, Q.; Li, Y.; Zhou, Q.; Li, L. Cyclooxygenase-2 Inhibitor: A Potential Combination Strategy With Immunotherapy in Cancer. Front. Oncol. 2021, 11, 637504. [Google Scholar] [CrossRef] [PubMed]
- Botti, G.; Fratangelo, F.; Cerrone, M.; Liguori, G.; Cantile, M.; Anniciello, A.M.; Scala, S.; D’Alterio, C.; Trimarco, C.; Ianaro, A.; et al. COX-2 expression positively correlates with PD-L1 expression in human melanoma cells. J. Transl. Med. 2017, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; McQuade, J.L.; Rai, R.R.; Park, J.J.; Zhao, S.; Ye, F.; Beckermann, K.E.; Rubinstein, S.M.; Johnpulle, R.; Long, G.V.; et al. The Impact of Nonsteroidal Anti-Inflammatory Drugs, Beta Blockers, and Metformin on the Efficacy of Anti-PD-1 Therapy in Advanced Melanoma. Oncology 2019, 25, e602–e605. [Google Scholar] [CrossRef] [PubMed]
- Sieber, B.; Strauss, J.; Li, Z.; Gatti-Mays, M.E. Concomitant Medication Effects on Immune Checkpoint Inhibitor Efficacy and Toxicity. Front. Oncol. 2022, 12, 836934. [Google Scholar] [CrossRef] [PubMed]
- Deleuze, A.; Saout, J.; Dugay, F.; Peyronnet, B.; Mathieu, R.; Verhoest, G.; Bensalah, K.; Crouzet, L.; Laguerre, B.; Belaud-Rotureau, M.-A.; et al. Immunotherapy in Renal Cell Carcinoma: The Future Is Now. Int. J. Mol. Sci. 2020, 21, 2532. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Şenbabaoğlu, Y.; Gejman, R.S.; Winer, A.G.; Li, M.; Van Allen, E.M.; De Velasco, G.; Miao, D.; Ostrovnaya, I.; Drill, E.; Luna, A.; et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016, 17, 231. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yuan, J.; Liu, L.; Shi, C.; Wang, L.; Tian, F.; Liu, F.; Wang, H.; Shao, C.; Zhang, Q.; et al. Alpha-linolenic acid inhibits human renal cell carcinoma cell proliferation through PPAR-gamma activation and COX-2 inhibition. Oncol. Lett. 2013, 6, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Bruinsma, F.; Jordan, S.; Bassett, J.; Severi, G.; MacInnis, R.; Walsh, J.; Aitken, T.; Jenkins, M.; Carroll, R.; Jefford, M.; et al. Analgesic use and the risk of renal cell carcinoma–Findings from the Consortium for the Investigation of Renal Malignancies (CONFIRM) study. Cancer Epidemiol. 2021, 75, 102036. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Weinberg, V.; Dunlap, S.; Elchinoff, A.; Yu, N.; Bok, R.; Simko, J.; Small, E.J. Maximal COX-2 immunostaining and clinical response to celecoxib and interferon alpha therapy in metastatic renal cell carcinoma. Cancer 2005, 106, 566–575. [Google Scholar] [CrossRef] [PubMed]
Group | COXi | No-COXi | p Value |
---|---|---|---|
No. patients | 120 | 68 | |
Sex, no. (%) | 0.99 | ||
Male | 95 (79) | 53 (78) | |
Female | 25 (21) | 15 (22) | |
Age at diagnosis, median (IQR), years | 61 (55–67) | 57 (48-68) | 0.135 |
Age at treatment, median (IQR), years | 66 (59–71) | 60 (51–71) | 0.011 |
Race, no. (%) | 0.56 | ||
White | 111 (94) | 60 (90) | |
Black | 2 (2) | 2 (3) | |
Hispanic | 4 (3) | 3 (4) | |
Asian | 1 (1) | 2 (3) | |
Type of ICI, no. (%) | 0.81 | ||
PD-1 inhibitors | 70 (58) | 35 (52) | |
PD-1 inhibitors/CTLA4 inhibitors | 24 (20) | 16 (24) | |
PD-1 inhibitors + TKI | 7 (6) | 4 (6) | |
PD-1 + interleukins under clinical trials | 19 (16) | 13 (19) | |
Histology subtype, no. (%) | 1.0 | ||
Clear cell RCC | 115 (96) * | 65 (96) | |
Non–clear-cell RCC | 5 (4.1) * | 3 (4.4) | |
IMDC risk ^, no. (%) | 111 | 60 | 0.112 |
Favorable | 36 (32) * | 11 (18) * | |
Intermediate | 59 (53) * | 41 (68) * | |
Poor risk | 16 (14) * | 8 (13) * | |
Lines of prior therapy, no. (%) | 0.503 | ||
0 | 45 (38) | 31 (46) | |
1 | 35 (29) | 17 (25) | |
2 | 24 (20) | 9 (13) | |
3 or more | 16 (13) | 11 (16) | |
NLR, no., median (95% CI) # | 103, 3.2 (1.4–8.7) | 57, 3.3 (1.2–11.4) | 0.869 |
Predictor | Univariate | Multivariate | ||||||
---|---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |||
NSAID use | 1.03 | 0.70 | 1.5 | 0.90 | 1.60 | 1.02 | 2.52 | 0.04 |
Aspirin use | 1.02 | 0.70 | 1.48 | 0.92 | 1.03 | 0.66 | 1.63 | 0.89 |
Male | 0.85 | 0.55 | 1.32 | 0.47 | — | |||
Age at diagnosis | 1.00 | 0.99 | 1.02 | 0.75 | — | |||
Age at treatment | 1.00 | 0.99 | 1.02 | 0.63 | 1.01 | 0.99 | 1.03 | 0.46 |
Type of ICI, | <0.001 | |||||||
PD-1 inhibitors | Reference | Reference | ||||||
PD-1 inhibitors/CTLA4 inhibitors | 0.91 | 0.57 | 1.45 | 0.69 | 1.06 | 0.53 | 2.12 | 0.88 |
PD-1 inhibitors + TKI | 1.00 | 0.48 | 2.09 | 0.99 | 1.81 | 0.77 | 4.24 | 0.17 |
PD-1 + interleukins under clinical trial | 0.19 | 0.09 | 0.41 | <0.001 | 0.16 | 0.06 | 0.43 | <0.001 |
Histology subtype | 0.0024 | |||||||
Clear cell RCC | Reference | Reference | ||||||
Non-clear cell RCC | 3.03 | 1.47 | 6.25 | 0.003 | 1.78 | 0.65 | 4.92 | 0.26 |
IMDC risk | <0.001 | |||||||
Favorable | Reference | Reference | ||||||
Intermediate | 1.54 | 0.94 | 2.52 | 0.08 | 1.51 | 0.88 | 2.59 | 0.14 |
Poor risk | 5.56 | 2.98 | 10.38 | <0.001 | 4.05 | 2.03 | 8.09 | <0.001 |
Lines of prior therapies | 0.0073 | |||||||
0 | Reference | Reference | ||||||
1 | 1.33 | 0.82 | 2.14 | 0.25 | 0.79 | 0.40 | 1.54 | 0.49 |
2 | 2.12 | 1.27 | 3.5 | 0.004 | 0.80 | 0.37 | 1.74 | 0.57 |
3 or more | 2.10 | 1.22 | 3.62 | 0.008 | 1.60 | 0.73 | 3.54 | 0.24 |
High NLR | 1.15 | 1.09 | 1.21 | <0.001 | 1.12 | 1.05 | 1.19 | <0.001 |
Predictor | Univariate | Multivariate | ||||||
---|---|---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |||
NSAID use | 1.23 | 0.89 | 1.69 | 0.21 | 1.52 | 1.04 | 2.22 | 0.031 |
Aspirin use | 1.18 | 0.86 | 1.61 | 0.30 | 1.39 | 0.95 | 2.04 | 0.087 |
Male | 1.05 | 0.72 | 1.53 | 0.79 | — | |||
Age at diagnosis | 1.00 | 0.99 | 1.01 | 0.91 | — | |||
Age at treatment | 1.00 | 0.99 | 1.02 | 0.78 | 0.99 | 0.97 | 1.01 | 0.51 |
Type of ICI | <0.001 | |||||||
PD-1 inhibitors | Reference | Reference | ||||||
PD-1 inhibitors/CTLA4 inhibitors | 0.94 | 0.63 | 1.39 | 0.74 | 1.26 | 0.66 | 2.42 | 0.48 |
PD-1 inhibitors + TKI | 0.76 | 0.40 | 1.46 | 0.42 | 1.16 | 0.56 | 2.42 | 0.69 |
PD-1 + interleukins under clinical trial | 0.38 | 0.23 | 0.61 | <0.001 | 0.43 | 0.22 | 0.85 | 0.016 |
Histology subtype | 0.22 | |||||||
Clear cell RCC | Reference | — | ||||||
Non-clear cell RCC | 1.80 | 0.88 | 3.68 | 0.105 | — | |||
IMDC risk | 0.02 | |||||||
Favorable | Reference | Reference | ||||||
Intermediate | 1.11 | 0.77 | 1.62 | 0.57 | 1.25 | 0.82 | 1.9 | 0.31 |
Poor risk | 2.06 | 1.19 | 3.55 | 0.009 | 1.49 | 0.82 | 2.8 | 0.19 |
Lines of prior therapies | 0.008 | |||||||
0 | Reference | Reference | ||||||
1 | 1.62 | 1.10 | 2.39 | 0.014 | 1.28 | 0.7 | 2.33 | 0.42 |
2 | 1.73 | 1.11 | 2.69 | 0.016 | 1.11 | 0.54 | 2.3 | 0.78 |
3 and more | 1.95 | 1.23 | 3.09 | 0.005 | 1.66 | 0.81 | 3.4 | 0.17 |
High NLR | 1.18 | 1.11 | 1.25 | <0.001 | 1.15 | 1.08 | 1.23 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Kumar, P.; Adashek, J.J.; Skelton, W.P., IV; Li, J.; Vosoughi, A.; Chahoud, J.; Manley, B.J.; Spiess, P.E. Adding Cyclooxygenase Inhibitors to Immune Checkpoint Inhibitors Did Not Improve Outcomes in Metastatic Renal Cell Carcinoma. Cells 2022, 11, 2505. https://doi.org/10.3390/cells11162505
Zhang Y, Kumar P, Adashek JJ, Skelton WP IV, Li J, Vosoughi A, Chahoud J, Manley BJ, Spiess PE. Adding Cyclooxygenase Inhibitors to Immune Checkpoint Inhibitors Did Not Improve Outcomes in Metastatic Renal Cell Carcinoma. Cells. 2022; 11(16):2505. https://doi.org/10.3390/cells11162505
Chicago/Turabian StyleZhang, Yumeng, Premsai Kumar, Jacob J. Adashek, William P. Skelton, IV, Jiannong Li, Aram Vosoughi, Jad Chahoud, Brandon J. Manley, and Philippe E. Spiess. 2022. "Adding Cyclooxygenase Inhibitors to Immune Checkpoint Inhibitors Did Not Improve Outcomes in Metastatic Renal Cell Carcinoma" Cells 11, no. 16: 2505. https://doi.org/10.3390/cells11162505
APA StyleZhang, Y., Kumar, P., Adashek, J. J., Skelton, W. P., IV, Li, J., Vosoughi, A., Chahoud, J., Manley, B. J., & Spiess, P. E. (2022). Adding Cyclooxygenase Inhibitors to Immune Checkpoint Inhibitors Did Not Improve Outcomes in Metastatic Renal Cell Carcinoma. Cells, 11(16), 2505. https://doi.org/10.3390/cells11162505