The Usefulness of Extended Inflammation Parameters and Systemic Inflammatory Response Markers in the Diagnostics of Autoimmune Hepatitis
Abstract
:1. Introduction
2. Material and Methods
2.1. Characteristics of Patients
2.2. Apparatus and Methodology
2.3. Statistical Methods
3. Results
3.1. Extended Inflammation Parameters and Systemic Inflammatory Response Markers and Serous Indirect Markers of Liver Fibrosis in Diagnostics of Autoimmune Hepatitis
3.2. The Correlation between EIP and Systemic Inflammatory Response Markers and Serous Indirect Markers of Liver Fibrosis in Study Group (AIH)
3.3. The Correlation between EIP and Systemic Inflammatory Response Markers and Serous Indirect Markers of Liver Fibrosis in Both the AIH-Non-LC Group and AIH-LC Group
3.4. Assessment of the Diagnostic Usefulness of Selected Laboratory Parameters in the Differentiation of LC (Liver Cirrhosis) and Non-LC (Non-Liver Cirrhosis) in AIH
3.5. Comparison of Selected Laboratory Variables, including Extended Inflammation Parameters as well as Calculated Indicators—Systemic Inflammatory Response Markers and Serous Indirect Markers of Liver Fibrosis Depending on Applied Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puustinen, L.; Barner-Rasmussen, N.; Pukkala, E.; Färkkilä, M. Incidence, prevalence, and causes of death of patients with autoimmune hepatitis: A nationwide register-based cohort study in Finland. Dig. Liver Dis. 2019, 51, 1294–1299. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Zeniya, M. Acute presentation of autoimmune hepatitis: Does it exist? A published work review. Hepatol. Res. 2011, 41, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Covelli, C.; Sacchi, D.; Sarcognato, S.; Cazzagon, N.; Grillo, F.; Baciorri, F.; Fanni, D.; Cacciatore, M.; Maffeis, V.; Guido, M. Pathology of autoimmune hepatitis. Pathologica 2021, 113, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Liberal, R.; Longhi, M.S.; Mieli-Vergani, G.; Vergani, D. Pathogenesis of autoimmune hepatitis. Best Pract. Res. Clin. Gastroenterol. 2011, 25, 653–664. [Google Scholar] [CrossRef]
- Fan, J.H.; Liu, G.F.; Lv, X.D.; Zeng, R.Z.; Zhan, L.L.; Lv, X.P. Pathogenesis of autoimmune hepatitis. World J. Hepatol. 2021, 13, 879–886. [Google Scholar] [CrossRef]
- Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin. Gastroenterol. Hepatol. 2020, 18, 2650–2666. [Google Scholar] [CrossRef]
- Kowalska-Kępczyńska, A.; Kasprzycka, W.; Donica, H. Innovative assessment practices of inflammation. Eur. J. Med. Technol. 2020, 1, 26. [Google Scholar]
- Kowalska-Kępczyńska, A.; Mleczko, M.; Domerecka, W.; Mazurek, M.; Krasowska, D.; Małecka-Massalska, T.; Donica, H. Extended Inflammation Parameters (EIP) as Markers of Immune System Cell Activation in Psoriasis. Int. J. Inflamm. 2021, 14, 9216528. [Google Scholar] [CrossRef]
- Kowalska-Kępczyńska, A.; Mleczko, M.; Domerecka, W.; Krasowska, D.; Donica, H. Assessment of Immune Cell Activation in Pemphigus. Cells 2022, 11, 1912. [Google Scholar] [CrossRef]
- Kowalska-Kępczyńska, A.; Domerecka, W.; Juszczyńska, M.; Donica, H. The application of new immune cell activation markers in the diagnosis of various disease states. Eur. J. Med. Technol. 2020, 4, 29. [Google Scholar]
- Kim, D.S.; Shin, D.; Lee, M.S.; Kim, H.J.; Kim, D.Y.; Kim, S.M.; Lee, M.G. Assessments of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in Korean patients with psoriasis vulgaris and psoriatic arthritis. J. Dermatol. 2016, 43, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-D.; Sun, Y.I.; Guo, J.; Huang, Y.-L.; Qin, B.-D.; Gao, Q.; Qin, Q.; Deng, A.-M.; Zhong, R.-Q. Red blood cell distribution width and neutrophil/lymphocyte ratio are positively correlated with disease activity in primary Sjögren’s syndrome. Clin. Biochem. 2014, 47, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, Z.; Lin, F.; Ren, Y.; Liu, D.; Zhong, R.; Liang, Y. Comparisons of neutrophil-, monocyte-, eosinophil-, and basophil-lymphocyte ratios among various systemic autoimmune rheumatic diseases. Acta Pathol. Microbiol. Scand. 2017, 125, 863–871. [Google Scholar] [CrossRef]
- Chen, L.; Zeng, H.; Yang, J.; Lu, Y.; Zhang, D.; Wang, J.; Kuang, C.; Zhu, S.; Wang, M.; Ma, X. Survival and prognostic analysis of preoperative inflammatory markers in patients undergoing surgical resection for laryngeal squamous cell carcinoma. BMC Cancer 2018, 18, 816. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Nakayama, K.; Tatsumi, N.; Minamoto, T.; Ishibashi, T.; Ohnishi, K.; Yamashita, H.; Ono, R.; Sasamori, H.; Razia, S.; et al. Prognostic significance of pre-treatment neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios in non-surgically treated uterine cervical carcinoma. Mol. Clin. Oncol. 2018, 9, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Jeon, S.R.; Kim, H.G.; Moon, J.R.; Lee, T.H.; Jang, J.Y.; Cho, J.-H.; Park, J.S.; Park, H.; Lee, K.-H.; et al. The role of platelet to lymphocyte ratio and neutrophil to lymphocyte ratio in ulcerative colitis. Intest. Res. 2021, 19, 62–70. [Google Scholar] [CrossRef]
- Sari, I.; Sunbul, M.; Mammadov, C.; Durmus, E.; Bozbay, M.; Kivrak, T.; Gerin, F. Relation of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio with coronary artery disease severity in patients undergoing coronary angiography. Pol. Heart J. 2015, 73, 1310–1316. [Google Scholar] [CrossRef]
- Meng, J.; Xu, H.; Liu, X. Increased red cell width distribution to lymphocyte ratio is a predictor of histologic severity in primary biliary cholangitis. Medicine 2018, 97, e13431. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Liu, H. RDW, NLR and RLR in predicting liver failure and prognosis in patients with hepatitis E virus infection. Clin. Biochem. 2019, 63, 24–31. [Google Scholar] [CrossRef]
- He, Q.; He, Q.; Qin, X. The relationship between inflammatory marker levels and hepatitis C virus severity. Gastroenterol. Res. Pract. 2016, 2016, 2978479. [Google Scholar] [CrossRef]
- Rice, J.; Dodge, J.L.; Bambha, K.M.; Bajaj, J.S.; Reddy, K.R.; Gralla, J.; Ganapathy, D.; Mitrani, R.; Reuter, B.; Palecki, J.; et al. Neutrophil-to-lymphocyte ratio associates independently with mortality in hospitalized patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2018, 16, 1786.e1–1791.e1. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Kronbichler, A.; Park, D.D.; Park, Y.; Moon, H.; Kim, H.; Choi, J.H.; Choi, Y.; Shim, S.; Lyu, I.S.; et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review. Autoimmun. Rev. 2017, 16, 1160–1173. [Google Scholar] [CrossRef] [PubMed]
- Fousert, E.; Toes, R.; Desai, J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells 2020, 9, 915. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; He, Y. The role of neutrophil to lymphocyte ratio for the assessment of liver fibrosis and cirrhosis: A systematic review. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 503–513. [Google Scholar] [CrossRef]
- Kwon, J.H.; Jang, J.W.; Kim, Y.W.; Lee, S.W.; Nam, S.W.; Jaegal, D.; Lee, S.; Bae, S.H. The usefulness of C-reactive protein and neutrophil-to-lymphocyte ratio for predicting the outcome in hospitalized patients with liver cirrhosis. BMC Gastroenterol. 2015, 15, 146. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Yu, J.; Tan, L.; Wu, Y.; Tian, Y.; Wu, Q.; Duan, X.; Yu, L. Noninvasive indices for monitoring disease course in Chinese patients with autoimmune hepatitis. Clin. Chim. Acta 2018, 486, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wei, G.; Chang, Q.; Peng, R.; Shi, G.; Zheng, P.; He, F.; Wang, W.; Ming, L. The platelet-to-lymphocyte ratio, superior to the neutrophil-to-lymphocyte ratio, correlates with hepatitis C virus infection. Int. J. Infect. Dis. 2016, 45, 72–77. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Gao, P. Red Blood Cell Distribution Width-to-Platelet Ratio and Other Laboratory Indices Associated with Severity of Histological Hepatic Fibrosis in Patients with Autoimmune Hepatitis: A Retrospective Study at a Single Center. Med. Sci. Monit. 2020, 26, e927946. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Xia, J.; Yan, X.; Feng, Y.; Li, L.; Chen, J.; Liu, D.; Ding, W.; Yang, Y.; et al. Red cell distribution width to platelet ratio predicts liver fibrosis in patients with autoimmune hepatitis. Medicine 2020, 99, e21408. [Google Scholar] [CrossRef]
- Chen, W.; Wang, J.B.; Abnet, C.C.; Dawsey, S.M.; Fan, J.H.; Yin, L.Y.; Yin, J.; Taylor, P.R.; Qiao, Y.L.; Freedman, N.D. Association between C-reactive protein, incident liver cancer, and chronic liver disease mortality in the Linxian Nutrition Intervention Trials: A nested case-control study. Cancer Epidemiol. Biomark. Prev. 2015, 24, 386–392. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Wan, G.; Sang, Y.; Chang, Y.; Wang, X.; Zeng, H. Neutrophil–lymphocyte ratio: A novel predictor for short-term prognosis in acute-on-chronic hepatitis B liver failure. J. Viral Hepat. 2014, 21, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Abu Omar, Y.; Randhawa, T.; Attar, B.; Agrawal, R.; Wang, Y.; Pichardo, R.; Majeed, M.B.; Patel, S.A. Prognostic Value of Neutrophil-lymphocyte Ratio in Patients with Severe Alcoholic Hepatitis. Cureus 2019, 11, e6141. [Google Scholar] [CrossRef] [PubMed]
- Kalra, A.; Wedd, J.P.; Bambha, K.M.; Gralla, J.; Golden-Mason, L.; Collins, C.; Rosen, H.R.; Biggins, S.W. Neutrophil-to-lymphocyte ratio correlates with proinflammatory neutrophils and predicts death in low model for end-stage liver disease patients with cirrhosis. Liver Transplant. 2017, 23, 155–165. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.Y.; Kang, S.H. The gamma-glutamyltransferase to platelet ratio and the FIB-4 score are noninvasive markers to determine the severity of liver fibrosis in chronic hepatitis B infection. Br. J. Biomed. Sci. 2018, 75, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Henriot, I.; Launay, E.; Boubaya, M. New parameters on the hematology analyzer XN-10 (Sysmex™) allow to distinguish childhood bacterial and viral infections. Int. J. Lab. Hematol. 2016, 39, 14–20. [Google Scholar] [CrossRef]
- Park, S.H.; Park, C.-J.; Lee, B.-R.; Nam, K.-S.; Kim, M.-J.; Han, M.-Y.; Kim, Y.J.; Cho, Y.-U.; Jang, S. Sepsis affects most routine and cell population data (CPD) obtained using the Sysmex XN-2000 blood cell analyzer: Neutrophil-related CPD NE-SFL and NE-WY provide useful information for detecting sepsis. Int. J. Lab. Hematol. 2015, 37, 190–198. [Google Scholar] [CrossRef]
- Luo, Y.; Lin, J.; Chen, H.; Zhang, J.; Peng, S.; Kuang, M. Utility of neut-X, neut-Y and neut-Z parameters for rapidly assessing sepsis in tumor patients. Clin. Chim. Acta 2013, 422, 5–9. [Google Scholar] [CrossRef]
- Lai, Q.; Melandro, F.; Larghi Laureiro, Z.; Giovanardi, F.; Corradini, S.G.; Ferri, F.; Hassan, R.; Rossi, M.; Mennini, G. Platelet-to-lymphocyte ratio in the setting of liver transplantation for hepatocellular cancer: A systematic review and meta-analysis. World J. Gastroenterol. 2018, 24, 1658–1665. [Google Scholar] [CrossRef]
- Recio-Boiles, A.; Nallagangula, A.; Veeravelli, S.; Vondrak, J.; Saboda, K.; Roe, D.; Elquza, E.; McBride, A.; Babiker, H.M. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios inversely correlate to clinical and pathologic stage in patients with resectable pancreatic ductal adenocarcinoma. Ann. Pancreat. Cancer 2019, 2, 8. [Google Scholar] [CrossRef]
- Kitano, Y.; Yamashita, Y.I.; Yamamura, K.; Arima, K.; Kaida, T.; Miyata, T.; Nakagawa, S.; Mima, K.; Imai, K.; Hashimoto, D.; et al. Effects of Preoperative Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios on Survival in Patients with Extrahepatic Cholangiocarcinoma. Anticancer Res. 2017, 37, 3229–3237. [Google Scholar] [CrossRef]
Demographic Data | ||
---|---|---|
Variable | AIH [n = 30] | Control [n = 30] |
Sex | ||
Women | 27 (90%) | 25 (83.33%) |
Men | 3 (10%) | 5 (16.67%) |
Age [years] Median (range) | 56 (23–80) | 43 (21–69) |
BMI [kg/m2] Median (range) | 24.91 (18.67–37.11) | 22.60 (17–29.7) |
Clinical Data | ||
Disease duration [years] Median (range) | 13 (1–25) | - |
Treatment Steroids Immunosuppressive agents Steroids + Immunosuppressive agents | 19 (63.33%) 1 (3.33%) 10 (33.34%) | - - - |
Family history of AIH Negative Positive | 22 (73.33%) 8 (26.67%) | - - |
LC Non-LC | 10 (33.33%) 20 (66.67%) | - - |
Smoking status Smoker Non-smoker | 2 (6.67%) 28 (93.33%) | 5 (16.67%) 25 (83.33%) |
Excessive alcohol consumption Yes No | 0 (0%) 30 (100%) | 2 (6.67%) 28 (93.33%) |
Allergies Yes No | 6 (20%) 24 (80%) | - - |
Comorbidities Yes * No | 15 (50%) 15 (50%) | - - |
Variable | Sensitivity (%) | Specificity (%) | Cut-Off | AUC [95%CI] | p |
---|---|---|---|---|---|
RBC [106/µL] | 36.67 | 100 | ≤4.17 | 0.64 [0.51–0.76] | 0.0495 * |
MCV [fl] | 76.67 | 73.33 | >88.10 | 0.81 [0.69–0.90] | <0.0001 * |
PLT [103/µL] | 40 | 100 | ≤163 | 0.72 [0.59–0.83] | 0.0014 * |
RDW-SD [fl] | 60 | 100 | >45.60 | 0.84 [0.73–0.92] | <0.0001 * |
MPV [fl] | 86.67 | 60 | >10.20 | 0.79 [0.67–0.88] | <0.0001 * |
WBC [103/µL] | 46.67 | 93.33 | >6.94 | 0.68 [0.55–0.80] | 0.0107 * |
NEUT [103/µL] | 80 | 76.67 | >3.26 | 0.78 [0.66–0.88] | <0.0001 |
LYMPH [103/µL] | 63.33 | 96.67 | ≤1.49 | 0.78 [0.66–0.88] | <0.0001 * |
MONO [103/µL] | 56.67 | 73.33 | >0.54 | 0.62 [0.48–0.74] | 0.1206 |
IG [103/µL] | 66.67 | 96.67 | >0.02 | 0.79 [0.67–0.89] | <0.0001 * |
NEUT-RI [FI] | 83.33 | 73.33 | >44.50 | 0.86 [0.74–0.93] | <0.0001 * |
NEUT-GI [SI] | 73.33 | 86.67 | >151.10 | 0.80 [0.68–0.89] | <0.0001 * |
AS-LYMP [103/µL] | 0 | 100 | >0.00 | 0.50 [0.37–0.63] | 1.0000 |
RE-LYMP [103/µL] | 50 | 100 | >0.07 | 0.78 [0.66–0.88] | <0.0001 * |
CRP [mg/L] | 82.76 | 53.33 | >1.50 | 0.72 [0.58–0.82] | 0.0014 * |
MPR | 66.67 | 76.67 | >0.04 | 0.77 [0.64–0.87] | <0.0001 * |
PLR | 100 | 100 | ≤36.73 | 1.00 [0.94–1.00] | <0.0001 * |
RPR | 56.67 | 90 | >0.06 | 0.75 [0.63–0.86] | 0.0001 * |
RLR | 100 | 100 | ≤2.04 | 1.00 [0.94–1.00] | <0.0001 * |
NLR | 70 | 96.67 | >2.37 | 0.84 [0.72–0.92] | <0.0001 * |
GPR | 80 | 96.67 | >0.43 | 0.87 [0.76–0.94] | <0.0001 * |
AAR | 90 | 30 | ≤1.50 | 0.85 [0.45–0.71] | 0.2850 |
APRI | 86.67 | 96.67 | >0.44 | 0.94 [0.54–0.98] | <0.0001 * |
FIB-4 | 70 | 86.67 | >1.32 | 0.84 [0.72–0.92] | <0.0001 * |
Variable | Sensitivity (%) | Specificity (%) | Cut-Off | AUC [95%CI] | p |
---|---|---|---|---|---|
RBC [106/µL] | 65 | 80 | >4.32 | 0.65 [0.46–0.82] | 0.1741 |
MCV [fl] | 100 | 40 | >86.70 | 0.15 [0.37–0.74] | 0.6631 |
PLT [103/µL] | 80 | 100 | >201.00 | 0.94 [0.77–0.99] | <0.0001 * |
RDW-SD [fl] | 50 | 80 | ≤45.60 | 0.62 [0.43–0.79] | 0.2459 |
MPV [fl] | 65 | 70 | ≤11.30 | 0.11 [0.44–0.81] | 0.2009 |
WBC [103/µL] | 80 | 100 | >6.20 | 0.92 [0.76–0.99] | <0.0001 * |
NEUT [103/µL] | 50 | 100 | <1.84 | 0.78 [0.59–0.91] | 0.0069 * |
LYMPH [103/µL] | 100 | 80 | >0.91 | 0.90 [0.73–0.98] | <0.0001 * |
MONO [103/µL] | 55 | 100 | >0.58 | 0.79 [0.60–0.92] | 0.0006 * |
IG [103/µL] | 95 | 50 | >0.01 | 0.77 [0.58–0.90] | 0.0072 * |
NEUT-RI [FI] | 90 | 50 | ≤49.50 | 0.58 [0.39–0.76] | 0.5368 |
NEUT-GI [SI] | 65 | 100 | >152.80 | 0.89 [0.73–0.98] | <0.0001 * |
AS-LYMP [103/µL] | 0 | 100 | >0.00 | 0.50 [0.31–0.69] | 1.0000 |
RE-LYMP [103/µL] | 85 | 60 | ≤0.09 | 0.68 [0.48–0.84] | 0.1550 |
CRP [mg/L] | 60 | 66.67 | ≤3.00 | 0.55 [0.36–0.74] | 0.6623 |
MPR | 75 | 100 | ≤0.05 | 0.93 [0.78–0.99] | <0.0001 * |
PLR | 75 | 90 | >7.28 | 0.86 [0.68–0.96] | <0.0001 * |
RPR | 85 | 90 | ≤0.08 | 0.91 [0.75–0.98] | <0.0001 * |
RLR | 100 | 30 | ≤1.37 | 0.57 [0.38–0.75] | 0.5921 |
NLR | 35 | 50 | >3.29 | 0.50 [0.31–0.69] | 1.0000 |
GPR | 25 | 90 | ≤0.40 | 0.51 [0.33–0.70] | 0.8993 |
AAR | 50 | 90 | ≤0.84 | 0.73 [0.54–0.88] | 0.0172 * |
APRI | 55 | 90 | ≤0.93 | 0.72 [0.53–0.87] | 0.0209 * |
FIB-4 | 60 | 100 | ≤1.47 | 0.83 [0.65–0.94] | <0.0001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domerecka, W.; Kowalska-Kępczyńska, A.; Homa-Mlak, I.; Michalak, A.; Mlak, R.; Mazurek, M.; Cichoż-Lach, H.; Małecka-Massalska, T. The Usefulness of Extended Inflammation Parameters and Systemic Inflammatory Response Markers in the Diagnostics of Autoimmune Hepatitis. Cells 2022, 11, 2554. https://doi.org/10.3390/cells11162554
Domerecka W, Kowalska-Kępczyńska A, Homa-Mlak I, Michalak A, Mlak R, Mazurek M, Cichoż-Lach H, Małecka-Massalska T. The Usefulness of Extended Inflammation Parameters and Systemic Inflammatory Response Markers in the Diagnostics of Autoimmune Hepatitis. Cells. 2022; 11(16):2554. https://doi.org/10.3390/cells11162554
Chicago/Turabian StyleDomerecka, Weronika, Anna Kowalska-Kępczyńska, Iwona Homa-Mlak, Agata Michalak, Radosław Mlak, Marcin Mazurek, Halina Cichoż-Lach, and Teresa Małecka-Massalska. 2022. "The Usefulness of Extended Inflammation Parameters and Systemic Inflammatory Response Markers in the Diagnostics of Autoimmune Hepatitis" Cells 11, no. 16: 2554. https://doi.org/10.3390/cells11162554
APA StyleDomerecka, W., Kowalska-Kępczyńska, A., Homa-Mlak, I., Michalak, A., Mlak, R., Mazurek, M., Cichoż-Lach, H., & Małecka-Massalska, T. (2022). The Usefulness of Extended Inflammation Parameters and Systemic Inflammatory Response Markers in the Diagnostics of Autoimmune Hepatitis. Cells, 11(16), 2554. https://doi.org/10.3390/cells11162554