Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction
Abstract
:1. Introduction
2. Environmental Toxicants Exposure and Reproductive Health
3. ETs Exposure Effects Transmitted across Generations
3.1. Phytoestrogens and Mycotoxins
Species | Sex | Exposure | Dose | Effects across Generations | Reference |
---|---|---|---|---|---|
Mouse | Male | Genistein Two weeks before delivery. After weaning up to PND 35. | 40 mg/kg BW */day 800 mg/kg BW/day | F1: increased serum testosterone levels (40 mg/kg); increased testis weight (40 mg/kg); decreased testis weight (800 mg/kg); higher diameter of seminiferous tubules (40 mg/kg); increased heights of seminiferous epithelium (40 mg/kg day); smaller diameter of seminiferous tubules (800 mg/kg); increased ESR2, CYP19A1 (all doses), SOX9 and BRD7 (40 mg/kg) mRNA expression in the testis; decreased SOX9 and BRD7 mRNA expression (800 mg/kg) in the testis; increased number of apoptotic germ cells (800 mg/kg); abnormal sperm (800 mg/kg) | [88] |
Rat | Male | Genistein from E1 to PND 21 | 1 mg/kg BW/day | F1: increased expression of Daz in the testis F2: increased expression of Stra8, Spo11 and Sycp3; decreased expression of Fas in the testis; decreased expression of Star, Cyp11a1, Cyp17a1 in the testis | [89] |
Rat | Female | Zearalenone From E0 to 21 | 5, 10, and 20 mg/kg | F1: increase of follicle-stimulating hormone concentration (10 and 20 mg/kg); estradiol decrease (10 and 20 mg/kg); follicular atresia (20 mg/kg); thin uterine layer (20 mg/kg); reduced expression of estrogen receptor-alpha (10 and 20 mg/kg) in the placenta; reduced expression of gonadotropin-releasing hormone receptor (10 and 20 mg/kg) in the placenta | [90] |
Mouse | Male | Zearalenone From E12.5 to E18.5 | 20 µg/kg BW/day 40 µg/kg BW/day | F1: decreased sperm motility; decreased sperm concentration (all doses); reduced testis weight (all doses); percentage alteration in the of cells at different stages of meiosis (increased percentage of leptotene cells; decreased percentage of diplotene cells; all doses); reduction of 5hmC (all doses) in the testis; increased percentage of H3K27me3-positive spermatogonial cells (all doses); increased expression of H3K9 in the testis; increased expression of G9a in the testis; reduced percentage of ERα-positive Leydig cells (all doses) | [91] |
Mouse | Male | Zearalenone From E1 a E18 | 2.5 and 5.0 mg/kg BW/day | F1: abnormal vacuole structures; testes loose connections (all doses); decreased semen quality (all doses); decreased sperm count (all doses); decreased testosterone levels (all doses) | [92] |
3.2. Bisphenol A
Species | Sex | Exposure | Dose | Effects across Generations | Reference |
---|---|---|---|---|---|
Mouse | Male | From E7 to E14 | 50 μg, 5 mg, and 50 mg/kg BW */day | F1: reduced testis weight (50 mg/kg at PND + 30; 5 and 50 mg/kg at PND 60); alterations in seminiferous epithelial stages (all doses at both PND 30 and PND 60) (increased lumen area of stage VII; decreased lumen area of stage VIII); apoptosis of germ cells (5 and 50 mg/kg); F2: drop of stemness properties of spermatogonia (5 mg/kg) | [94] |
Mouse | Male | From E7 to E14 | 50 μg, 5 mg, and 50 mg/kg BW/day | F1: decreased frequency of stage VIII testicular seminiferous epithelial cells (5 and 50 mg/kg); increased number of abnormal seminiferous tubules (5 and 50 mg/kg); decreased sperm count (5 and 50 mg/kg); decreased sperm motility (50 mg/kg); altered DNA methylation in spermatozoa (5 and 50 mg/kg); proteomic expression changes in spermatozoa (50 mg/kg) F2: decreased frequency of stage VIII testicular seminiferous epithelial cells (50 mg/kg); increased number of abnormal seminiferous tubules (50 mg/kg); disruption of testicular germ cell organization (50 mg/kg); disruption of spermatogenesis (5 and 50 mg/kg); decreased sperm count (50 mg/kg); decreased sperm motility (50 mg/kg); altered DNA methylation in spermatozoa (50 mg/kg); proteomic expression changes in spermatozoa (50 mg/kg) F3: altered DNA methylation in spermatozoa (50 mg/kg) | [95] |
Rat | Male | From E8 to 14 | Mixture: BPA 50 mg/kg DEHP 750 mg/kg DBP 66 mg/kg BW/day | F3: pubertal abnormalities; testis dysfunction; apoptosis of spermatogenic cell; differential DNA methylated regions in spermatozoa | [97] |
Rat | Male | Continuous during the whole fetal life | 0.5 mg/kg BW/day | F0 and F1: changes in lipid metabolism in the testis; altered protein secondary structures in the testis; decreased testosterone production F2: decline of testosterone level; structural and functional alterations of Leydig cells | [98] |
Rat | Female | From E8 to 14 | 50 mg/kg BW/day | F3: pubertal abnormalities; primary ovarian insufficiency; polycystic ovaries | [97] |
Mouse | Female | From E11 to birth | 0.5, 20, 50 µg/kg BW/day | F1: inhibited ovarian germ cell nest breakdown (all doses); decreased fertility (all doses); reduced litter size (50 μg/kg); reduction of primordial follicles number and increase of primary follicles (0.5 and 50 µg/kg); increase of preantral follicles (high doses); altered estradiol levels (20 µg/kg); increased expression of steroidogenic enzymes and steroidogenesis-related genes (Hsd17b1 and Cyp14a1; 50 µg/kg) in the ovary F2: preterm delivery; decrease of primary follicle (0.5 µg/kg); increase of preantral follicle (0.5 and 20 µg/kg); decrease of primordial follicles (20 and 50 µg/kg); increased expression of sex steroid hormone receptors (Ers1 and Ar; 50 μg/kg); increased expression of steroidogenic enzymes and steroidogenesis-related genes (Hsd17b1 and Fshr at 0.5 µg/kg; Fshr, Cyp17a1, Hsd17b1, and Star at 20 µg/kg) in the ovary F3: delayed puberty; altered estrous cyclicity (50 μg/kg); decreased fertility (0.5 μg/kg); decreased expression of sex steroid hormone receptors (Ers1; 0.5 μg/kg); increased expression of steroidogenic enzymes and steroidogenesis-related genes (Fshr and Cyp17a1 at 50 µg/kg) in the ovary | [52,99,100] |
3.3. Phthalates
Species | Sex | Exposure | Dose | Effects across Generations | Reference |
---|---|---|---|---|---|
Mouse | Male | DEHP from E7 to E14 | 500 mg/kg | F1–F4: disruption of testicular germ cell association; reduced sperm motility F3: alteration of spermatogonial stem cell function | [103] |
Mouse | Male | DEHP from E11 until birth | 20, 200 μg/kg/day | F3: decreased fertility (20 µg/kg); reduced testicular steroidogenic capacity (20 and 200 μg/kg); impaired spermatogenesis (20 and 200 μg/kg); decreased sperm concentration (20 and 200 μg/kg); decreased sperm motility (20 and 200 μg/kg); alteration of BTB integrity (20 and 200 μg/kg); alteration of Y genes expression (20 and 200 μg/kg) in the testis | [104] |
Rat | Male | DBP from E8 to E14 | 500 mg/kg | F1–F3: spermatogenesis failure; altered reproduction; decrease sperm count; reduced Sertoli cells number; metabolic changes in the testis (increase level of betaine; drop of betaine homocysteine S-methyltransferase); DNA hypomethylation (in TM-4 cells, an immortalized cell line derived from mouse testis). | [105] |
Mouse | Female | DEHP Adult (12 weeks old) | 80 mg/kg/day | F0–F2: reduced expression of Esr1 in the ovary | [110] |
Rat | Female | DEHP from PN day 1 to 21 | 1, 10, and 100 mg/kg/BW * | F0: decrease of estradiol (all doses), testosterone and progesterone levels (10 and 100 mg/kg) F1: altered mRNA expression of follicle-stimulating (10 and 100 mg/kg), androgen (100 mg/kg), estrogen (100 mg/kg), progesterone (all doses) and peroxisome proliferator-activated (all doses) receptors, 3β hydroxysteroid dehydrogenase (all doses), aromatase and steroidogenic acute regulatory proteins (all doses) in the ovary; accelerated rate of follicle recruitment (10 and 100 mg/kg) | [111] |
Mouse | Female | DEHP from E11 until birth | 20, 200 µg/kg/day 500, 750 mg/kg/day | F1: estrous cyclicity impairment (750 mg/kg); increased ovarian cysts number (750 mg/kg); total follicle number decrease (750 mg/kg); increased estradiol levels (500 and 750 mg/kg); decreased testosterone (500 mg/kg), inhibin B (750 mg/kg) and FSH levels (500 mg/kg); increased LH levels (20 µg/kg) F2: altered follicle numbers (200 µg/kg and 500 mg/kg); decreased testosterone (20 µg/kg); decreased progesterone (200 µg/kg) F3: estrous cyclicity impairment (20 and 200 µg/kg and 500 and 750 mg/kg); decreased follicle numbers (200 µg/kg/d and 500 mg/kg); increased estradiol levels (20 µg/kg); decreased testosterone (20 µg/kg and 500 mg/kg); decreased inhibin B levels (500 mg/kg); increased FSH (500 mg/kg) and LH levels (500 mg/kg) | [107] |
Mouse | Female | DEHP from E10.5 until birth | 20 and 200 μg/kg/day 500, and 750 mg/kg/day | F1: accelerated puberty onset (200 µg/kg); disrupted estrous cyclicity (200 µg and 500 mg/kg); altered folliculogenesis (20 and 200 µg/kg); increased Dnmt expression in the ovary (750 mg/kg); increased presence of 5-mC in the ovary (20 µg/kg). F2: accelerated puberty onset (500 mg/kg); disrupted estrous cyclicity (20 and 200 µg/kg); increased 17β-estradiol levels (20 μg/kg); decreased expression of steroidogenic enzymes in the ovary (20 μg/kg); dysregulation of PI3K factors in the ovary (20 and 200 µg/kg; 750 mg/kg); decreased Tet expression in the ovary (all doses). F3: accelerated puberty onset (20, 200 µg, and 500 mg/kg); disrupted estrous cyclicity (20 µg/kg/day); decreased expression of steroidogenic enzymes in the ovary; decreased Dnmt in the ovary (all doses) and Tet expression in the ovary (200 μg/kg; 500 and 750 mg/kg) and 5-mC levels in the ovary (500 and 750 mg/kg) | [85,112] |
Mouse | Female | From E10 to birth | Mixture of 20 and 200 μg/kg/day—200 and 500 mg/kg/day [DEP (35.22%), DEHP (21.03%), DBP (14.91%), DiBP (8.61%), DiNP (15.10 %), and BzBP (5.13 %)] | F1: decreased FSH (500 mg/kg), estradiol (20 µg/kg; 200 and 500 mg/kg) testosterone (200 µg/kg; 200 and 500 mg/kg levels) and progesterone (500 mg/kg) levels; decreased steroidogenesis (20 and 200 µg/kg; 500 mg/kg); altered transition among follicle types (20 μg/kg and 200 mg/kg); higher incidence of atresia (500 mg/kg) F2 and F3: increased number of cystic ovaries (all doses); breeding, pregnancy and delivery complications (20 µg/kg and 500 mg/kg) | [106,107,108] |
Mouse | Female | DEHP from E0.5 to PND + 21 | 0.05, 5 mg/kg/day | F1-F3: accelerated follicular recruitment (all doses); reduction of primordial follicular reserve (all doses); increased pre-antral follicles number (all doses); diminished oocyte quality (0.05 mg/kg); diminished embryonic developmental competence (0.05 mg/kg); altered expression profile of ovarian and pre-implantation embryonic genes, observed in the ovary and in blastocysts, respectively (all doses) | [113] |
3.4. Pesticide
Species | Sex | Exposure | Dose | Effects across Generations | Reference |
---|---|---|---|---|---|
Rat | Male | Atrazine from E8 to E14 | 25 mg/kg BW/day | F2 and F3: azoospermia; atretic seminiferous tubules; vacuoles in the basal region of seminiferous tubules; sloughed germ cells; lack of seminiferous tubule lumen; high frequency of spermatogonia apoptosis; mammary tumors; early onset puberty; epimutations in spermatozoa F1–F3: epimutations in spermatozoa | [114] |
Rat | Male | Vinclozolin from E8 to E14 | 100 mg/kg/ day | F1: lowest number of DMRs in spermatozoa; altered quantity of lncRNA in spermatozoa F2: increased number of DMRs in spermatozoa; altered quantity of lncRNA in spermatozoa F3: the highest number of DMRs in spermatozoa; altered quantity of lncRNA in spermatozoa; increased number of differential histone retention sites (DHRs) in spermatozoa | [121] |
Mouse/Rat | Male | Vinclozolin from E8 to E14 | 100 mg/kg/ day (rat) 50 mg/kg/day (mouse) 100 mg/kg BW/day (rat; [115]) 1 mg/kg/day (rat; [120]) | F1–F3: increased spermatogenic cell apoptosis; decreased sperm number and motility; drop of epididymal sperm number; epigenetic alterations in spermatozoa (DMRs modified) (all doses) | [115,116,117,118,119,120] |
Rat | Male | DDT from E8 to E14 | 25 mg/kg BW/day | F1–F3: altered DNA methylation; altered noncoding RNAs expression in spermatozoa | [124] |
Rat | Male | DDE from E8 to E15 | 100 mg/kg BW/day | F1 and F2: downregulation of DNMT1 and DNMT3 in the testis F1–F3: infertility; decreased motile sperm concentration; decreased sperm fertility index; altered testis morphology; altered imprinted gene expression in spermatozoa | [125,126] |
Mouse | Female | Vinclozolin from E7 to E13 | 50 mg/kg BW/day | F3: polycystic ovary | [122] |
Rat | Female | Vinclozolin or DDT from E8 to E14 | 100 mg/kg BW/day (Vinclozolin) 25 mg/kg BW/day (DDT) | F3: differentially methylated regions in granulosa cells; altered expression of RNAs (492 sncRNAs and 123 lncRNAs in the vinclozolin-exposed granulosa cells; 1085 sncRNAs and 51 lncRNAs in the DDT granulosa cells; 174 mRNAs in vinclozolin-exposed granulosa cells; 212 mRNAs in DDT-exposed granulosa cells; predisposition to ovarian diseases) | [127] |
3.5. Persistent Environmental Contaminants
Species | Sex | Exposure | Dose | Effects across Generations | Reference |
---|---|---|---|---|---|
Rat | Male | TCDD from E8 to E14 | 100 ng/kg BW */day | F3: sperm epigenome alteration; reduction of testosterone levels | [96] |
Rat | Male | A1221 (mixture of PCBs) from E8 to E18 | 1 mg/kg BW/day | F1 and F3: epigenetic alterations in spermatozoa (DMRs modified) | [120] |
Rat | Male | POP mixture (polychlorinated biphenyls and organochlorine pesticides) | 500 µg/kg BW three times a week for 5 weeks, before mating through mating and parturition of the F1 litters | F1: decreased conception; decreased fertility; reduced number of fetuses; low sperm quality; advanced puberty; lower testosterone concentration; small epididymis; low prostate weights; reduced sperm counts; reduced sperm motility; hyper-methylation of Dnmt3l gene in spermatozoa F2: decreased fertility reduced number of fetuses; low sperm quality; delayed puberty; lower testosterone concentration; small epididymis; low prostate weights; reduced sperm counts; hypo-methylation of Dnmt3l gene in spermatozoa F3: hypo-methylation of Dnmt3l gene in spermatozoa | [130] |
Mouse | Male | PCBs (mixture of two congeners) from E0 to PND + 21 | 0, 1, 10, and 100 µg PCB/kg BW/day | F1 and F2: reduced testis weight (all doses); reduced seminiferous tubule diameter (all doses); low sperm viability (all doses); reduced fertility (all doses) | [129] |
Rat | Female | TCDD from E8 to E14 | 100 ng/kg BW/day | F1: primordial follicle loss; polycystic ovary disease | [96] |
Mouse | Female | TCDD on E15.5 | 10 µg/kg BW/day | F3: adenomyosis; reduced fertility; dysmenorrhea; preterm birth | [131,132] |
Rat | Female | A1221 from E16 to E18 | 1 mg/kg BW/day | F2 and F3: altered serum progesterone and estradiol levels; low fertility | [133] |
Mouse | Female | PCBs (mixture of two congeners) from E0 to PND 21 | 0, 1, 10, and 100 µg/kg BW/day | F1: reduced ovary weight (all doses); low oocyte developmental capacity (100 µg/kg); increased follicular atresia (all doses); smaller litters (all doses) | [129] |
4. Epigenetic Mechanisms of Transmission across Generations
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Gallo, A. Reprotoxic Impact of Environment, Diet, and Behavior. Int. J. Environ. Res. Public Health 2022, 19, 1303. [Google Scholar] [CrossRef]
- Sun, H.; Gong, T.T.; Jiang, Y.T.; Zhang, S.; Zhao, Y.H.; Wu, Q.J. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990-2017: Results from a global burden of disease study, 2017. Aging 2019, 11, 10952–10991. [Google Scholar] [CrossRef]
- Zhu, Q.; Kirby, J.A.; Chu, C.; Gou, L.T. Small Noncoding RNAs in Reproduction and Infertility. Biomedicines 2021, 9, 1884. [Google Scholar] [CrossRef] [PubMed]
- Marić, T.; Fučić, A.; Aghayanian, A. Environmental and occupational exposures associated with male infertility. Arh. Hig. Rada Toksikol. 2021, 72, 101–113. [Google Scholar] [CrossRef]
- Ding, T.; Yan, W.; Zhou, T.; Shen, W.; Wang, T.; Li, M.; Zhou, S.; Wu, M.; Dai, J.; Huang, K.; et al. Endocrine disrupting chemicals impact on ovarian aging: Evidence from epidemiological and experimental evidence. Environ. Pollut. 2022, 305, 119269. [Google Scholar] [CrossRef] [PubMed]
- Basso, C.G.; de Araújo-Ramos, A.T.; Martino-Andrade, A.J. Exposure to phthalates and female reproductive health: A literature review. Reprod. Toxicol. 2022, 109, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Predieri, B.; Alves, C.A.D.; Iughetti, L. New insights on the effects of endocrine-disrupting chemicals on children. J. Pediatr. (Rio J.). 2022, 98, S73–S85. [Google Scholar] [CrossRef]
- Montjean, D.; Neyroud, A.S.; Yefimova, M.G.; Benkhalifa, M.; Cabry, R.; Ravel, C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int. J. Mol. Sci. 2022, 23, 3350. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Song, H.; Dong, Y.; Huai, Z.; Fu, Y.; Yu, P.; Huang, B.; Yang, R.; Guo, Y.; Meng, Q.; et al. Sex-dependent and long-lasting effects of bisphenol AF exposure on emotional behaviors in mice. Physiol. Behav. 2022, 249, 113747. [Google Scholar] [CrossRef] [PubMed]
- Bronson, S.C.; Seshiah, V. Transgenerational Transmission of Non-communicable Diseases: How to Break the Vicious Cycle? Cureus 2021, 13, e18754. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, L.M.; Holloway, J.W.; Svanes, C.; Sears, M.R.; Breton, C.; Fedulov, A.V.; Nilsson, E.; Vercelli, D.; Zhang, H.; Togias, A.; et al. The Role of Epigenetics in Multi-generational Transmission of Asthma: An NIAID Workshop Report-based narrative review. Clin. Exp. Allergy 2022, accepted. [Google Scholar] [CrossRef]
- Claxton, L.D.; Houk, V.S. Hughes TJ. Genotoxicity of industrial wastes and effluents. Mutat. Res. 1998, 410, 237–243. [Google Scholar] [CrossRef]
- Choudhuri, S.; Kaur, T.; Jain, S.; Sharma, C.; Asthana, S. A review on genotoxicity in connection to infertility and cancer. Chem. Biol. Interact. 2021, 345, 109531. [Google Scholar] [CrossRef] [PubMed]
- Filardi, T.; Panimolle, F.; Lenzi, A.; Morano, S. Bisphenol A and Phthalates in Diet: An Emerging Link with Pregnancy Complications. Nutrients 2020, 12, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gore, A.C.; Balthazart, J.; Bikle, D.; Carpenter, D.O.; Crews, D.; Czernichow, P.; Diamanti-Kandarakis, E.; Dores, R.M.; Grattan, D.; Hof, P.R.; et al. Reprint of: Policy decisions on endocrine disruptors should be based on science across disciplines: A response to Dietrich et al. Horm. Behav. 2014, 65, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Arsenescu, V.; Arsenescu, R.I.; King, V.; Swanson, H.; Cassis, L.A. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ. Health Perspect. 2008, 116, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Kabir, E.R.; Rahman, M.S.; Rahman, I. A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol. 2015, 40, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Monneret, C. What is an endocrine disruptor? C R Biol. 2017, 340, 403–405. [Google Scholar] [CrossRef]
- La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 2020, 16, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Skinner, M.K. Endocrine disruptors and epigenetic transgenerational disease etiology. Pediatr. Res. 2007, 61, 48R–50R. [Google Scholar] [CrossRef] [Green Version]
- Del Pup, L.; Mantovani, A.; Cavaliere, C.; Facchini, G.; Luce, A.; Sperlongano, P.; Caraglia, M.; Berretta, M. Carcinogenetic mechanisms of endocrine disruptors in female cancers (Review). Oncol Rep. 2016, 36, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Calaf, G.M.; Ponce-Cusi, R.; Aguayo, F.; Muñoz, J.P.; Bleak, T.C. Endocrine disruptors from the environment affecting breast cancer. Oncol. Lett. 2020, 20, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Onuzulu, C.D.; Rotimi, O.A.; Rotimi, S.O. Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb. Rev. Environ. Health 2019, 34, 309–325. [Google Scholar] [CrossRef]
- Rattan, S.; Flaws, J.A. The epigenetic impacts of endocrine disruptors on female reproduction across generations. Biol. Reprod. 2019, 101, 635–644. [Google Scholar] [CrossRef]
- Lucaccioni, L.; Trevisani, V.; Marrozzini, L.; Bertoncelli, N.; Predieri, B.; Lugli, L.; Berardi, A.; Iughetti, L. Endocrine-Disrupting Chemicals and Their Effects during Female Puberty: A Review of Current Evidence. Int J. Mol. Sci. 2020, 21, 2078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Wen, X.; Liu, H.; Zhang, M.; Zhang, Y. Bisphenol a affects endometrial stromal cells decidualization, involvement of epigenetic regulation. J. Steroid Biochem. Mol. Biol. 2020, 200, 105640. [Google Scholar] [CrossRef]
- Natarajan, R.; Aljaber, D.; Au, D.; Thai, C.; Sanchez, A.; Nunez, A.; Resto, C.; Chavez, T.; Jankowska, M.M.; Benmarhnia, T.; et al. Environmental Exposures during Puberty: Window of Breast Cancer Risk and Epigenetic Damage. Int. J. Environ. Res. Public Health 2020, 17, 493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezo, Y.; Dale, B.; Elder, K. The negative impact of the environment on methylation/epigenetic marking in gametes and embryos: A plea for action to protect the fertility of future generations. Mol. Reprod. Dev. 2019, 86, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenbergh, O.; Di Serafino, A.; Tytgat, J.; Soubry, A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: A systematic review on research in mammals. Clin. Epigenet. 2020, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Pang, W.K.; Ryu, D.Y.; Park, Y.J.; Pang, M.G. Multigenerational and transgenerational impact of paternal bisphenol A exposure on male fertility in a mouse model. Hum. Reprod. 2020, 35, 1740–1752. [Google Scholar] [CrossRef]
- Robaire, B.; Delbes, G.; Head, J.A.; Marlatt, V.L.; Martyniuk, C.J.; Reynaud, S.; Trudeau, V.L.; Mennigen, J.A. A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. Environ. Res. 2022, 204, 112063. [Google Scholar] [CrossRef]
- Lauretta, R.; Sansone, A.; Sansone, M.; Romanelli, F.; Appetecchia, M. Endocrine Disrupting Chemicals: Effects on Endocrine Glands. Front. Endocrinol. 2019, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Rodriguez, D.; Franssen, D.; Bakker, J.; Lomniczi, A.; Parent, A.S. Cellular and molecular features of EDC exposure: Consequences for the GnRH network. Nat. Rev. Endocrinol. 2021, 17, 83–96. [Google Scholar] [CrossRef] [PubMed]
- You, H.H.; Song, G. Review of endocrine disruptors on male and female reproductive systems. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 244, 109002. [Google Scholar] [CrossRef] [PubMed]
- Zachow, R.; Uzumcu, M. The methoxychlor metabolite, 2,2-bis-(p-hydroxyphenyl)-1,1,1-trichloroethane, inhibits steroidogenesis in rat ovarian granulosa cells in vitro. Reprod. Toxicol. 2006, 22, 659–665. [Google Scholar] [CrossRef]
- Grochowalski, A.; Piekło, R.; Gasińska, A.; Chrzaszcz, R.; Gregoraszczuk, E.L. Accumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in porcine preovulatory follicles after in vitro exposure to TCDD: Effects on steroid secretion and cell proliferation. Cytobios 2000, 102, 21–31. [Google Scholar] [PubMed]
- Basavarajappa, M.S.; Craig, Z.R.; Hernández-Ochoa, I.; Paulose, T.; Leslie, T.C.; Flaws, J.A. Methoxychlor reduces estradiol levels by altering steroidogenesis and metabolism in mouse antral follicles in vitro. Toxicol. Appl. Pharmacol. 2011, 253, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.E.; Park, H.; Hong, Y.C.; Ha, M.; Kim, Y.; Chang, N.; Kim, B.N.; Kim, Y.J.; Yu, S.D.; Ha, E.H. Prenatal bisphenol A and birth outcomes: MOCEH (Mothers and Children’s Environmental Health) study. Int. J. Hyg. Environ. Health 2014, 217, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Peretz, J.; Neese, S.L.; Flaws, J.A. Mouse strain does not influence the overall effects of bisphenol a-induced toxicity in adult antral follicles. Biol. Reprod. 2013, 89, 108. [Google Scholar] [CrossRef] [Green Version]
- Hannon, P.R.; Brannick, K.E.; Wang, W.; Gupta, R.K.; Flaws, J.A. Di(2-ethylhexyl) phthalate inhibits antral follicle growth, induces atresia, and inhibits steroid hormone production in cultured mouse antral follicles. Toxicol. Appl. Pharmacol. 2015, 284, 42–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, H.K.L.; Svingen, T.; Fowler, P.A.; Vinggaard, A.M.; Boberg, J. Environmental influences on ovarian dysgenesis—Developmental windows sensitive to chemical exposures. Nat. Rev. Endocrinol. 2017, 13, 400–414. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Zhou, C.; Rattan, S.; Flaws, J.A. Effects of Endocrine-Disrupting Chemicals on the Ovary. Biol. Reprod. 2015, 93, 20. [Google Scholar] [CrossRef] [PubMed]
- Uzumcu, M.; Kuhn, P.E.; Marano, J.E.; Armenti, A.E.; Passantino, L. Early postnatal methoxychlor exposure inhibits folliculogenesis and stimulates anti-Mullerian hormone production in the rat ovary. J. Endocrinol. 2006, 191, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Symonds, D.A.; Merchenthaler, I.; Flaws, J.A. Methoxychlor and estradiol induce oxidative stress DNA damage in the mouse ovarian surface epithelium. Toxicol. Sci. 2008, 105, 182–187. [Google Scholar] [CrossRef]
- Armenti, A.E.; Zama, A.M.; Passantino, L.; Uzumcu, M. Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats. Toxicol. Appl. Pharmacol. 2008, 233, 286–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok-Lin, E.; Ehrlich, S.; Williams, P.L.; Petrozza, J.; Wright, D.L.; Calafat, A.M.; Ye, X.; Hauser, R. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int. J. Androl. 2010, 33, 385–393. [Google Scholar] [CrossRef]
- Souter, I.; Smith, K.W.; Dimitriadis, I.; Ehrlich, S.; Williams, P.L.; Calafat, A.M.; Hauser, R. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reprod. Toxicol. 2013, 42, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Miller, K.P.; Babus, J.K.; Flaws, J.A. Methoxychlor inhibits growth and induces atresia of antral follicles through an oxidative stress pathway. Toxicol. Sci. 2006, 93, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Peretz, J.; Gupta, R.K.; Singh, J.; Hernández-Ochoa, I.; Flaws, J.A. Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol. Sci. 2011, 119, 209–217. [Google Scholar] [CrossRef]
- Ziv-Gal, A.; Wang, W.; Zhou, C.; Flaws, J.A. The effects of in utero bisphenol A exposure on reproductive capacity in several generations of mice. Toxicol. Appl. Pharmacol. 2015, 284, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Hunt, P.A.; Koehler, K.E.; Susiarjo, M.; Hodges, C.A.; Ilagan, A.; Voigt, R.C.; Thomas, S.; Thomas, B.F.; Hassold, T.J. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr. Biol. 2003, 13, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Mlynarcíková, A.; Nagyová, E.; Ficková, M.; Scsuková, S. Effects of selected endocrine disruptors on meiotic maturation, cumulus expansion, synthesis of hyaluronan and progesterone by porcine oocyte-cumulus complexes. Toxicol. Vitr. 2009, 23, 371–377. [Google Scholar] [CrossRef]
- Trapphoff, T.; Heiligentag, M.; El Hajj, N.; Haaf, T.; Eichenlaub-Ritter, U. Chronic exposure to a low concentration of bisphenol A during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes. Fertil. Steril. 2013, 100, 1758–1767. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Petroff, B.K.; Rozman, K.K.; Terranova, P.F. Gonadotropin-releasing hormone (GnRH) partially reverses the inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on ovulation in the immature gonadotropin-treated rat. Toxicology 2000, 147, 15–22. [Google Scholar] [CrossRef]
- Greenspan, L.C.; Lee, M.M. Endocrine disrupters and pubertal timing. Curr. Opin. Endocrinol. Diabetes Obes. 2018, 25, 49–54. [Google Scholar] [CrossRef]
- Barker, D.J. The developmental origins of adult disease. Eur. J. Epidemiol. 2003, 18, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; Gupta, P.S.; Roy, S.C.; Selvaraju, S.; Ravindra, J.P. Chlorpyrifos and endosulfan affect buffalo oocyte maturation, fertilization, and embryo development in vitro directly and through cumulus cells. Environ. Toxicol. 2011, 26, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Priya, K.; Setty, M.; Babu, U.V.; Pai, K.S.R. Implications of environmental toxicants on ovarian follicles: How it can adversely affect the female fertility? Environ. Sci. Pollut. Res. Int. 2021, 28, 67925–67939. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Hanaoka, T.; Yoshimura, M.; Zhang, S.; Wang, P.; Tsukino, H.; Inoue, K.; Nakazawa, H.; Tsugane, S.; Takahashi, K. Decreased serum free testosterone in workers exposed to high levels of di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP): A cross-sectional study in China. Environ. Health Perspect. 2006, 114, 1643–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Wang, J.; Sun, X.; Ye, Y.; Xu, M.; Wang, J.; Chen, S.; Fu, Z. Exposure of maternal mice to cis-bifenthrin enantioselectively disrupts the transcription of genes related to testosterone synthesis in male offspring. Reprod. Toxicol. 2013, 42, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, D.; Yanagiba, Y.; Duan, Z.; Ito, Y.; Okamura, A.; Asaeda, N.; Tagawa, Y.; Li, C.; Taya, K.; Zhang, S.Y.; et al. Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol. Lett. 2010, 194, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, N.; Pandolfi, M.; Lavalle, J.; Carbone, S.; Ponzo, O.; Scacchi, P.; Reynoso, R. Probable gamma-aminobutyric acid involvement in bisphenol A effect at the hypothalamic level in adult male rats. J. Physiol. Biochem. 2011, 67, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Wisniewski, P.; Romano, R.M.; Kizys, M.M.; Oliveira, K.C.; Kasamatsu, T.; Giannocco, G.; Chiamolera, M.I.; Dias-da-Silva, M.R.; Romano, M.A. Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic-pituitary-testicular axis. Toxicology 2015, 329, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, L.; Zhao, B.; Hu, G.; Chu, Y.; Ge, R.S. Inhibition of human and rat testicular steroidogenic enzyme activities by bisphenol A. Toxicol. Lett. 2011, 207, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.L.; Wang, X.; Zhang, X.H.; Zhang, Z.; Gu, J.; Liu, L.; Wang, Y.; Wang, X.; Wang, S.L. Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A. Toxicol. Lett. 2013, 219, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mao, R.; Zhou, Q.; Ding, L.; Tao, J.; Ran, M.M.; Gao, E.S.; Yuan, W.; Wang, J.T.; Hou, L.F. Exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of ERK signal pathway. Toxicol. Mech. Methods. 2016, 26, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Marchetti, F.; Li, G.; Weldon, R.H.; Kurtovich, E.; Young, S.; Schmid, T.E.; Zhang, L.; Rappaport, S.; Waidyanatha, S.; et al. Benzene exposure near the U.S. permissible limit is associated with sperm aneuploidy. Environ. Health Perspect. 2010, 118, 833–839. [Google Scholar] [CrossRef]
- Katukam, V.; Kulakarni, M.; Syed, R.; Alharbi, K.; Naik, J. Effect of benzene exposure on fertility of male workers employed in bulk drug industries. Genet. Test. Mol. Biomark. 2012, 16, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Wang, R.X.; Fu, Y.; Luo, L.L.; Guo, W.; Liu, R.Z. Outcomes of intracytoplasmic sperm injection in oligozoospermic men with Y chromosome AZFb or AZFc microdeletions. Andrologia 2017, 49, e12602. [Google Scholar] [CrossRef]
- Daoud, S.; Sellami, A.; Bouassida, M.; Kebaili, S.; Ammar Keskes, L.; Rebai, T.; Chakroun Feki, N. Routine assessment of occupational exposure and its relation to semen quality in infertile men: A cross-sectional study. Turk. J. Med. Sci. 2017, 47, 902–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ianos, O.; Sari-Minodier, I.; Villes, V.; Lehucher-Michel, M.P.; Loundou, A.; Perrin, J. Meta-Analysis Reveals the Association Between Male Occupational Exposure to Solvents and Impairment of Semen Parameters. J. Occup. Environ. Med. 2018, 60, e533–e542. [Google Scholar] [CrossRef] [PubMed]
- Lwin, T.Z.; Than, A.A.; Min, A.Z.; Robson, M.G.; Siriwong, W. Effects of pesticide exposure on reproductivity of male groundnut farmers in Kyauk Kan village, Nyaung-U, Mandalay region, Myanmar. Risk Manag. Healthc. Policy 2018, 11, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziv-Gal, A.; Flaws, J.A.; Mahoney, M.M.; Miller, S.R.; Zacur, H.A.; Gallicchio, L. Genetic polymorphisms in the aryl hydrocarbon receptor-signaling pathway and sleep disturbances in middle-aged women. Sleep Med. 2013, 14, 883–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Duan, W.; Li, R.; Xu, S.; Zhang, L.; Chen, C.; He, M.; Lu, Y.; Wu, H.; Pi, H.; et al. Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity. Cell Death Dis. 2013, 4, e676. [Google Scholar] [CrossRef] [Green Version]
- Jin, P.; Wang, X.; Chang, F.; Bai, Y.; Li, Y.; Zhou, R.; Chen, L. Low dose bisphenol A impairs spermatogenesis by suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats. J. Biomed. Res. 2013, 27, 135–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Luo, C.; Li, Q.; Chen, S.; Hu, Y. Mitochondrion-mediated apoptosis is involved in reproductive damage caused by BPA in male rats. Environ. Toxicol. Pharmacol. 2014, 38, 1025–1033. [Google Scholar] [CrossRef]
- Othman, A.I.; Edrees, G.M.; El-Missiry, M.A.; Ali, D.A.; Aboel-Nour, M.; Dabdoub, B.R. Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicol. Ind. Health. 2016, 32, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhou, X.; Miao, M.; Li, D.K.; Wang, Z.; Li, R.; Liang, H.; Yuan, W. Association of Bisphenol A Exposure with LINE-1 Hydroxymethylation in Human Semen. Int. J. Environ. Res. Public Health. 2018, 15, 1770. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhou, X.; Li, D.K.; Yang, F.; Pan, H.; Li, T.; Miao, M.; Li, R.; Yuan, W. Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men. PLoS ONE 2017, 12, e0178535. [Google Scholar] [CrossRef] [PubMed]
- Skakkebaek, N.E. Testicular dysgenesis syndrome. Horm. Res. 2003, 60, 49. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol. 2008, 25, 2–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, F.; Susiarjo, M.; Bartolomei, M.S. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin. Cell Dev. Biol. 2015, 43, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattan, S.; Brehm, E.; Gao, L.; Flaws, J.A. Di(2-Ethylhexyl) Phthalate Exposure During Prenatal Development Causes Adverse Transgenerational Effects on Female Fertility in Mice. Toxicol. Sci. 2018, 163, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Brehm, E.; Flaws, J.A. Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction. Endocrinology 2019, 160, 1421–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Chen, H.; Dai, H.; Zhou, L.; Wang, Y.; Xin, X.; Chen, C.; Li, Z.; Ge, R.S. Effects of bis(2-butoxyethyl) phthalate exposure in utero on the development of fetal Leydig cells in rats. Toxicol. Lett. 2021, 351, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Lv, Z.; Hu, C.; Zhang, Q.; Wang, Z.; Hamdard, E.; Dai, H.; Mustafa, S.; Shi, F. Oral Exposure to Genistein during Conception and Lactation Period Affects the Testicular Development of Male Offspring Mice. Animals 2020, 10, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eustache, F.; Bennani Smires, B.; Moison, D.; Bergès, R.; Canivenc-Lavier, M.C.; Vaiman, D.; Auger, J. Different exposure windows to low doses of genistein and/or vinclozolin result in contrasted disorders of testis function and gene expression of exposed rats and their unexposed progeny. Environ. Res. 2020, 190, 109975. [Google Scholar] [CrossRef]
- Gao, X.; Sun, L.; Zhang, N.; Li, C.; Zhang, J.; Xiao, Z.; Qi, D. Gestational Zearalenone Exposure Causes Reproductive and Developmental Toxicity in Pregnant Rats and Female Offspring. Toxins 2017, 21, 21. [Google Scholar] [CrossRef]
- Men, Y.; Zhao, Y.; Zhang, P.; Zhang, H.; Gao, Y.; Liu, J.; Feng, Y.; Li, L.; Shen, W.; Sun, Z.; et al. Gestational exposure to low-dose zearalenone disrupting offspring spermatogenesis might be through epigenetic modifications. Basic Clin. Pharmacol. Toxicol. 2019, 125, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, D.; Sun, D.; Cui, S. Zearalenone affects reproductive functions of male offspring via transgenerational cytotoxicity on spermatogonia in mouse. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020, 234, 108766. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Hunt, P.A.; Gore, A.C. Endocrine disruptors and the future of toxicology testing—Lessons from CLARITY-BPA. Nat. Rev. Endocrinol. 2019, 15, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, P.C.; Ahn, J.S.; Kim, Y.H.; Jung, S.E.; Kim, B.J.; Lee, H.S.; Ryu, B.Y. Gestational Exposure to Bisphenol A Affects Testicular Morphology, Germ Cell Associations, and Functions of Spermatogonial Stem Cells in Male Offspring. Int. J. Mol. Sci. 2020, 21, 8644. [Google Scholar] [CrossRef]
- Rahman, M.S.; Pang, W.K.; Ryu, D.Y.; Park, Y.J.; Ryu, B.Y.; Pang, M.G. Multigenerational impacts of gestational bisphenol A exposure on the sperm function and fertility of male mice. J. Hazard. Mater. 2021, 416, 125791. [Google Scholar] [CrossRef]
- Manikkam, M.; Guerrero-Bosagna, C.; Tracey, R.; Haque, M.M.; Skinner, M.K. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS ONE 2012, 7, e31901. [Google Scholar] [CrossRef] [Green Version]
- Manikkam, M.; Tracey, R.; Guerrero-Bosagna, C.; Skinner, M.K. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS ONE 2013, 8, e55387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, S.; Zhang, W.; Yang, J.; Wang, S.; Yang, C.; Wang, J. A single-cell atlas of bisphenol A (BPA)-induced testicular injury in mice. Clin. Transl. Med. 2022, 12, e789. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hafner, K.S.; Flaws, J.A. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse. Toxicol. Appl. Pharmacol. 2014, 276, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.; Ziv-Gal, A.; Cudiamat, J.; Wang, W.; Zhou, C.; Flaws, J.A. The effects of in utero bisphenol A exposure on the ovaries in multiple generations of mice. Reprod. Toxicol. 2016, 60, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health. 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed]
- Eales, J.; Bethel, A.; Galloway, T.; Hopkinson, P.; Morrissey, K.; Short, R.E.; Garside, R. Human health impacts of exposure to phthalate plasticizers: An overview of reviews. Environ. Int. 2022, 158, 106903. [Google Scholar] [CrossRef] [PubMed]
- Doyle, T.J.; Bowman, J.L.; Windell, V.L.; McLean, D.J.; Kim, K.H. Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol. Reprod. 2013, 88, 112. [Google Scholar] [CrossRef] [PubMed]
- Barakat, R.; Lin, P.C.; Park, C.J.; Zeineldin, M.; Zhou, S.; Rattan, S.; Brehm, E.; Flaws, J.A.; Ko, C.J. Germline-dependent transmission of male reproductive traits induced by an endocrine disruptor, di-2-ethylhexyl phthalate, in future generations. Sci. Rep. 2020, 10, 5705. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Wu, W.; Chen, M.; Gu, H.; Tang, Q.; Guo, D.; Chen, T.; Chen, Y.; Lu, C.; Song, L.; et al. From the Cover: Metabolomics Reveals a Role of Betaine in Prenatal DBP Exposure-Induced Epigenetic Transgenerational Failure of Spermatogenesis in Rats. Toxicol Sci. 2017, 158, 356–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Gao, L.; Flaws, J.A. Exposure to an Environmentally Relevant Phthalate Mixture Causes Transgenerational Effects on Female Reproduction in Mice. Endocrinology 2017, 158, 1739–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brehm, E.; Rattan, S.; Gao, L.; Flaws, J.A. Prenatal Exposure to Di(2-Ethylhexyl) Phthalate Causes Long-Term Transgenerational Effects on Female Reproduction in Mice. Endocrinology 2018, 159, 795–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, S.; Brehm, E.; Leon, K.; Chiu, J.; Meling, D.D.; Flaws, J.A. Prenatal exposure to an environmentally relevant phthalate mixture alters ovarian steroidogenesis and folliculogenesis in the F1 generation of adult female mice. Reprod. Toxicol. 2021, 106, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Brehm, E.; Flaws, J.A. Prenatal exposure to a mixture of phthalates accelerates the age-related decline in reproductive capacity but may not affect direct biomarkers of ovarian aging in the F1 generation of female mice. Environ. Epigenet. 2021, 7, dvab010. [Google Scholar] [CrossRef] [PubMed]
- Kawano, M.; Qin, X.Y.; Yoshida, M.; Fukuda, T.; Nansai, H.; Hayashi, Y.; Nakajima, T.; Sone, H. Peroxisome proliferator-activated receptor α mediates di-(2-ethylhexyl) phthalate transgenerational repression of ovarian Esr1 expression in female mice. Toxicol. Lett. 2014, 228, 235–240. [Google Scholar] [CrossRef]
- Somasundaram, D.B.; Selvanesan, B.C.; Ramachandran, I.; Bhaskaran, R.S. Lactational Exposure to Di (2-ethylhexyl) Phthalate Impairs the Ovarian and Uterine Function of Adult Offspring Rat. Reprod. Sci. 2016, 23, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.; Beers, H.K.; Kannan, A.; Ramakrishnan, A.; Brehm, E.; Bagchi, I.; Irudayaraj, J.M.K.; Flaws, J.A. Prenatal and ancestral exposure to di(2-ethylhexyl) phthalate alters gene expression and DNA methylation in mouse ovaries. Toxicol. Appl. Pharmacol. 2019, 379, 114629. [Google Scholar] [CrossRef] [PubMed]
- Pocar, P.; Fiandanese, N.; Berrini, A.; Secchi, C.; Borromeo, V. Maternal exposure to di(2-ethylhexyl)phthalate (DEHP) promotes the transgenerational inheritance of adult-onset reproductive dysfunctions through the female germline in mice. Toxicol. Appl. Pharmacol. 2017, 322, 113–121. [Google Scholar] [CrossRef] [PubMed]
- McBirney, M.; King, S.E.; Pappalardo, M.; Houser, E.; Unkefer, M.; Nilsson, E.; Sadler-Riggleman, I.; Beck, D.; Winchester, P.; Skinner, M.K. Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers. PLoS ONE 2017, 12, e0184306. [Google Scholar] [CrossRef] [Green Version]
- Anway, M.D.; Rekow, S.S.; Skinner, M.K. Comparative anti-androgenic actions of vinclozolin and flutamide on transgenerational adult onset disease and spermatogenesis. Reprod. Toxicol. 2008, 26, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anway, M.D.; Cupp, A.S.; Uzumcu, M.; Skinner, M.K. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005, 308, 1466–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero-Bosagna, C.; Settles, M.; Lucker, B.; Skinner, M.K. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE 2010, 5, e13100. [Google Scholar] [CrossRef] [Green Version]
- Stouder, C.; Paoloni-Giacobino, A. Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 2010, 139, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Beck, D.; Sadler-Riggleman, I.; Skinner, M.K. Generational comparisons (F1 versus F3) of vinclozolin induced epigenetic transgenerational inheritance of sperm differential DNA methylation regions (epimutations) using MeDIP-Seq. Environ. Epigenet. 2017, 3, dvx016. [Google Scholar] [CrossRef] [Green Version]
- Gillette, R.; Son, M.J.; Ton, L.; Gore, A.C.; Crews, D. Passing experiences on to future generations: Endocrine disruptors and transgenerational inheritance of epimutations in brain and sperm. Epigenetics 2018, 13, 1106–1126. [Google Scholar] [CrossRef]
- Ben Maamar, M.; Sadler-Riggleman, I.; Beck, D.; McBirney, M.; Nilsson, E.; Klukovich, R.; Xie, Y.; Tang, C.; Yan, W.; Skinner, M.K. Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environ. Epigenet. 2018, 4, dvy010. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Bosagna, C.; Covert, T.R.; Haque, M.M.; Settles, M.; Nilsson, E.E.; Anway, M.D.; Skinner, M.K. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod. Toxicol. 2012, 34, 694–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turusov, V.; Rakitsky, V.; Tomatis, L. Dichlorodiphenyltrichloroethane (DDT): Ubiquity, persistence, and risks. Environ. Health Perspect. 2002, 110, 125–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, M.K.; Ben Maamar, M.; Sadler-Riggleman, I.; Beck, D.; Nilsson, E.; McBirney, M.; Klukovich, R.; Xie, Y.; Tang, C.; Yan, W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenet. Chromatin. 2018, 11, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Wu, N.; Wang, S.; Gao, M.; Song, P.; Lou, J.; Tan, Y.; Liu, K. Transgenerational impaired male fertility with an Igf2 epigenetic defect in the rat are induced by the endocrine disruptor p,p’-DDE. Hum. Reprod. 2014, 29, 2512–2521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Yang, L. Transgenerational impaired spermatogenesis with sperm H19 and Gtl2 hypomethylation induced by the endocrine disruptor p,p’-DDE. Toxicol. Lett. 2018, 297, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, E.; Klukovich, R.; Sadler-Riggleman, I.; Beck, D.; Xie, Y.; Yan, W.; Skinner, M.K. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: Ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics 2018, 13, 875–895. [Google Scholar] [CrossRef] [Green Version]
- Toft, G. Persistent organochlorine pollutants and human reproductive health. Dan Med. J. 2014, 61, B4967. [Google Scholar]
- Pocar, P.; Fiandanese, N.; Secchi, C.; Berrini, A.; Fischer, B.; Schmidt, J.S.; Schaedlich, K.; Rhind, S.M.; Zhang, Z.; Borromeo, V. Effects of polychlorinated biphenyls in CD-1 mice: Reproductive toxicity and intergenerational transmission. Toxicol. Sci. 2012, 126, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Maurice, C.; Dalvai, M.; Lambrot, R.; Deschênes, A.; Scott-Boyer, M.P.; McGraw, S.; Chan, D.; Côté, N.; Ziv-Gal, A.; Flaws, J.A.; et al. Early-Life Exposure to Environmental Contaminants Perturbs the Sperm Epigenome and Induces Negative Pregnancy Outcomes for Three Generations via the Paternal Lineage. Epigenomes 2021, 5, 10. [Google Scholar] [CrossRef]
- Bruner-Tran, K.L.; Duleba, A.J.; Taylor, H.S.; Osteen, K.G. Developmental Toxicant Exposure Is Associated with Transgenerational Adenomyosis in a Murine Model. Biol. Reprod. 2016, 95, 73. [Google Scholar] [CrossRef] [PubMed]
- Bruner-Tran, K.L.; Ding, T.; Yeoman, K.B.; Archibong, A.; Arosh, J.A.; Osteen, K.G. Developmental exposure of mice to dioxin promotes transgenerational testicular inflammation and an increased risk of preterm birth in unexposed mating partners. PLoS ONE 2014, 9, e105084. [Google Scholar] [CrossRef] [Green Version]
- Mennigen, J.A.; Thompson, L.M.; Bell, M.; Tellez Santos, M.; Gore, A.C. Transgenerational effects of polychlorinated biphenyls: 1. Development and physiology across 3 generations of rats. Environ. Health. 2018, 17, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekaran, S.; Jagadeesan, A. In utero exposure to phthalate downregulates critical genes in Leydig cells of F1 male progeny. J. Cell Biochem. 2015, 116, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Brieño-Enríquez, M.A.; García-López, J.; Cárdenas, D.B.; Guibert, S.; Cleroux, E.; Děd, L.; Hourcade Jde, D.; Pěknicová, J.; Weber, M.; Del Mazo, J. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of microRNAs in primordial germ cells. PLoS ONE 2015, 10, e0124296. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, E.E.; Ben Maamar, M.; Skinner, M.K. Role of epigenetic transgenerational inheritance in generational toxicology. Environ. Epigenet. 2022, 8, dvac001. [Google Scholar] [CrossRef]
- Okano, M.; Xie, S.; Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 1998, 19, 219–220. [Google Scholar] [CrossRef]
- Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Kohli, R.M.; Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013, 502, 472–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; D’Alessio, A.C.; Taranova, O.V.; Hong, K.; Sowers, L.C.; Zhang, Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466, 1129–1133. [Google Scholar] [CrossRef] [Green Version]
- Putiri, E.L.; Tiedemann, R.L.; Thompson, J.J.; Liu, C.; Ho, T.; Choi, J.H.; Robertson, K.D. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Genome Biol. 2014, 15, R81. [Google Scholar] [CrossRef] [PubMed]
- Waddell, A.R.; Huang, H.; Liao, D. CBP/p300: Critical Co-Activators for Nuclear Steroid Hormone Receptors and Emerging Therapeutic Targets in Prostate and Breast Cancers. Cancers 2021, 13, 2872. [Google Scholar] [CrossRef] [PubMed]
- Osada, S.; Nishikawa, J.; Nakanishi, T.; Tanaka, K.; Nishihara, T. Some organotin compounds enhance histone acetyltransferase activity. Toxicol. Lett. 2005, 155, 329–335. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebuzzini, P.; Fabozzi, G.; Cimadomo, D.; Ubaldi, F.M.; Rienzi, L.; Zuccotti, M.; Garagna, S. Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells 2022, 11, 3163. https://doi.org/10.3390/cells11193163
Rebuzzini P, Fabozzi G, Cimadomo D, Ubaldi FM, Rienzi L, Zuccotti M, Garagna S. Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells. 2022; 11(19):3163. https://doi.org/10.3390/cells11193163
Chicago/Turabian StyleRebuzzini, Paola, Gemma Fabozzi, Danilo Cimadomo, Filippo Maria Ubaldi, Laura Rienzi, Maurizio Zuccotti, and Silvia Garagna. 2022. "Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction" Cells 11, no. 19: 3163. https://doi.org/10.3390/cells11193163
APA StyleRebuzzini, P., Fabozzi, G., Cimadomo, D., Ubaldi, F. M., Rienzi, L., Zuccotti, M., & Garagna, S. (2022). Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells, 11(19), 3163. https://doi.org/10.3390/cells11193163