Effects of Novel Photosynthetic Inhibitor [CuL2]Br2 Complex on Photosystem II Activity in Spinach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thylakoids Isolation
2.2. PSII Membranes Isolation
2.3. Photosynthetic Oxygen Evolution Measurements
2.4. Photoinduced Changes of the PSII Chlorophyll Fluorescence Yield Measurements
2.5. Interaction between PSII and PSI through the Electron Transport Chain Measurements
2.6. Aromatic Amino Acids Fluorescence Measurements
3. Results
3.1. Synthesis of Ligand and the Copper(II) Complex [CuL2]Br2
3.1.1. Synthesis of Ligand
3.1.2. Electrochemical Synthesis of the Copper(II) Complex [CuL2]Br2
3.2. Effects of [CuL2]Br2 on the Photosynthetic Oxygen Evolution
3.3. Effects of [CuL2]Br2 on the Photoinduced Changes of the PSII Chlorophyll Fluorescence Yield
3.4. Dependence of the PSII Membranes Photochemical Activity Inhibition on [CuL2]Br2 Concentration
3.5. Graphic Determination of Ki Value
3.6. Graphic Estimation of the [CuL2]Br2 Binding Sites Number
3.7. Effects of [CuL2]Br2 on Interaction between PSII and PSI through the Electron Transport Chain Measurements
3.8. Effects of [CuL2]Br2 on the Aromatic Amino Acids Intrinsic Fluorescence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, N.; Mukhtar, Z. Genetic Manipulations in Crops: Challenges and Opportunities. Genomics 2017, 109, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Schütte, G.; Eckerstorfer, M.; Rastelli, V.; Reichenbecher, W.; Restrepo-Vassalli, S.; Ruohonen-Lehto, M.; Saucy, A.G.W.; Mertens, M. Herbicide Resistance and Biodiversity: Agronomic and Environmental Aspects of Genetically Modified Herbicide-Resistant Plants. Environ. Sci. Eur. 2017, 29, s12302–s123016. [Google Scholar] [CrossRef]
- Nelson, N.; Junge, W. Structure and Energy Transfer in Photosystems of Oxygenic Photosynthesis. Annu. Rev. Biochem. 2015, 84, 659–683. [Google Scholar] [CrossRef]
- Vass, I. Molecular Mechanisms of Photodamage in the Photosystem II Complex. Biochim. Biophys. Acta Bioenerg. 2012, 1817, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Pospíšil, P. Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress. Front. Plant Sci. 2016, 7, 1950. [Google Scholar] [CrossRef]
- Zharmukhamedov, S.K.; Allakhverdiev, S.I. Chemical Inhibitors of Photosystem II. Russ. J. Plant Physiol. 2021, 68, 212–227. [Google Scholar] [CrossRef]
- Semelkova, L.; Konecna, K.; Paterova, P.; Kubicek, V.; Kunes, J.; Novakova, L.; Marek, J.; Naesens, L.; Pesko, M.; Kralova, K.; et al. Synthesis and Biological Evaluation of N-Alkyl-3-(Alkylamino)-Pyrazine-2-Carboxamides. Molecules 2015, 20, 8687–8711. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J.; Kralova, K.; Pesko, M.; Kos, J. Ring-Substituted 8-Hydroxyquinoline-2-Carboxanilides as Photosystem II Inhibitors. Bioorganic Med. Chem. Lett. 2016, 26, 3862–3865. [Google Scholar] [CrossRef]
- Gonec, T.; Kralova, K.; Pesko, M.; Jampilek, J. Antimycobacterial N-Alkoxyphenylhydroxynaphthalenecarboxamides Affecting Photosystem II. Bioorganic Med. Chem. Lett. 2017, 27, 1881–1885. [Google Scholar] [CrossRef]
- Gonec, T.; Kos, J.; Pesko, M.; Dohanosova, J.; Oravec, M.; Liptaj, T.; Kralova, K.; Jampilek, J. Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II. Molecules 2017, 22, 1709. [Google Scholar] [CrossRef] [Green Version]
- Karacan, M.S.; Rodionova, M.V.; Tunç, T.; Venedik, K.B.; Mamaş, S.; Shitov, A.V.; Zharmukhamedov, S.K.; Klimov, V.V.; Karacan, N.; Allakhverdiev, S.I. Characterization of Nineteen Antimony(III) Complexes as Potent Inhibitors of Photosystem II, Carbonic Anhydrase, and Glutathione Reductase. Photosynth. Res. 2016, 130, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Karki, L.; Lakshmi, K.V.; Szalai, V.A.; Brudvig, G.W. Low-Temperature Turnover Control of Photosystem II Using Novel Metal- Containing Redox-Active Herbicides. J. Am. Chem. Soc. 2000, 122, 5180–5188. [Google Scholar] [CrossRef]
- Santillo, S.; Moriello, A.S.; Di Maio, V. Electrophysiological Variability in the SH-SY5Y Cellular Line. Gen. Physiol. Biophys. 2014, 33, 121–129. [Google Scholar] [CrossRef]
- Karacan, M.S.; Zharmukhamedov, S.K.; Mamaş, S.; Kupriyanova, E.V.; Shitov, A.V.; Klimov, V.V.; Özbek, N.; Özmen, Ü.; Gündüzalp, A.; Schmitt, F.-J.; et al. Screening of Novel Chemical Compounds as Possible Inhibitors of Carbonic Anhydrase and Photosynthetic Activity of Photosystem II. J. Photochem. Photobiol. B Biol. 2014, 137, 156–167. [Google Scholar] [CrossRef]
- Sersen, F.; Kral’Ova, K.; Bumbalova, A.; Svajlenova, O. The Effect of Cu(II) Ions Bound with Tridentate Schiff Base Ligands upon the Photosynthetic Apparatus. J. Plant Physiol. 1997, 151, 299–305. [Google Scholar] [CrossRef]
- Rodionova, M.V.; Zharmukhamedov, S.K.; Karacan, M.S.; Venedik, K.B.; Shitov, A.V.; Tunç, T.; Mamaş, S.; Kreslavski, V.D.; Karacan, N.; Klimov, V.V.; et al. Evaluation of New Cu(II) Complexes as a Novel Class of Inhibitors against Plant Carbonic Anhydrase, Glutathione Reductase, and Photosynthetic Activity in Photosystem II. Photosynth. Res. 2017, 133, 139–153. [Google Scholar] [CrossRef]
- Anderegg, G. Critical Survey of Stability Constants of EDTA Complexes. Critical Evaluation of Equilibrium Constants in Solution: Stability Constants of Metal Complexes, 1st ed.; International Union of Pure and Applied Chemistry (IUPAC), Pergamon Press: Oxford, UK; New York, NY, USA; Paris, France; Frankfurt, Germany, 1977; ISBN 978-0-08-022009-3, eBook ISBN: 9781483137940. [Google Scholar] [CrossRef]
- Martell, A.E.; Smith, R.M. Critical Stability Constants; Springer: New York, NY, USA, 1982; pp. 1–604. ISBN 978-1-4615-6761-5. [Google Scholar]
- Smith, R.M.; Martell, A.E. Critical Stability Constants: Second Supplement; Springer: New York, NY, USA, 1989; pp. 1–647. ISBN 978-1-4615-6764-6. [Google Scholar]
- Good, N.E.; Winget, G.D.; Winter, W.; Conolly, N.T.; Izawa, S.; Singh, R.M.M. Hydrogen Ion Buffers for Biological Research. Biochemistry 1966, 5, 467–477. [Google Scholar] [CrossRef]
- Weissberger, A.; LuValle, J.E. Oxidation Processes. XVII. The Autoxidation of Ascorbic Acid in the Presence of Copper. J. Am. Chem. Soc. 1944, 66, 700–705. [Google Scholar] [CrossRef]
- Anderson, J.H. The Copper-Catalysed Oxidation of Hydroxylamine. Analyst 1964, 89, 357–362. [Google Scholar] [CrossRef]
- Keller, R.N.; Wrcoff, H.D. Copper(I) Chloride. In Inorganic Syntheses; Fernelius, W.C., Ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1946; pp. 1–4. ISBN 9780470131619. [Google Scholar]
- Balt, S.; Van Dalen, E. The Reactions of Diphenylcarbazide and Diphenylcarbazone with Cations. Anal. Chim. Acta 1963, 29, 466–471. [Google Scholar] [CrossRef]
- Crespo, G.A.; Andrade, F.J.; Iñón, F.A.; Tudino, M.B. Kinetic Method for the Determination of Trace Amounts of Copper(II) in Water Matrices by Its Catalytic Effect on the Oxidation of 1,5-Diphenylcarbazide. Anal. Chim. Acta 2005, 539, 317–325. [Google Scholar] [CrossRef]
- Oikawa, S.; Kawanishi, S. Site-Specific DNA Damage Induced by NADH in the Presence of Copper(II): Role of Active Oxygen Species. Biochemistry 1996, 35, 4584–4590. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Pham, A.N.; Miller, C.J.; Waite, T.D. Copper-Catalyzed Hydroquinone Oxidation and Associated Redox Cycling of Copper under Conditions Typical of Natural Saline Waters. Environ. Sci. Technol. 2013, 47, 8355–8364. [Google Scholar] [CrossRef] [PubMed]
- López-Cueto, L.; Casado-Riobó, J.A. Catalytic Effect of Copper on the Hexacyanoferrate(III)-Cyanide Redox Reaction-I. The Uncatalysed and Catalysed Reactions. Talanta 1979, 26, 127–132. [Google Scholar] [CrossRef]
- Flemming, C.A.; Trevors, J.T. Copper Toxicity and Chemistry in the Environment: A Review. Water Air Soil Pollut. 1989, 44, 143–158. [Google Scholar] [CrossRef]
- Garrido-Barros, P.; Gimbert-Suriñach, C.; Matheu, R.; Sala, X.; Llobet, A. How to Make an Efficient and Robust Molecular Catalyst for Water Oxidation. Chem. Soc. Rev. 2017, 46, 6088–6098. [Google Scholar] [CrossRef]
- Matheu, R.; Garrido-Barros, P.; Gil-Sepulcre, M.; Ertem, M.Z.; Sala, X.; Gimbert-Suriñach, C.; Llobet, A. The Development of Molecular Water Oxidation Catalysts. Nat. Rev. Chem. 2019, 3, 331–341. [Google Scholar] [CrossRef]
- Kilpin, K.J.; Dyson, P.J. Enzyme Inhibition by Metal Complexes: Concepts, Strategies and Applications. Chem. Sci. 2013, 4, 1410. [Google Scholar] [CrossRef]
- Kim, W.S. Copper Replacement of Magnesium in the Chlorophylls and Bacteriochlorophyll. Z. Naturforsch. B 1967, 22, 1054–1061. [Google Scholar] [CrossRef]
- Vierke, G.; Struckmeier, P. Binding of Copper(II) to Proteins of the Photosynthetic Membrane and Its Correlation with Inhibition of Electron Transport in Class II Chloroplasts of Spinach. Z. Fur Naturforsch. Sect. C J. Biosci. 1977, 32, 605–610. [Google Scholar] [CrossRef]
- Samuelsson, G.; Öquist, G. Effects of Copper Chloride on Photosynthetic Electron Transport and Chlorophyll-Protein Complexes of Spinacia Oleracea. Plant Cell Physiol. 1980, 21, 445–454. [Google Scholar] [CrossRef]
- Hsu, B.D.; Lee, J.Y. Toxic Effects of Copper on Photosystem II of Spinach Chloroplasts. Plant Physiol. 1988, 87, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Shioi, Y.; Tamai, H.; Sasa, T. Inhibition of Photosystem II in the Green Alga Ankistrodesmus Falcatus by Copper. Physiol. Plant. 1978, 44, 434–438. [Google Scholar] [CrossRef]
- Yruela, I.; Montoya, G.; Picorel, R. The Inhibitory Mechanism of Cu(II) on the Photosystem II Electron Transport from Higher Plants. Photosynth. Res. 1992, 33, 227–233. [Google Scholar] [CrossRef]
- Yruela, I.; Montoya, G.; Alonso, P.J.; Picorel, R. Identification of the Pheophytin-QA-Fe Domain of the Reducing Side of the Photosystem II as the Cu(II)-Inhibitory Binding Site. J. Biol. Chem. 1991, 266, 22847–22850. [Google Scholar] [CrossRef]
- Yruela, I.; Alfonso, M.; De Zarate, I.O.; Montoya, G.; Picorel, R. Precise Location of the Cu(II)-Inhibitory Binding Site in Higher Plant and Bacterial Photosynthetic Reaction Centers as Probed by Light-Induced Absorption Changes. J. Biol. Chem. 1993, 268, 1684–1689. [Google Scholar] [CrossRef]
- Renger, G.; Gleiter, H.M.; Haag, E.; Reifarth, F. Photosystem II: Thermodynamics and Kinetics of Electron Transport from QA- to QB(QB-) and Deleterious Effects of Copper(II). Z. Fur Naturforsch. Sect. C J. Biosci. 1993, 48, 234–240. [Google Scholar] [CrossRef]
- Schroder, W.P.; Arellano, J.B.; Bittner, T.; Baron, M.; Eckert, H.J.; Renger, G. Flash-Induced Absorption Spectroscopy Studies of Copper Interaction with Photosystem II in Higher Plants. J. Biol. Chem. 1994, 269, 32865–32870. [Google Scholar] [CrossRef]
- Jegerschold, C.; Arellano, J.B.; Schroder, W.P.; van Kan, P.J.M.; Barón, M.; Styring, S. Copper(II) Inhibition of Electron Transfer through Photosystem II Studied by EPR Spectroscopy. Biochemistry 1995, 34, 12747–12754. [Google Scholar] [CrossRef] [Green Version]
- Yruela, I.; Pueyo, J.J.; Alonso, P.J.; Picorel, R. Photoinhibition of Photosystem II from Higher Plants: Effect of Copper Inhibition. J. Biol. Chem. 1996, 271, 27408–27415. [Google Scholar] [CrossRef]
- Yruela, I.; Gatzen, G.; Picorel, R.; Holzwarth, A.R. Cu(II)-Inhibitory Effect on Photosystem II from Higher Plants. A Picosecond Time-Resolved Fluorescence Study. Biochemistry 1996, 35, 9469–9474. [Google Scholar] [CrossRef]
- Sabat, S.C. Copper Ion Inhibition of Electron Transport Activity in Sodium Chloride Washed Photosystem II Particle Is Partially Prevented by Calcium Ion. Z. Fur Naturforsch. Sect. C J. Biosci. 1996, 51, 179–184. [Google Scholar] [CrossRef]
- Král’ová, K.; Sersen, F.; Blahová, M. Effects of Cu(II) Complexes on Photosynthesis in Spinach Chloroplasts. Aqua(Aryloxyacetato)Copper(II) Complexes. Gen. Physiol. Biophys. 1994, 13, 483–491. [Google Scholar]
- Burda, K.; Kruk, J.; Schmid, G.H.; Strzalka, K. Inhibition of Oxygen Evolution in Photosystem II by Cu(II) Ions Is Associated with Oxidation of Cytochrome B559. Biochem. J. 2003, 371, 597–601. [Google Scholar] [CrossRef]
- Barón, M.; Arellano, J.B.; Gorgé, J.L. Copper and Photosystem II: A Controversial Relationship. Physiol. Plant. 1995, 94, 174–180. [Google Scholar] [CrossRef]
- Yruela, I. Copper in Plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef]
- Khorobrykh, S.A.; Ivanov, B.N. Oxygen Reduction in a Plastoquinone Pool of Isolated Pea Thylakoids. Photosynth. Res. 2002, 71, 209–219. [Google Scholar] [CrossRef]
- Berthold, D.A.; Babcock, G.T.; Yocum, C.F. A Highly Resolved, Oxygen-Evolving Photosystem II Preparation from Spinach Thylakoid Membranes. FEBS Lett. 1981, 134, 231–234. [Google Scholar] [CrossRef]
- Ford, R.C.; Evans, M.C.W. Isolation of a Photosystem 2 Preparation from Higher Plants with Highly Enriched Oxygen Evolution Activity. FEBS Lett. 1983, 160, 159–164. [Google Scholar] [CrossRef]
- Klimov, V.V.; Allakhverdiev, S.I.; Shuvalov, V.A.; Krasnovsky, A.A. Effect of Extraction and Re-Addition of Manganese on Light Reactions of Photosystem-II Preparations. FEBS Lett. 1982, 148, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Xiong, J.; Minagawa, J.; Crofts, A. Govindjee Loss of Inhibition by Formate in Newly Constructed Photosystem II D1 Mutants, D1-R257E and D1-R257M, of Chlamydomonas Reinhardtii. Biochim. Biophys. Acta Bioenerg. 1998, 1365, 473–491. [Google Scholar] [CrossRef]
- Dennenberg, R.J.; Jursinic, P.A.; McCarthy, S.A. Intactness of the Oxygen-Evolving System in Thylakoids and Photosystem II Particles. Biochim. Biophys. Acta Bioenerg. 1986, 852, 222–233. [Google Scholar] [CrossRef]
- Klimov, V.V.; Allakhverdiev, S.I.; Zharmukhamedov, S.K. Redox Interactions of the Phenolic Herbicide Dinoseb and Chlorophyll-P680-Pheophytin Pair [P680(+•)PP(–•)] in the Reaction Center of Photosystem- II in Plants. Sov. Plant Physiol. 1989, 36, 633–640. [Google Scholar]
- Servusová, B.; Eibinová, D.; Doležal, M.; Kubíček, V.; Paterová, P.; Peško, M.; Král’ová, K. Substituted N-Benzylpyrazine-2-Carboxamides: Synthesis and Biological Evaluation. Molecules 2012, 17, 13183–13198. [Google Scholar] [CrossRef]
- Tuck, D.G. Direct Electrochemical Synthesis of Inorganic and Organometallic Compounds. Pure Appl. Chem. 1979, 51, 2005–2018. [Google Scholar] [CrossRef]
- Prasad, M.N.V.; Malec, P.; Waloszek, A.; Bojko, M.; Strzalka, K. Physiological Responses of Lemna Trisulca L. (Duckweed) to Cadmium and Copper Bioaccumulation. Plant Sci. 2001, 161, S0168–S9452. [Google Scholar] [CrossRef]
- Burda, K.; Kruk, J.; Strzalka, K.; Schmid, G.H. Stimulation of Oxygen Evolution in Photosystem II by Copper(II) Ions. Z. Fur Naturforsch. Sect. C J. Biosci. 2002, 57, 853–857. [Google Scholar] [CrossRef]
- Yanykin, D.V.; Malferrari, M.; Rapino, S.; Venturoli, G.; Semenov, A.Y.; Mamedov, M.D. Hydroxyectoine Protects Mn-Depleted Photosystem II against Photoinhibition Acting as a Source of Electrons. Photosynth. Res. 2019, 141, 165–179. [Google Scholar] [CrossRef]
- Davletshina, L.N.; Semin, B.K. PH Dependence of Photosystem II Photoinhibition: Relationship with Structural Transition of Oxygen-Evolving Complex at the PH of Thylakoid Lumen. Photosynth. Res. 2020, 145, 135–143. [Google Scholar] [CrossRef]
- Oettmeier, W.; Masson, K. Picrate as an Inhibitor of Photosystem II in Photosynthetic Electron Transport. Eur. J. Biochem. 1982, 122, 163–167. [Google Scholar] [CrossRef]
- Matsue, T.; Koike, S.; Uchida, I. Microamperometric Estimation of Photosynthesis Inhibition in a Single Algal Protoplast. Biochem. Biophys. Res. Commun. 1993, 197, 1283–1287. [Google Scholar] [CrossRef]
- Tischer, W.; Strotmann, H. Relationship between Inhibitor Binding by Chloroplasts and Inhibition of Photosynthetic Electron Transport. BBA Bioenerg. 1977, 460, 113–125. [Google Scholar] [CrossRef]
- Van Rensen, J.J.S.; Wong, D. Govindjee Characterization of the Inhibition of Photosynthetic Electron Transport in Pea Chloroplasts by the Herbicide 4,6-Dinitro-o-Cresol by Comparative Studies with 3-(3,4-Dichlorophenyl)-l, l- Dimethylurea. Z. Fur Naturforsch. Sect. C J. Biosci. 1978, 33, 413–420. [Google Scholar] [CrossRef]
- Cedeno-Maldonado, A.; Swader, J.A.; Heath, R.L. The Cupric Ion as an Inhibitor of Photosynthetic Electron Transport in Isolated Chloroplasts. Plant Physiol. 1972, 50, 698–701. [Google Scholar] [CrossRef]
- Trebst, A. Inhibitors in the Functional Dissection of the Photosynthetic Electron Transport System. Photosynth. Res. 2007, 92, 217–224. [Google Scholar] [CrossRef]
- Roberts, A.G.; Kramer, D.M. Inhibitor “Double Occupancy” in the Q o Pocket of the Chloroplast Cytochrome b 6 f Complex. Biochemistry 2001, 40, 13407–13412. [Google Scholar] [CrossRef]
- Thapper, A.; Mamedov, F.; Mokvist, F.; Hammarström, L.; Styring, S. Defining the Far-Red Limit of Photosystem II in Spinach. Plant Cell 2009, 21, 2391–2401. [Google Scholar] [CrossRef]
- Vierke, G.; Struckmeier, P. Inhibition of Millisecond Luminescence by Copper(II) in Spinach Chloroplasts. Z. Für Naturforsch. C 1978, 33, 266–270. [Google Scholar] [CrossRef]
- Callis, P.R. Binding Phenomena and Fluorescence Quenching. II: Photophysics of Aromatic Residues and Dependence of Fluorescence Spectra on Protein Conformation. J. Mol. Struct. 2014, 1077, 22–29. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, X.; Zhao, X.; Wu, Y. Intrinsic Fluorescence Spectra of Tryptophan, Tyrosine and Phenyloalanine. In Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering, Shenzhen, China, 19–20 September 2015; Atlantis Press: Paris, France, 2015. [Google Scholar]
- Śliwa, E.I.; Śliwińska-Hill, U.; Bażanów, B.; Siczek, M.; Kłak, J.; Smoleński, P. Synthesis, Structural, and Cytotoxic Properties of New Water-Soluble Copper(II) Complexes Based on 2,9-Dimethyl-1,10-Phenanthroline and Their One Derivative Containing 1,3,5-Triaza-7-Phosphaadamantane-7-Oxide. Molecules 2020, 25, 741. [Google Scholar] [CrossRef] [Green Version]
- Foyer, C.H.; Noctor, G. Stress-Triggered Redox Signalling: What’s in PROSpect? Plant. Cell Environ. 2016, 39, 951–964. [Google Scholar] [CrossRef]
- Kaparwan, A.G.; Singh, N.J.; Sathe, P.A. Electrochemical Study of Direct and Indirect Oxidation of 1,5- Diphenylcarbazide in Water Mixed Solvent Systems by Differential Pulse Voltammetry. Eurasian J. Anal. Chem. 2011, 6, 59–69. [Google Scholar]
- Rost, J.; Rapoport, S. Reduction-Potential of Glutatione. Nature 1964, 201, 185. [Google Scholar] [CrossRef]
- Petrouleas, V.; Diner, B.A. Light-Induced Oxidation of the Acceptor-Side Fe(II) of Photosystem II by Exogenous Quinones Acting through the QB Binding Site. I. Quinones, Kinetics and PH-Dependence. Biochim. Biophys. Acta Bioenerg. 1987, 893, 126–137. [Google Scholar] [CrossRef]
- McCormick, A.J.; Bombelli, P.; Lea-Smith, D.J.; Bradley, R.W.; Scott, A.M.; Fisher, A.C.; Smith, A.G.; Howe, C.J. Hydrogen Production through Oxygenic Photosynthesis Using the Cyanobacterium Synechocystis Sp. PCC 6803 in a Bio-Photoelectrolysis Cell (BPE) System. Energy Environ. Sci. 2013, 6, 2682. [Google Scholar] [CrossRef]
- Badarau, A.; Dennison, C. Thermodynamics of Copper and Zinc Distribution in the Cyanobacterium Synechocystis PCC 6803. Proc. Natl. Acad. Sci. USA 2011, 108, 13007–13012. [Google Scholar] [CrossRef]
- Cope, J.D.; Valle, H.U.; Hall, R.S.; Riley, K.M.; Goel, E.; Biswas, S.; Hendrich, M.P.; Wipf, D.O.; Stokes, S.L.; Emerson, J.P. Tuning the Copper(II)/Copper(I) Redox Potential for More Robust Copper-Catalyzed C–N Bond Forming Reactions. Eur. J. Inorg. Chem. 2020, 2020, 1278–1285. [Google Scholar] [CrossRef]
- Jo, M.-J.; Shin, S.; Choi, M. Intra-Electron Transfer of Amicyanin from Newly Derived Active Site to Redox Potential Tuned Type 1 Copper Site. Appl. Biol. Chem. 2018, 61, 181–187. [Google Scholar] [CrossRef]
- Yanykin, D.V.; Khorobrykh, A.A.; Khorobrykh, S.A.; Klimov, V.V. Photoconsumption of Molecular Oxygen on Both Donor and Acceptor Sides of Photosystem II in Mn-Depleted Subchloroplast Membrane Fragments. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 516–523. [Google Scholar] [CrossRef]
- Brinkert, K.; Le Formal, F.; Li, X.; Durrant, J.; William Rutherford, A.; Fantuzzi, A. Photocurrents from Photosystem II in a Metal Oxide Hybrid System: Electron Transfer Pathways. Biochim. Biophys. Acta Bioenerg. 2016, 1847, 379–389. [Google Scholar] [CrossRef]
- Arellano, J.B.; Lazaro, J.J.; Lopez-Gorge, J.; Baron, M. The Donor Side of Photosystem II as the Copper-Inhibitory Binding Site. Photosynth. Res. 1995, 45, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Yruela, I.; Alfonso, M.; Baron, M.; Picorel, R. Copper Effect on the Protein Composition of Photosystem II. Physiol. Plant. 2000, 110, 551–557. [Google Scholar] [CrossRef]
- Burda, K.; Kruk, J.; Strzałka, K.; Stanek, J.; Schmid, G.; Kruse, O. Mössbauer Studies of Cu(II) Ions Interaction with the Non-Heme Iron and Cytochrome b 559 in a Chlamydomonas Reinhardtii PSI Minus Mutant. Acta Phys. Pol. A 2006, 109, 237–247. [Google Scholar] [CrossRef]
- Renger, G. The Action of 2-Anilinothiophenes as Accelerators of the Deactivation Reactions in the Watersplitting Enzyme System of Photosynthesis. BBA Bioenerg. 1972, 256, 428–439. [Google Scholar] [CrossRef]
- Klimov, V.V.; Shuvalov, V.A.; Heber, U. Photoreduction of Pheophytin as a Result of Electron Donation from the Water-Splitting System to Photosystem-II Reaction Centers. Biochim. Biophys. Acta Bioenerg. 1985, 809, 345–350. [Google Scholar] [CrossRef]
- Carpentier, R.; Fuerst, E.P.; Nakatani, H.Y.; Arntzen, C.J. A Second Site for Herbicide Action in Photosystem II. Biochim. Biophys. Acta Bioenerg. 1985, 808, 293–299. [Google Scholar] [CrossRef]
- Klimov, V.V.; Allakhverdiev, S.I.; Ladygin, V.G. Photoreduction of Pheophytin in Photosystem II of the Whole Cells of Green Algae and Cyanobacteria. Photosynth. Res. 1986, 10, 355–363. [Google Scholar] [CrossRef]
- Hsu, B.-D.; Lee, J.-Y.; Pan, R.-L. The Two Binding Sites for DCMU in Photosystem II. Biochem. Biophys. Res. Commun. 1986, 141, 682–688. [Google Scholar] [CrossRef]
- Allakhverdiev, S.I.; Zharmukhamedov, S.K.; Klimov, V.V.; Vasil’ev, S.S.; Koratovskii, B.N.; Pashchenko, V.Z. Effect of Dinoseb and Other Phenolic Compounds on the Fluorescence Decay Kinetics of Photosystem Ii Chlorophyll in Higher Plants. Biol. Membr. 1989, 6, 1147–1153. [Google Scholar]
- Roberts, A.G.; Gregor, W.; Britt, R.D.; Kramer, D.M. Acceptor and Donor-Side Interactions of Phenolic Inhibitors in Photosystem II. Biochim. Biophys. Acta Bioenerg. 2003, 1604, 23–32. [Google Scholar] [CrossRef]
- Belatik, A.; Joly, D.; Hotchandani, S.; Carpentier, R. Re-Evaluation of the Side Effects of Cytochrome B6f Inhibitor Dibromothymoquinone on Photosystem II Excitation and Electron Transfer. Photosynth. Res. 2013, 117, 489–496. [Google Scholar] [CrossRef]
- Hasni, I.; Yaakoubi, H.; Hamdani, S.; Tajmir-Riahi, H.-A.; Carpentier, R. Mechanism of Interaction of Al3+ with the Proteins Composition of Photosystem II. PLoS ONE 2015, 10, e0120876. [Google Scholar] [CrossRef]
- Ho, F.M. Uncovering Channels in Photosystem II by Computer Modelling: Current Progress, Future Prospects, and Lessons from Analogous Systems. Photosynth. Res. 2008, 98, 503–522. [Google Scholar] [CrossRef]
- Kulik, N.; Kutý, M.; Řeha, D. The Study of Conformational Changes in Photosystem II during a Charge Separation. J. Mol. Model. 2020, 26, 75. [Google Scholar] [CrossRef]
- Moise, N.; Moya, I. Correlation between Lifetime Heterogeneity and Kinetics Heterogeneity during Chlorophyll Fluorescence Induction in Leaves. Biochim. Biophys. Acta Bioenerg. 2004, 1657, 33–46. [Google Scholar] [CrossRef]
- Schansker, G.; Tóth, S.Z.; Holzwarth, A.R.; Garab, G. Chlorophyll a Fluorescence: Beyond the Limits of the QA Model. Photosynth. Res. 2014, 120, 43–58. [Google Scholar] [CrossRef]
- Sipka, G.; Magyar, M.; Mezzetti, A.; Akhtar, P.; Zhu, Q.; Xiao, Y.; Han, G.; Santabarbara, S.; Shen, J.-R.; Lambrev, P.H.; et al. Light-Adapted Charge-Separated State of Photosystem II: Structural and Functional Dynamics of the Closed Reaction Center. Plant Cell 2021, 33, 1286–1302. [Google Scholar] [CrossRef]
- Sirohiwal, A.; Neese, F.; Pantazis, D.A. Protein Matrix Control of Reaction Center Excitation in Photosystem II. J. Am. Chem. Soc. 2020, 142, 18174–18190. [Google Scholar] [CrossRef]
- Wöhri, A.B.; Katona, G.; Johansson, L.C.; Fritz, E.; Malmerberg, E.; Andersson, M.; Vincent, J.; Eklund, M.; Cammarata, M.; Wulff, M.; et al. Light-Induced Structural Changes in a Photosynthetic Reaction Center Caught by Laue Diffraction. Science 2010, 328, 630–633. [Google Scholar] [CrossRef]
- Rahimi, Y.; Goulding, A.; Shrestha, S.; Mirpuri, S.; Deo, S.K. Mechanism of Copper Induced Fluorescence Quenching of Red Fluorescent Protein, DsRed. Biochem. Biophys. Res. Commun. 2008, 370, 57–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zharmukhamedov, S.K.; Shabanova, M.S.; Rodionova, M.V.; Huseynova, I.M.; Karacan, M.S.; Karacan, N.; Aşık, K.B.; Kreslavski, V.D.; Alwasel, S.; Allakhverdiev, S.I. Effects of Novel Photosynthetic Inhibitor [CuL2]Br2 Complex on Photosystem II Activity in Spinach. Cells 2022, 11, 2680. https://doi.org/10.3390/cells11172680
Zharmukhamedov SK, Shabanova MS, Rodionova MV, Huseynova IM, Karacan MS, Karacan N, Aşık KB, Kreslavski VD, Alwasel S, Allakhverdiev SI. Effects of Novel Photosynthetic Inhibitor [CuL2]Br2 Complex on Photosystem II Activity in Spinach. Cells. 2022; 11(17):2680. https://doi.org/10.3390/cells11172680
Chicago/Turabian StyleZharmukhamedov, Sergey K., Mehriban S. Shabanova, Margarita V. Rodionova, Irada M. Huseynova, Mehmet Sayım Karacan, Nurcan Karacan, Kübra Begüm Aşık, Vladimir D. Kreslavski, Saleh Alwasel, and Suleyman I. Allakhverdiev. 2022. "Effects of Novel Photosynthetic Inhibitor [CuL2]Br2 Complex on Photosystem II Activity in Spinach" Cells 11, no. 17: 2680. https://doi.org/10.3390/cells11172680
APA StyleZharmukhamedov, S. K., Shabanova, M. S., Rodionova, M. V., Huseynova, I. M., Karacan, M. S., Karacan, N., Aşık, K. B., Kreslavski, V. D., Alwasel, S., & Allakhverdiev, S. I. (2022). Effects of Novel Photosynthetic Inhibitor [CuL2]Br2 Complex on Photosystem II Activity in Spinach. Cells, 11(17), 2680. https://doi.org/10.3390/cells11172680