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Abstract: Heat shock protein (HSP90), a highly conserved molecular chaperon, is indispensable
for the maturation of newly synthesized poly-peptides and provides a shelter for the turnover
of misfolded or denatured proteins. In cancers, the client proteins of HSP90 extend to the entire
process of oncogenesis that are associated with all hallmarks of cancer. Accumulating evidence has
demonstrated that the client proteins are guided for proteasomal degradation when their complexes
with HSP90 are disrupted. Accordingly, HSP90 and its co-chaperones have emerged as viable
targets for the development of cancer therapeutics. Consequently, a number of natural products and
their analogs targeting HSP90 have been identified. They have shown a strong inhibitory effect on
various cancer types through different mechanisms. The inhibitors act by directly binding to either
HSP90 or its co-chaperones/client proteins. Several HSP90 inhibitors—such as geldanamycin and
its derivatives, gamitrinib and shepherdin—are under clinical evaluation with promising results.
Here, we review the subcellular localization of HSP90, its corresponding mechanism of action in the
malignant phenotypes, and the recent progress on the development of HSP90 inhibitors. Hopefully,
this comprehensive review will shed light on the translational potential of HSP90 inhibitors as novel
cancer therapeutics.

Keywords: heat shock protein 90; INHIBITORS; cancer therapeutics; translational relevance

1. Introduction

The efficient and accurate control of the cellular protein pool is crucial for homeostasis
within the crowded environment of a single cell [1]. HSP90 is one of the heat shock protein
members. When functionally upregulated under environmental stress, HSP90 protects
cells from detrimental effects [1]. HSP90 is evolutionarily conserved and ubiquitously
expressed across species, which accounts for 1–2% of total cellular proteins in the unstressed
condition [2]. It can be further increased to about 4–6% in the stressed condition [3]. Due to
its abundance and adhesive properties, HSP90 has been likened to “molecular glue” [4].
The structure of HSP90 comprises three domains: the N-terminal domain (NTD) with
ATPase activity, the middle domain (MD) that binds to the client protein, and the primary
dimerization C-terminal domain (CTD) [1,5]. HSP90 utilizes ATP to keep its “closed”
conformation for the binding of client proteins. The immature client proteins proceed to
fold, accompanied by ATP hydrolyzation and energy release. After that, HSP90 releases the
matured product and is transformed into an “open” conformation. Co-chaperones are also
required for the intricate control of ATP hydrolysis rates and the certain conformational
states [1,6,7].
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Over 20 co-chaperones of HSP90 have been documented in eukaryotic cells, which
modulate the molecular functions of HSP90 in four major ways: (1) coordinate the interplay
between HSP90 and other chaperone systems, such as HSP70; (2) stimulate or inhibit the
ATPase activity of HSP90, i.e., AHA1 for stimulation and CDC37 for inhibition; (3) recruit
specific classes of clients to HSP90; (4) contribute to various aspects of the chaperone cycle
through their enzymatic activities (Figure 1). The co-chaperones containing the TPR domain
(i.e., HOP) facilitate the cooperative and successive action of the HSP90-HSP70-HSP40
complex to achieve the maturation of client proteins. Separately, the co-chaperones that
inhibit the ATPase activity are more likely to be involved in client loading or the formation
of mature HSP90 complexes, whereas those that enhance the ATPase activity are regarded
as activators of the HSP90 conformational cycle [1].

Figure 1. Co-chaperones of HSP90 and its function. HSP90 comprises four isoforms: (1) HSP90α
(an inducible form) and HSP90β (a constitutive form) are mainly located in the cellular cytosol;
(2) the glucose-regulated protein (GRP94) is localized in the endoplasmic reticulum; (3) Hsp75/tumor
necrosis factor receptor associated protein 1 (TRAP-1, also known as mitochondrial HSP90) is located
on the mitochondria [7,8]. All HSP90 isoforms play critical roles in cancer, neurodegenerative
disorders, and other disease states, indicating that their pharmacological targeting may have profound
implications for the treatment of these illnesses [9].

Recently, Taipale M. et al., systematically screened 2156 clones, including protein
kinases, transcription factors, and E3 ligases, to identify HSP90’s dependency. They found
that more than 400 client proteins depend on the protein folding machinery regulated by
Hsp90 for the achievement and maintenance of their active conformations [10]. Addition-
ally, a number of studies demonstrated that the HSP90 client proteins also regulate various
cellular functions, including signal transduction, protein trafficking, chromatin remodeling,
autophagy, and cell proliferation and survival [11–19]. Furthermore, many HSP90 client
proteins are frequently mutated and/or over-expressed in cancer cells. Therefore, they
have been actively pursued as therapeutic targets for cancer treatment [12].

2. Subcellular Localization of HSP90

HSP90 is a highly conserved molecular chaperone on the evolutionary level and is
constitutively expressed in most organs and tissues [20]. HSP90 assists in the proper fold-
ing, intracellular disposition and proteolytic turnover of many key regulators of cellular
homeostasis with its ATPase activity [12,21–23]. HSP90 is mainly located in cytoplasm
under normal conditions, where polypeptides are synthesized, and aberrantly folded pro-
teins are produced. By using an in vivo PET tracer or in vitro organelle fractionation assay,
HSP90 was found to be expressed ‘everywhere’, including the nucleus, mitochondrion, and
plasma membrane, as well as also being secreted into the extracellular matrix [24–26]. The
differential expression of sub-cellular HSP90 may exert distinctive functions in multiple
biological processes, especially tumorigenesis [25]. Interestingly, the differential expression
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pattern of HSP90 between normal cells and cancer cells has already been documented, with
the discrepancies selectively existing in the mitochondria or extracellular matrix [26,27].

2.1. Cytosolic Localization of HSP90

HSP90, as a critical homodimer chaperone machinery, was expressed within the
cytosol component [28]. By constructing various truncated forms of HSP90 and using a
confocal microscopy, Passinen S. et al., found that the C-terminal half of HSP90 (amino acids
between 333 and 664) is responsible for the cytoplasmic localization [22]. Nonetheless, by
fusing with the nuclear localization signal sequence (NLS), NLS-HSP90 was preferentially
expressed in the nucleus [22,28].

Previous studies have focused on the discrepancy of HSP90 expression between
normal cells and cancer cells and demonstrated that a higher protein level of HSP90 is
expressed in the latter. In these studies, the majority of HSP90 was also localized in the
cytoplasm [23,27]. Perhaps the cytosolic HSP90 largely contributes to the folding/refolding
of critical oncogenic drivers and pro-survival regulators by supplying a co-chaperone
buffering system. Additionally, cytosolic HSP90 has also been termed “molecular glue”,
highlighting its abundance and buffering properties [4]. Most of the client proteins of
HSP90 are located in the cytoplasm, exerting a variety of functions, including signaling
transduction, post-transcriptional modification, metabolic rewiring and cytoskeleton re-
modeling. Recently, HSP90 was found to transiently crosslink actin filaments in vitro, and
this dynamic interaction between HSP90 and almost all cytoplasmic filamentous structures
highlights its role in modulating actin filament bundling behavior [4,29]. HSP90 was also as-
sociated with tubulin and probably protects it from heat denaturation [30]. Likewise, it was
shown that HSP90 protects myosin from heat stress [31]. Therefore, HSP90 is functionally
involved in the management of the cytoskeleton.

2.2. Nuclear Localization of HSP90

A low expression of HSP90 (5–10% of total cellular HSP90) was detected in the nu-
cleus of normal cells [32]. Recent data, however, have shown that the elevated expres-
sion of nuclear HSP90 could be detected in breast cancer and non-small cell lung cancer
(NSCLC) [33–35]. For example, a nuclear accumulation of heat shock protein 90 might pre-
dict the poor survival of patients with NSCLC. Furthermore, the nuclear staining of HSP90
was also positively correlated with the age and smoking status of patients with NSCLC [34].
Interestingly, in quiescent Saccharomyces cerevisiae cells, Hsp90 and its co-chaperones were
found to accumulate in the nucleus with the requirement of the α/β importin system,
which was enhanced during periods of relative metabolic inactivity [36]. In fact, the
HSP90 protein comprises sequences that are homologous to the recognized traditional or
alternative nuclear import and export signals: the nuclear localization sequence [21].

Importantly, HSP90 is associated with multiple nuclear chaperone clients including
nucleic acid, histone, transcription factors, and epigenetic regulators [4]. HSP90 also modu-
lates multiple biological functions in the nucleus including RNA synthesis, processing, and
multiple telomerase activities [4,37]. The nuclear translocation of HSP90 is governed by
FKBP52, steroid receptors, and kinases [21,38]. Zinc finger proteins, helix-loop-helix pro-
teins, MyoD1, E12, HIF1α, HSF1, and glucocorticoid receptor interact with HSP90 [4,39,40].
The transfection of 3T3 cells with HSP90 fused with EGFP revealed that HSP90 was located
in the nuclear membrane upon exposure to an elevated temperature [41]. Many small
chemical molecules enter the cytoplasm through penetrating the plasma membrane, but it
was shown that none of them could enter the nucleus, rendering their efficacy limited [42].
However, HSP90 could be translocated from cytoplasm to nucleus, which protects cancer
cells from therapeutic pressure [43]. This suggests that nuclear-directed HSP90 inhibitors
should be taken into consideration.
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2.3. Mitochondrial Localization of HSP90

The mitochondrial expression of HSP90 was unexplored until Kang B. et al., first
demonstrated the high expression of HSP90 in tumoral mitochondrion, but barely in nor-
mal tissues [26]. Based on this ground-breaking work, substantial research took place,
which focused on the development of small molecular drugs with the organelle-specific tar-
geting of HSP90. Collectively, the goal of these inhibitors is to trigger a sudden collapse of
mitochondrial integrity and apoptosis that would selectively occur in tumor cells. Several
inhibitors that specifically target mitochondrion have emerged and shown intriguing effects
in multiple cancer types, including pancreatic cancer, breast cancer, colon cancer, NSCLC,
melanoma, glioblastoma, prostate cancer, lymphoma, and leukemia (Table 1) [26,44–51].
By investigating the metabolic network in the tumoral mitochondrion regulated by HSP90,
Chae Y. et al., highlighted that mitochondrial HSP90 (hereafter mtHSP90), but not cytosolic
HSP90, binds and stabilizes the electron transport chain complex II subunit succinate
dehydrogenase-B (SDHB), which maintains cellular respiration under low-nutrient con-
ditions and contributes to HIF1α-mediated tumorigenesis in patients carrying SDHB mu-
tations [52]. Cryo-EM data also confirmed the dynamic interplay between mitochondrial
HSP90 and SDHB folding intermediates [53].

Table 1. HSP90 clients are associated with hallmarks of cancer.

Phenotype Clients References

Uncontrolled proliferation EGFR, HER2, RAF1, CDK4, Akt, BCR-ABL,
v-Src, c-Src, FAK, CKII, CHK1, eIF-2α kinase [6,16,17,54–62]

Anti-apoptosis p53, Akt, Survivin, IKK, NF-κB, PLK, WEE1,
Myc, CDK4, CDK6 [6,42,55,63–68]

Angiogenesis HIF1α, Akt, EGFR, HRE2, FLT3, VEGFR2 [19,69–73]

Immortalization Telomerase [18]

Invasion/Metastasis MMP2, MMP9, c-MET [19,34,74,75]

Others

Glucocorticoid receptor, Mineralocorticoid
receptor, Progesterone receptor, Estrogen

receptor, Androgen receptor, Oestrogen receptor,
Nitric oxide synthase, Centrin/centrosome,

Calmodulin, MDM2, UHRF1, BRCA2, OCT4,
Nanog, STAT3, Calcineurin, CFTR, NLR proteins,
RAD51/RAD52, Tau, HCK, JAK1 and/or JAK2

[76–94]

It is worth mentioning that TRAP1 has been regarded as another version of HSP90—
namely, mitochondrial HSP90—because it shares 60% of its sequence with HSP90 and
contains the same domains: NTD, ND, and CTD [32,95]. Interestingly, Kang B. et al., also
established that TRAP1 was consistently elevated in primary tumors, whereas it was nearly
undetectable in normal tissues [26]. Moreover, one of the important client proteins of TRAP1
was cyclophilin D, a mitochondrial residential protein, which maintains mitochondrial
integrity by preserving cells from apoptosis. Furthermore, the crystal structures of HSP90
and TRAP1 provide further molecular insights that can be exploited for the development of
novel inhibitors [96,97]. Taken together, TARP1 is another attractive target for developing
cancer drugs [98].

2.4. Membrane and Extracellular Localization of HSP90

HSP90 was first viewed as an artifact when it was found on the cell surface by
a functional screening, due to its abundant expression within the cells. After cautious
verification, HSP90 is no longer considered as being exclusively located within the cell [75].
HSP90 can also be secreted into the extracellular matrix. Accordingly, the cell surface
expression of HSP90 is higher on cancer cells than that on normal cells, which correlates
with the malignant stage of the tumor. Previous work has also shown that the cell surface
of HSP90 could strengthen the migration potential of cancer cells that is distinct from the
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function of the intracellular HSP90 pool [99,100]. Thus, the cell surface of HSP90 is also
an attractive therapeutic target in terms of inhibiting tumor invasion and metastasis [75,101].

The first evidence for the detection of HSP90 in the extracellular matrix was implicated
in 1986 when Barrott J. et al., found a mouse tumor-specific antigen that was identified
as a heat shock protein, which is now recognized as HSP90 [102]. Since the ATP level in
the extracellular environment is low due to the lack of energy source, the extracellular
HSP90 (hereafter eHSP90) may function independently of ATP. The secretion of eHSP90
is induced by environmental stresses and growth factors [64,103], and it is affected by
post-translational modifications to the chaperone, including phosphorylation and acetyla-
tion [104]. Recent work has also shown that HSP90α is released by invasive cancer cells
via exosomes, which contributes to their invasive nature by interacting with plasmin [69].
Another study found that both HSP90α and HSP90β are secreted by cancer cells to interact
with MMP2 and MMP9 to enhance the invasive capacity of tumor cells. Similarly, eHSP90
was detected in normal cells only in response to stress, while cancer cells consecutively
secrete HSP90 [105,106]. Interestingly, eHSP90 interacts with a series of receptors such as
EGFR/HER2/LPR1 to promote the downstream signal transduction associated with tumor
growth and metastasis, which resembles the EMT phenotype [107–109]. Further, eHSP90
expression correlates with an increase in metastatic potential and a decrease in the immune
response in multiple cancer types [100]. Although the specific inhibition of eHSP90 does
not affect cancer cell growth in vitro or tumour xenograft progression in vivo [99], the inhi-
bition of eHSP90 is effective in conquering metastasis with minor side effects, highlighting
the clinical potential of eHSP90 inhibitors [49,101,106,110,111].

3. HSP90 and Its Clients in Cancer Phenotype

HSP90 is a hub in the network of molecular chaperone cycles because it promotes
both the folding and degradation of various client proteins, in addition to regulating
the expression of other quality control components (Table 1). HSP90 plays a significant
role because it is involved in regulating signal transduction, protein trafficking, receptor
maturation, and innate and adaptive immunity, as well as nearly all the hallmarks of cancer.
Those complex processes can be achieved successfully by the interplay of HSP90 with its
co-chaperones [112].

3.1. Uncontrolled Proliferation

Sustained proliferative signaling is one of the most important hallmarks of cancer.
While multiple regulators of cell growth signaling are the clients of HSP90, it is the HSP90
chaperone complex that maintains the signaling circuitry critical for the independent
growth of tumor cells.

HSP90 and its ER homolog, GRP94, bind to and stabilize HER2. The treatment of ben-
zoquinone ansamycins (BA, a HSP90 inhibitor) in COS7 cells disrupts this association, thus,
resulting in a rapid poly-ubiquitination of HER2 followed by the proteasome-dependent
degradation of HER2 [113]. Further, cytosolic Akt is associated with HSP90 and CDC37,
which form a complex. A functional study also showed that HSP90 is required for Akt
stability. The treatment of ATP-binding inhibitors in MCF-7 and SKBr-3 cells leads to
the ubiquitination and degradation of Akt [73]. Similarly, the translocation of BA to
HSP90 disrupts its association with CDK4, resulting in a reduction in the half-life of newly
synthesized CDK4 [55]. A subsequent study performed in insect cells also showed that
CDC37 drives HSP90 to target CDK4 both in vitro and in vivo, and HSP90 preferentially
binds to CDK4, which is not associated with D-type cyclins. Moreover, disruption of the
CDC37-HSP90 complex and its function by specific inhibitors results in an unstable state
of CDK4, indicative of the role of HSP90 in protecting its client proteins from proteasome
degradation [55]. RAF1 kinase was also associated with HSP90, and it has been shown to
stabilize RAF1 and prevent it from 26S proteasome-mediated degradation. The treatment
of HSP90 inhibitor in NIH 3T3 cells impairs the RAF1-MEK signaling, both by disabling
RAF1 to reach the plasma membrane and disrupting the RAF1/MEK1 interaction [54].
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The onco-fusion protein BCR-ABL also associates with HSP90. Thus, the treatment of BA
inhibitor in Bcr-Abl-expressing HL60 cells induces the degradation of BCR-ABL, which
may re-sensitize leukemia cells expressing the BCR-ABL to chemotherapy [56,114]. Col-
lectively, HSP90 regulates the proper folding of mutated or overexpressed protein kinases
and protects them from degradation by blocking their association with poly-ubiquitination
mediated 26S proteasome [23].

3.2. Anti-Apoptosis and Immortalization

p53 is a critical checkpoint to trigger growth arrest and apoptosis when numerous
genetic disorders or DNA damage is induced by ultraviolet radiation or chemotherapeutics.
Nevertheless, the inactivating and mutated form of p53 appears to be dominant-negative by
imposing a defective heterodimer conformation with wild-type p53. HSP90 is increased in
tumors to chaperone with mutated p53 and to stabilize the altered conformation of mutant
p53, thus, protecting it from proteasome degradation [115,116]. Blagosklonny M. et al.,
demonstrated that the treatment of several cancer cell lines with BA resulted in the desta-
bilization of mutated p53 with no influence on wild-type p53 forms, thus, leading to the
restoration of the activity of the wild-type p53 in p53 heterozygous tumor cells [117].

HSP90 was also shown to associate with and stabilize PKM2 in hepatocellular carci-
noma cells. HSP90 interacts with GSK-3β and promotes its activity, thus, increasing the
phosphorylation of PKM2 at Thr328. This process was critical for maintaining the stability
and biological functions of PKM2 [118].

BCL-2 was the first apoptotic regulator identified in organism, which localized to the
outer membrane of mitochondria. It plays an important role in promoting cellular survival
and antagonizing the apoptotic complex. HSP90 promotes the survival of leukemia cells by
binding to APAF-1 and BCL-2. Blockage with HSP90-specific inhibitor geldanamycin (GA)
also diminishes the association of HSP90 with APAF-1 or BCL-2 in leukemia cells, leading
to apoptosis [119].

It has been identified that the molecular chaperone HSP90 binds to the catalytic
subunit of telomerase, and this interaction enhances the assembly of active telomerase.
Using an in vitro assay, researchers also found an abundance of active telomerase from
cell extracts, which was associated with HSP90 [18]. Consistent with these in vitro results,
HSP90 facilitates DNA extension by promoting telomerase assembly and occupancy both
in budding yeast and human cells [37,120].

3.3. Invasion, Metastasis, and Angiogenic Role

As a modality of malignant behavior, the invasion or migration of tumor cells occurs
even in the early stage of tumor progression. This biological process is complex and often
accompanied by the remodeling of a number of proteins. We discuss in the “Membrane
and Extracellular HSP90” section that the secreted HSP90 interacts with MMP2 and MMP9
to promote invasive phenotype [105]. Furthermore, the treatment of MDA-MB-453 breast
cancer cells with monoclonal antibodies against HSP90 significantly inhibits the metastatic
potential by disrupting the interaction of MMPs with HSP90 [106]. The depletion of HOP
by the RNA interference approach, which is a co-chaperone protein that binds to both
HSP70/HSP90, also reduced the invasiveness of pancreatic cancer cells by decreasing
the expression of matrix metalloproteinases-2 [121]. Epithelial to mesenchymal transition
(EMT) was strongly associated with cancer invasiveness and metastasis. Treatment with a
HSP90 inhibitor, ganetespib, or the knock-down of HSP90 down-regulated genes associated
with EMT, invasion, and motility, indicate a strong relevance of HSP90 with an aggressive
EMT phenotype [122]. MET was also shown as a client protein of HSP90 chaperone,
which enhances the pro-invasive role of HSP90 by interacting with HSP90 [123]. Taken
together, HSP90 is important for the highly invasive and metastatic potential of tumor cells
by chaperoning multiple key factors such as receptor tyrosine kinases and EMT-related
transcription factors [19].
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It is well known that tumor growth requires both nutrients and oxygen. Tumor
cells produce a high level of HIF1α, which can mediate the expression of VEGF and
other pro-survival factors. However, HIF1α was associated with the molecular chaperone
HSP90. NVP-AUY922, a novel HSP90 inhibitor, promotes HIF1α degradation via VHL E3
ubiquitin ligase [124]. Another HSP90 inhibitor, AT-533, also inhibits HIF-1α/VEGF and its
downstream signaling pathway in breast cancer cells [76].

3.4. Others

Glucocorticoid receptor (GR) was reported to associate with HSP90 by its hormone
binding domain aligned with amino acids from 568 to 616 [77]. This was regulated by the
deacetylation of HSP90 by HDAC6, a reversible post-translational process critical for the
maturation of GR [78]. Similarly, steroid hormone receptors, mineralocorticoid receptors,
progesterone receptors, estrogen receptors, androgen receptors, and oestrogen receptors
form a complex with HSP90 to protect its chaperone role, which in turn, promotes their
maturation and the normal function of signaling cascades. The structure and function
of those receptors are also affected by the occupancy of specific HSP90 inhibitors [79–83].
Cystic fibrosis transmembrane conductance regulator (CFTR) was associated with HSP90,
and the treatment of geldanamycin in BHK cells expressing wild-type CFTR accelerated the
degradation of CFTR [84]. It has also been shown that HSP90 is associated with endothelial
nitric oxide synthase (eNOS) and enhances its activation [85]. The stability of epigenetic
regulators such as UHRF1 and BRCA2 were regulated by HSP90 machinery [86,87]. HSP90
was implicated with cooperating with transcriptional factors such as Nanog, Oct4, JAKs,
and Stat3 to control the stem cell pluripotency as well as the activation of cytokine signal-
ing [88,89]. The requirement of HSP90 to associate with calcineurin and Tau proteins in the
pathological condition makes it an attractive target in glioblastoma and neurodegenera-
tive diseases [90,91]. In plants, HSP90 is also conserved and essential for regulating NLR
(nucleotide-binding domain and leucine-rich repeat containing) proteins [92]. Unlike its
traditional role of protection, HSP90 also prevents MDM2 from interacting with mutant
p53 in order to promote the degradation of oxidized calmodulin, which demonstrates the
versatility of HSP90 [93,94,125].

4. HSP90 Inhibitors in Cancer Therapeutics

HSP90 serves as a molecular chaperone for a variety of client proteins, including
receptor tyrosine kinases, metabolic enzymes, and epigenetic regulators that are critical
for the proliferation and survival of cancer cells. Most client proteins with oncogenic
roles are over-expressed in various types of cancer cells. Therefore, the development of
small molecules that specifically target the HSP90 itself or disrupt the association of HSP90
with its partner oncoproteins is urgently needed. Indeed, numerous HSP90 inhibitors
have been identified or developed in the last two decades with different mechanisms of
action. Here, we review the chemical structure, binding site, organelle selectivity, and
application of currently developed HSP90 inhibitors and the clinical setting in Table 2.
Generally speaking, there are two categories of these inhibitors: (1) direct HSP90 inhibitors;
(2) HSP90/co-chaperone inhibitors.
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Table 2. HSP90 inhibitors.

Type Order Inhibitor Alias/Description Structure HSP90
Binding Site

Organelle
selectivity Manufacturer Application Drug Used for

Combination
Recruting or Active

Clinical Stage Reference

GA and its
derivatives

1 Geldanamycin GA,
NSC 122750

N-terminal
ATP-binding

pocket
NCI

melanoma, leukemia,
colorectal cancer,

prostate cancer, lung
cancer, breast cancer,

kidney cancer, bladder
cancer, gastric cancer,
head and neck cancer,

ovarian cancer,
neuroblastoma,
osteosarcoma

docetaxel,
irinotecan

hydrochloride,
Phase I/II [126,127]

2 17- AAG Tanespimycin
N-terminal

ATP-binding
pocket

Cytosol Pfizer

thyroid cancer,
lymphoma, leukemia,

prostate cancer,
neuroblastoma,

osteosarcoma, sarcoma,
lung cancer, myeloma,
kidney cancer, ovarian

epithelial cancer,
pancreatic cancer,

breast cancer

irinotecan
hydrochloride,

sorafenib
tosylate,

cytarabine,
docetaxel,

gemcitabine
hydrochloride,

everolimus,
Bortezomib

Phase I/II/
III [128,129]

3 17- DMAG Alvespimycin
N-terminal

ATP-binding
pocket

NCI

lymphoma, breast
cancer, lung cancer,

gastric cancer, prostate
cancer, myeloma

Trastuzumab Phase I [130–132]

4 IPI-504 Retaspimycin
N-terminal

ATP-binding
pocket

Cytosol Infinity

lung cancer, prostate
cancer, myeloma,

sarcoma, leukemia,
lymphoma, pancreatic

cancer, ovarian
epithelial cancer, breast
cancer, kidney cancer,
bladder cancer, gastric

cancer

docetaxel,
everolimus,
cytarabine,

gemcitabine
hydrochloride,

irinotecan
hydrochloride,

sorafenib
tosylate,

Bortezomib,
imatinib
mesylate

Phase I/II/
III [133]
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Table 2. Cont.

Type Order Inhibitor Alias/Description Structure HSP90
Binding Site

Organelle
selectivity Manufacturer Application Drug Used for

Combination
Recruting or Active

Clinical Stage Reference

GA and its
derivatives

5 NVP-BEP800 VER82576
N-terminal

ATP-binding
pocket

[134,135]

6 TAS-116 Pimitespib
N-terminal

ATP-binding
pocket

Cytosol Taiho
Gastrointestinal cancer,
pancreatic cancer, lung
cancer, colorectal cancer

Phase I [136,137]

7 Gamitrinib TPP
N-terminal

ATP-binding
pocket

Mitochondrion lymphoma Phase I [138,139]

8 SNX-2112 PF-04928473
N-terminal

ATP-binding
pocket

Serenex [140]

9 Macbecin
N-terminal

ATP-binding
pocket

[141]

10 XL888
N-terminal

ATP-binding
pocket

Exelixis
colorectal cancer,

myeloma, pancreatic
cancer

Vemurafenib,
Cobimetinib Phase I [142–144]



Cells 2022, 11, 2778 10 of 32

Table 2. Cont.

Type Order Inhibitor Alias/Description Structure HSP90
Binding Site

Organelle
selectivity Manufacturer Application Drug Used for

Combination
Recruting or Active

Clinical Stage Reference

Radicicol or
resorcinol-
containing
derivatives

11 Radicicol RA,
RDC

N-terminal
ATP-binding

pocket
[127,145,146]

12 STA-9090 Ganetespib
N-terminal

ATP-binding
pocket

Synta Pharma-
ceuticals

Hepatocellular
Carcinoma,

Esophagogastric
Cancer, melanoma,
breast cacncer, lung

cancer, colorectal
cancer, prostate cancer,

leukemia, myeloma,
ovarian cancer

Docetaxel,
crizotinib,
Sirolimus,

capecitabine,
Bortezomib,

Dexamethasone,
Fulvestrant,
Carboplatin

Phase I/II [147,148]

13 CCT018159
N-terminal

ATP-binding
pocket

[149,150]

14 NVP-AUY992 Isoxazole/luminespib
N-terminal

ATP-binding
pocket

Novartis [151]

15 KW-2478 unknown Kyowa Hakko
Kirin Bortezomib Phase I/II [152]
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Table 2. Cont.

Type Order Inhibitor Alias/Description Structure HSP90
Binding Site

Organelle
selectivity Manufacturer Application Drug Used for

Combination
Recruting or Active

Clinical Stage Reference

Radicicol or
resorcinol-
containing
derivatives

16 AT13387
N-terminal

ATP-binding
pocket

Astex Pharma-
ceuticals

Gastrointestinal
Stromal Tumors,

pancreatic cancer, lung
cancer, breast cancer

Crizotinib,
Imatinib,

abiraterone
acetate,

Prednisone,
Onalespib

Phase I/II [153,154]

GA and RA
chimeric

molecules

17 Radanamycin
N-terminal

ATP-binding
pocket

[155]

18 Radamide
N-terminal

ATP-binding
pocket

[155]

19 Radester
N-terminal

ATP-binding
pocket

[155]



Cells 2022, 11, 2778 12 of 32

Table 2. Cont.

Type Order Inhibitor Alias/Description Structure HSP90
Binding Site

Organelle
selectivity Manufacturer Application Drug Used for

Combination
Recruting or Active

Clinical Stage Reference

Purine-based
molecules

20 PU3
N-terminal

ATP-binding
pocket

Phase I [156]

21 BIIB021 CNF2024

N-terminal
ATP-binding

pocket
Biogen Idec breast cancer,

lymphoma

exemestane
(Aromasin),
trastuzumab

Phase I/II [157,158]

22 BIIB028
N-terminal

ATP-binding
pocket

Conforma
Therapeutics

breast cancer,
melanoma,

gastrointestinal cancer,
lymphoma, myeloma

Onalespib,
Bortezomib,
Cetuximab

Phase I/II/
III [159]

23 DN401
N-terminal

ATP-binding
pocket

[9,160]

24 MPC-3100
N-terminal

ATP-binding
pocket

Myriad Phar-
maceuticals Phase I [161]
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Table 2. Cont.

Type Order Inhibitor Alias/Description Structure HSP90
Binding Site

Organelle
selectivity Manufacturer Application Drug Used for

Combination
Recruting or Active

Clinical Stage Reference

Other
inhibitors

25 Panobinostat Farydak Novartis Phase I/II/
III

26 Novobiocin Albamycin/
cathomycin C-terminus Pharmacia &

Upjohn [162]

27 EGCG Epigallocatechin
gallate C-terminus

colon cancer, prostate
cancer, bladder cancer,
head and neck cancer,

breast cancer, lung
cancer, pancreatic

cancer

Sunphenon,
Erlotinib,

Polyphenon E

Phase I/II/
III/IV [163,164]

28 Silybin C-terminus prostate cancer Phase I/II/
III/IV [165]

29 Cisplatin C-terminus Phase I/II/
III/IV [166–168]

30 LA-12 Cisplatin
derivative C-terminus Phase I/II/

III/IV [168–170]
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Table 2. Cont.

Type Order Inhibitor Alias/Description Structure HSP90
Binding Site

Organelle
selectivity Manufacturer Application Drug Used for

Combination
Recruting or Active

Clinical Stage Reference

Other
inhibitors

31 Paclitaxel Taxol unkonwn Phase I/II/
III/IV [171]

32 Sansalvamide A San A N-MD [172,173]

33 L80 Deguelin
derivative

C-terminal
ATP-binding

pocket
Phase III [174]

34 Shepherdin /
N-terminal

ATP-binding
pocket

Mitochondrion [26,175]

35 SNX-5422 PF-04929113
N-terminal

ATP-binding
pocket

Pfizer leukemia, lymphoma. Phase I [176,177]

36 HSP990 NVP-
HSP990

N-terminal
ATP-binding

pocket
Novartis Phase I [178]
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Table 2. Cont.

Type Order Inhibitor Alias/Description Structure HSP90
Binding Site

Organelle
selectivity Manufacturer Application Drug Used for

Combination
Recruting or Active

Clinical Stage Reference

Other
inhibitors

37 Pseudolaric
Acid A PAA

N-terminal
ATP-binding

pocket
[179]

38 CH5138303
N-terminal

ATP-binding
pocket

[180]

39 NMS-E973 Isoxazole
derivative

N-terminal
ATP-binding

pocket

Nerviano
Medical

Sciences S.r.l.
laboratories

[181]
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4.1. HSP90 Inhibitors That Directly Bind to HSP90
4.1.1. Geldanamycin (GA) and Its Derivatives

Geldanamycin, a member of the ansamycin class of antibiotics, was originally isolated
from the bacterium Streptomyces hygroscopicus, and turned out to be the first HSP90 in-
hibitor resulting from natural product-based drug discovery [182]. Geldanamycin showed
a possible anti-tumor effect on several cancer cell lines. The molecular target, however,
was unknown until Whitesell L. et al., found that geldanamycin could target HSP90 by
mediating the degradation of v-Src [183]. Unfortunately, the subsequent pre-clinical studies
revealed hepatotoxicity, low chemical stability, poor bioavailability, and the solubility of gel-
danamycin, which largely limited its further translational advancement [184]. Fortunately,
researchers improved the unfavorable properties of geldanamycin by developing a series of
its derivatives [185]. Among those modified GA derivatives, 17-AAG (17-allylamino-GDA)
and 17-DMAG (17-(2-Dimethylaminoethyl)amino-17-demethoxygeldanamycin) emerged,
owing to their excellent inhibitory potency and solubility. Therefore, both of the GA deriva-
tives entered into clinical trials for further evaluation [128,186,187]. The future of GA
research should focus on addressing the toxicity of benzoquinone as well as identifying the
combination therapeutics.

To test the impact of network subcellular compartmentalization on the activity of
HSP90 inhibitors, Kang B. et al., designed another analog of 17-AAG named gamitrinib-TPP
(GA mitochondrial matrix inhibitor). Gamitrinib-TPP is combinatorial and contains a ben-
zoquinone ansamycin backbone derived from 17-AAG, a linker region on the C17 position,
and a mitochondrial targeting moiety. Gamitrinib was accumulated in the mitochondria,
which caused a rapid tumor regression due to its “mitochondriotoxic” mechanism of ac-
tion [138]. Subsequent studies also showed the substantial anti-tumor activity of gamitrinib
both in vitro and in vivo while sparing the normal counterpart [139,188–191].

4.1.2. Radicicol and Its Derivatives

Radicicol, a resorcinol lactone antibiotic, was first found in Monosporium bonorden
by P. Delmotte and J. Delmotte-Plaquee in 1953 [192]. Later on, radicicol was found to
manifest anti-tumor properties, possibly by inhibiting v-Src and its downstream MAPK
signaling [193]. Radicicol showed a better affinity for HSP90 versus geldanamycin in vitro.
Nevertheless, further translational research on radicicol has been limited because radicicol
was rapidly metabolized to an inactive form due to its electrophilic nature [155,194]. Hence,
radicicol was not suitable for being tested in clinical trials. However, the replacement of
epoxide by a difluorocyclopropane ring generated lesser anti-tumor activity compared
with radicicol. The replacement of 2′-ketone by an oxime produced KF25706, which was
metabolically stable and exhibited in vivo anti-tumor activity [195]. It was found that the
oxime derivatives also contain a pharmacophore which could be used for designing a series
of radicicol analogs [196,197].

Molecular studies also demonstrated three dynamic conformations of radicicol: the
bioactive “c-shaped” conformation, the planar conformation, and the conformation where
the macrocycle is bent to the opposite of the resorcinol ring [198]. Ganetespib (STA-9090)
showed greater tumor penetration and more mild side effects than that of 17-AAG, and it
is now under clinical evaluation in phase I-III trials [199–201].

Interestingly, Cheung K. et al., conducted a high-throughput compound screening and
found a resorcinol-containing compound, CCT018159, which manifested the inhibitory ac-
tivity of HSP90 [150,202]. A further medicinal chemistry modification based on CCT018159
led to the development of the AUY922, which is currently under evaluation in a Phase II
trial [203–205]. KW-2478, a resorcinol-derived molecule, which was developed based upon
a unique optimization strategy, also entered clinical investigation for patients with B-cell
malignancies and refractory multiple myeloma [152,206]. Similarly, Astex Pharmaceuticals
developed AT13387 based on a fragment-based approach, which was tested in metastatic
solid tumors due to its anti-HSP90 property [153,207].
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4.1.3. Chimeric Molecules

Both geldanamycin and radicicol confer substantial inhibitory effects on various types
of cancer cells, but they are of limited translational potential due to the toxicities of GA
and the insufficient in vivo efficacy. Therefore, researchers have proposed the development
of new HSP90 inhibitory scaffolds by combining the structural features found in both
geldanamycin and radicicol [184]. This approach would ensure the preservation of the
moiety interacting with HSP90, while simplifying the structure. Radanamycin was the
first chimeric HSP90 inhibitor which retained the hydrogen bonding network responsible
for the selective binding of the heteroprotein complex [196]. Radamide, a radanamycin
analog, was synthesized by connecting the resorcinol ring to the quinone via an amide
bond containing carbon-linker [208]. Radester, another analog, was produced when the
radicicol ester was connected to quinone [209]. All three compounds showed a greater
HSP90 binding affinity and enhanced anti-proliferative activity.

4.1.4. Purine-Based Molecules

The functional HSP90 requires the addition of ATP. To capitalize on this, Chiosis G. et al.,
utilized ATP as a starting point to design small molecule inhibitors that bind to the N-
terminal ATP-binding site [210]. This led to the development of the first purine-based
inhibitor, PU3, which also manifested a comparable anti-tumor activity by antagonizing
HSP90 [210,211]. Consequently, multiple HSP90 inhibitors were developed but only the
substitutions at the 2-, 4-, 5- and 9-positions are critical for inhibiting HSP90 [212]. Among
all analogs, BIIB021 represented one of the HSP90 inhibitors with the most efficacious
activity and showed a high selectivity for tumor versus normal cells in the ERBB2 degra-
dation assays with a pyridylmethylene group at the 9-position [157]. Further, adding
a phosphate ester led to the development of BIIB028, and both of the two analogs entered
clinical trials [159,213].

4.1.5. FDA-Approved Inhibitors Target HSP90

Though inhibitors that directly bind to HSP90 are still under evaluation in clinic trials,
researchers found that two FDA-approved inhibitors (panobinostat and irsogladine) exhibit
an HSP90 inhibitory effect [214,215]. Panobinostat, developed by Novartis, has primarily
been recognized as a histone deacetylase (HDAC) inhibitor. Oral panobinostat is approved
in the US, as combination therapy with bortezomib and dexamethasone in patients with
recurrent multiple myeloma who have received at least two prior treatment regimens [216].
However, panobinostat induces the hyperacetylation of HSP90 in acute myeloid leukemia
cells and inhibits its chaperone function, thereby leading to the proteasomal degradation
of client proteins such as CXCR4 and AML1/ETO9a [217,218]. Moreover, the treatment of
multiple myeloma with panobinostat induced the degradation of PPP3CA, which inhibited
the cell viability [219]. Irsogladine, first named as MN-1695, showed remarkable efficacy in
various animal models of gastric ulcers [220]. Irsogladine is a phosphodiesterase inhibitor
approved by the FDA for its mucosal protective efficacy in the treatment of peptic ulcers
and acute gastritis [221]. Interestingly, Young Ho Seo screened FDA-approved drugs based
on the similarity of chemical structures and selected drugs that contained both a hydrophilic
and a hydrophobic binding moiety, discovering that irsogladine acts as an HSP90 inhibitor
and disrupts the HSP90 folding machinery [215]. These studies have laid a solid foundation
for the further development of potential inhibitors that may bind to HSP90.

4.1.6. Other Inhibitors

Epigallocatechin-3-Gallate (EGCG) was a polyphenolic compound that was originally
isolated from green tea and showed affinity for the C-terminal ATP-binding site of HSP90
at residues 538–738 [222]. The subsequent studies demonstrated that the phenols on
the B- or the D-rings are unfavorable, while the syn-stereochemistry of the linker that
connects the same rings with the benzopyran core is indispensable for its HSP90 inhibitory
activity [223]. Silybin was first isolated from the seed of Silybum marianum. It showed
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anti-tumor activity by inhibiting the growth of cancer cell lines, possibly by promoting
the degradation of multiple HSP90-dependent client proteins, including HER2, RAF1, Akt,
CDK2, CDK4 [224,225]. Cisplatin was a classical chemodrug and widely used for the
treatment of a number of solid tumors because it could be inserted into double-stranded
DNA to form adducts, which produced a lethal effect [166,226]. Interestingly, the following
studies demonstrated that the cisplatin could bind to the C-terminal domain of HSP90 and
inhibit its chaperone activity [227,228]. Recently, an optimized derivative of cisplatin, LA-12,
was developed, which exhibited a greater binding affinity for HSP90 as well as enhanced
anti-tumor activity [169,170]. Paclitaxel, also named taxol, was another broadly used
chemotherapeutic agent for various types of cancers. Paclitaxel showed a mitotic inhibitory
effect via restricting the disassembly of microtubule polymers. The treatment of paclitaxel
in cancer cells leads to defects in mitotic spindle assembly, chromosome segregation and cell
division [229]. Further affinity purification experiments with biotinylated taxol also found
the association of HSP90, although the binding region is unknown [171]. Sansalvamide
A (San A) was a depsipeptide extracted from Fusarium that manifested moderate anti-
tumor activity in cancer cells. Gu W. et al., developed San A-amide, a derivative of San A,
which exhibited a better anti-proliferative efficacy than its natural form and inhibited
the interaction between HSP90 and several co-chaperones such as IP6K2, FKBP52 and
HOP [172,230,231]. Deguelin, which was first found in Derris trifoliate or Mundulea sericea,
also showed the inhibitory activity in various cancer cell lines and pre-clinical models [232].
Biochemical research demonstrated that deguelin binds to the C-terminal ATP-binding
pocket of HSP90 to inhibit the association with various client proteins such as Akt, IKK,
NF-κB, mTOR, survivin and HIF-1α [174,233]. Considering that the high dose of deguelin
was associated with Parkinson’s disease-like syndrome, Lee S. et al., developed a new
deguelin derivative, L80, which showed comparable pro-apoptotic activity both in vitro
and in vivo without obvious side effects [234].

Besides chemical inhibitors, it is also achievable to inhibit HSP90 by synthesizing
peptidyl mimicry. In 2005, Plescia J. et al., identified the minimal survivin sequence of
K79-L87 for its binding to the “shepherding” chaperone HSP90. It was named shepherdin,
which exhibited the high binding affinity for the ATP pocket of HSP90, resulting in the
degradation of its client proteins, especially the survivin. Interestingly, shepherdin inhibits
the growth of HeLa cells by inducing mitochondrial apoptosis, with the release of mito-
chondrial cytochrome c in the cytosol. This indicates that there is a probability of the direct
mitochondrial targeting of shepherdin [26,175].

4.2. Inhibitors of HSP90 Co-Chaperones and Clients

PU-WS13 was identified in a high-throughput compound screening, which selectively
inhibited the mitochondria HSP90-GPR94. PU-WS13 possessed anti-proliferative activity
by disrupting the interaction between GPR94 and HER2 at the cell membrane, leading
to the lysosomal degradation of HER2 [235]. Celastrol was first extracted from the root
of Tripterygium wilfordii as a traditional medicine to treat inflammatory and autoimmune
diseases [236]. Several groups have shown that celastrol exhibits cytotoxicity against
various cancer cell lines [237–240]. Celastrol is a quinone methide triterpene and covalently
binds to the cysteine residues on CDC37 while sparing HSP90 [241], which results in the
degradation of HSP90-dependent client kinases [242]. Gedunin was first isolated from
the Azadirachta indica, which was widely used for treating malaria and other infectious
diseases [243]. Gedunin not only effectively inhibits multiple cancer cell lines, but also
activates heat shock response [243]. Mechanistically, Patwardhan C. et al., found that
gedunin binds to co-chaperone p23 and disrupts its interaction with HSP90, which is
detrimental for the HSP90 folding machinery [243]. Another HSP90-CDC37 disruptor,
Withaferin A (WA), was first isolated from Withania somnifera and used for inflammatory
diseases [244]. Similarly, it exerted an anti-proliferative property in numerous cancer
cell lines, likely through inducing the degradation of multiple client proteins [244–247].
Derrubone was originally isolated from Debrris robusta, and its anti-tumor effect was also
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manifested in a number of cancer cell lines by stabilizing HSP90–client interactions and
preventing the HSP90 chaperone cycle through its reaction cycle [248]. It was shown that
derrubone disrupted the HSP90–CDC37 hetero-complex and resulted in the degradation
of eIF2α kinase [249]. Gambogic acid was extracted from the Garcinia hanburyi and has
already been used to treat infectious disease or cancer [250]. Since gambogic acid showed
efficacious activity by controlling the proliferation, angiogenesis, and metastasis of multiple
cancer cell lines, it was under evaluation at phase II clinical trials in China for patients
with metastatic malignancies [251]. Cruentaren A was isolated from the Byssovorax cruenta,
which exerts cytotoxicity in histiocytic lymphoma U-937 cells through selectively inhibiting
mitochondrial ATP synthase, which may also be a co-chaperone of HSP90 [252,253].

4.3. Nanoparticles for HSP90 Inhibitors Delivery

In general, HSP90 inhibitors were delivered by the oral or intravenous approach.
However, they were always accompanied by adverse effects during the treatment course.
To avoid the cytotoxicity in the normal counterpart, spatio-temporally controlled nanopar-
ticles containing HSP90 inhibitors emerged as a new path to be tested in preclinical models.
In a study, Yang M. et al., used a versatile single-step surface-functionalizing technique
to prepare a 17-AAG oral delivery system using PLGA/PLA-PEG-FA nanoparticles (NP-
PEG-FA/17-AAG) to treat colitis-associated cancer (CAC). They showed enhanced effi-
cacy in CAC therapy while reducing systemic exposure [254]. Another study engineered
a nanoparticle (NP) containing both docetaxel and radicicol (DocRad-NP), wherein radi-
cicol is conjugated to cholesterol and held in the lipid bilayer. The treatment of breast
cancers with DocRad-NP optimally re-primes NK cells via the prolonged induction of
NK-activating ligand receptors and the temporal control of drug release [255]. Other micro-
carrier nano-platforms also hold great potential to improve the standard care of therapy for
patients with cancers. For example, 17-AAG could be efficiently encapsulated into nanopor-
phyrins (NP-AAG), which can generate efficient heat and ROS simultaneously with light
activation at the tumor sites for dual-modal photothermal- and photodynamic-therapy
(PTT/PDT) [256]. It has been reported that bovine serum albumin (BSA) nanoparticles
(NPs) can also serve as carriers for anti-cancer drugs. For example, Rochani A. et al.,
showed that luminespib-loaded BSA NPs can be used in vitro for the investigation of
cancer therapy in MIA PaCa-2 and MCF-7 cancer cells [257].

4.4. Mechanism of Resistance to HSP90 Inhibitors

Although HSP90 inhibitors exhibited considerable anti-tumor efficacy, the emergence
of drug resistance limited their prolonged benefit. Elevated levels of HSPs and heat shock
factor 1 (HSF1) are typically associated with drug resistance and poor clinical outcomes
in various malignancies. Samarasinghe B. et al., showed that the activation of HSF1
confers resistance to HSP90 inhibitors (GA or 17-AAG) through up-regulating sequestosome
1 and promoting the autophagic flux [258]. HSF1 was also identified through a pooled
RNA interference screen, and the combination of HSF1 knockdown with HSP90 inhibitors
exhibited a marked effect on various cancer cell lines and tumor mouse models [259]. In
glioblastoma cells, low NQO1 activity is a potential mechanism of acquired resistance to
17-AAG, and such resistance can be overcome with another HSP90 inhibitor (VER-50589 or
NVP-AUY922) [260]. Nevertheless, different mechanisms were found in different HSP90
inhibitors. Liu R. et al., found that SLC7A11 expression shows a negative correlation with
the growth inhibitory potency of geldanamycin, but not with its analog 17-AAG. The
ectopic expression of SLC7A11 in HepG2 cells confers resistance to geldanamycin, but not
to 17-AAG, partly as a result of the differential dependence on ROS for cytotoxicity [261].

5. Discussion

Although there are dozens of HSP90 inhibitors that have entered clinical trials for treat-
ing a broad range of tumors (Figure 2) [262], only two inhibitors (panobinostat and irsoglad-
ine) that inhibit HSP90 as a secondary target have been approved by the FDA [214,215].
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The main obstacle has been the intolerant adverse effects such as hepatotoxicity, fatigue,
nausea, diarrhea, myalgias, and retinal dysfunction, leading to a plausible notion that
HSP90 may not be a viable anti-cancer target [263,264]. Another impediment was that nei-
ther a predictive nor pharmacodynamic marker was developed to select a subset of patients
who might potentially benefit [262]. Thus, personalized therapies may lead to improved
efficacy since a subset of patients with tumors that over-express HSP90 could be selected.
Therefore, the sensitivity could be enhanced while the cytotoxicity is minimized [20].

Figure 2. Number of HSP90 inhibitors used in different cancer types under clinical evaluation (only
recruited/active/completed were counted).

Considering that most side effects can be mitigated via a lower dosage of drug ad-
ministration, we thus propose that rational-based combination therapies involving HSP90
inhibitors may be more efficacious for cancer treatments that target oncogenic signaling
pathways in parallel with reduced doses (Table 3). For example, the combined low-dose
treatment of rhabdomyosarcoma with the proteasome inhibitor Bortezomib (5–7.5 nM)
plus the HSP90 inhibitor 17-DMAG (≤50 nM) exhibited greater efficacy than either single
agent with improved side effects [265]. Another study found that the combination of
a lower dose of docetaxel (5 mg/kg, three times a week) with IPI-504 (50 mg/kg, twice
a week) showed enhanced antitumoral effects in multiple NSCLC xenograft models [266].
The combination therapeutics with more appropriate drug dosage in the clinic warrants
further investigation.

A significant amount of previous work has illustrated that the quantity of the subcellu-
lar localization of HSP90 is quite different between tumor and normal tissues, especially in
mitochondria and the extracellular matrix [267,268]. Further, the high expression levels of
mitochondria and extracellular HSP90 have been associated with various types of cancers,
with very low levels detected in the normal counterpart. Therefore, inhibitors can be
rationally designed, specifically for targeting mtHSP90 or eHSP90 [44,48,267]. Gamitrinibs
are mtHSP90 inhibitors that showed substantial anti-tumor activity with minimal to no
side effects, and they have been under clinical evaluation [139,191]. While the selective
inhibitors of eHSP90 are still in development, the concept of developing organelle-specific
drugs is being tested not only for HSP90 inhibitors, but also for other therapeutics targeting
organelle-specific oncoproteins, with the ultimate goal of improving drug activity and
minimizing side effects [96].
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Table 3. FDA-approved drugs used for combination with HSP90 inhibitors in clinical trials *.

Drug Number of Clinical Trials

Bortezomib 5

Docetaxel 4

Irinotecan 3

Sorafenib 2

Cytarabine 2

Gemcitabine 2

Everolimus 2

Trastuzumab 2

Imatinib 2

Crizotinib 2

Onalespib 2

Vemurafenib 1

Cobimetinib 1

Sirolimus 1

Capecitabine 1

Dexamethasone 1

Fulvestrant 1

Carboplatin 1

Abiraterone 1

Prednisone 1

Exemestane (Aromasin) 1

Cetuximab 1

Sunphenon 1

Erlotinib 1

Polyphenon E 1
* Only recruited/active/completed clinical trials were counted.
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