Oncocytoma-Related Gene Signature to Differentiate Chromophobe Renal Cancer and Oncocytoma Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Search and Selection
2.2. Data Preprocessing and Probe-to-Gene Conversion
2.3. Statistical Analysis
2.3.1. Unsupervised Learning Pipeline
2.3.2. Differential Expression and Network Analysis and Immune Cell Infiltration
2.3.3. Chromophobe-Oncocytoma Gene Signature (COGS)
2.3.4. Validation Set Development and Signature Validation
3. Results
3.1. Acquisition and Preprocessing of Datasets
3.2. Unsupervised Learning with UMAP and Density Based UMAP Largely Correlates with Histological Subtype
3.3. Development of COGS through Differential Expression, ROC, and Univariate Analysis
3.4. Pathway Analysis Identified Enriched Carbohydrate Metabolism in chRCC and Deviation of Warburg Effect in Both Tumors
3.5. Validation of COGS in a Microarray and RNA-Seq Combined Meta-Dataset
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Henske, E.P. Chromophobe renal cell carcinoma: New genetic and metabolic insights. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 678–681. [Google Scholar] [CrossRef]
- Lindgren, D.; Eriksson, P.; Krawczyk, K.; Nilsson, H.; Hansson, J.; Veerla, S.; Sjolund, J.; Höglund, M.; Johansson, M.E.; Axelson, H. Cell-Type-Specific Gene Programs of the Normal Human Nephron Define Kidney Cancer Subtypes. Cell Rep. 2017, 20, 1476–1489. [Google Scholar] [CrossRef] [Green Version]
- Stec, R.; Grala, B.; Mączewski, M.; Bodnar, L.; Szczylik, C. Chromophobe renal cell cancer—Review of the literature and potential methods of treating metastatic disease. J. Exp. Clin. Cancer Res. 2009, 28, 134–136. [Google Scholar] [CrossRef] [Green Version]
- Vera-Badillo, F.E.; Conde, E.; Duran, I. Chromophobe renal cell carcinoma: A review of an uncommon entity. Int. J. Urol. 2012, 19, 894–900. [Google Scholar] [CrossRef]
- Chao, D.H.; Zisman, A.; Pantuck, A.J.; Freedland, S.J.; Said, J.W.; Belldegrun, A.S. Changing concepts in the management of renal oncocytoma. Urology 2002, 59, 635–642. [Google Scholar] [CrossRef]
- Atkins, M.I.; Choueiri, T. Epidemiology, Pathology, and Pathogenesis of Renal Cell Carcinoma-UpToDate. Available online: https://www.uptodate.com/contents/epidemiology-pathology-and-pathogenesis-of-renal-cell-carcinoma (accessed on 2 March 2021).
- Hes, O.; Michal, M.; Sulc, M.; Podhola, M.; Zámecník, M.; Curík, R.; Miculka, P.; Neubauer, L.; Kinkor, Z.; Pavlovský, M. Oncocytoma of the kidney--morphologic variation in 102 cases. Cesk. Patol. 2001, 37, 51–56. [Google Scholar] [PubMed]
- Vendrami, C.L.; Villavicencio, C.P.; DeJulio, T.J.; Chatterjee, A.; Casalino, D.D.; Horowitz, J.M.; Oberlin, D.T.; Yang, G.-Y.; Nikolaidis, P.; Miller, F.H. Differentiation of Solid Renal Tumors with Multiparametric MR Imaging. Radiographics 2017, 37, 2026–2042. [Google Scholar] [CrossRef] [PubMed]
- Adley, B.P.; Papavero, V.; Sugimura, J.; Teh, B.T.; Yang, X.J. Diagnostic value of cytokeratin 7 and parvalbumin in differentiating chromophobe renal cell carcinoma from renal oncocytoma. Anal. Quant. Cytol. Histol. 2006, 28, 228–236. [Google Scholar]
- Kim, S.S.; Choi, Y.D.; Jin, X.M.; Cho, Y.M.; Jang, J.J.; Juhng, S.W.; Choi, C. Immunohistochemical stain for cytokeratin 7, S100A1 and claudin 8 is valuable in differential diagnosis of chromophobe renal cell carcinoma from renal oncocytoma. Histopathology 2009, 54, 633–635. [Google Scholar] [CrossRef]
- Yusenko, M.V.; Zubakov, D.; Kovacs, G. Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours. Int. J. Biol. Sci. 2009, 5, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Mazal, P.; Exner, M.; Haitel, A.; Krieger, S.; Thomson, R.B.; Aronson, P.S.; Susani, M. Expression of kidney-specific cadherin distinguishes chromophobe renal cell carcinoma from renal oncocytoma. Hum. Pathol. 2005, 36, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Tobin, N.P.; Foukakis, T.; De Petris, L.; Bergh, J. The importance of molecular markers for diagnosis and selection of targeted treatments in patients with cancer. J. Intern. Med. 2015, 278, 545–570. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.-H.; Wong, C.F.; Tan, H.L.; Yang, X.J.; Ditlev, J.; Matsuda, D.; Khoo, S.K.; Sugimura, J.; Fujioka, T.; A Furge, K.; et al. Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma. BMC Cancer 2010, 10, 196. [Google Scholar] [CrossRef]
- Rohan, S.; Tu, J.J.; Kao, J.; Mukherjee, P.; Campagne, F.; Zhou, X.K.; Hyjek, E.; Alonso, M.; Chen, Y.-T. Gene Expression Profiling Separates Chromophobe Renal Cell Carcinoma from Oncocytoma and Identifies Vesicular Transport and Cell Junction Proteins as Differentially Expressed Genes. Clin. Cancer Res. 2006, 12, 6937–6945. [Google Scholar] [CrossRef] [Green Version]
- Koeman, J.M.; Russell, R.C.; Tan, M.-H.; Petillo, D.; Westphal, M.; Koelzer, K.; Metcalf, J.L.; Zhang, Z.; Matsuda, D.; Dykema, K.J.; et al. Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response. PLoS Genet. 2008, 4, e1000176. [Google Scholar] [CrossRef]
- Davis, S.; Meltzer, P.S. GEOquery: A Bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007, 23, 1846–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Birkbak, N.J.; Gyorffy, B.; Szallasi, Z.; Eklund, A.C. Jetset: Selecting the optimal microarray probe set to represent a gene. BMC Bioinform. 2011, 12, 474. [Google Scholar] [CrossRef] [Green Version]
- Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012, 28, 882–883. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.R-Project.Org/ (accessed on 1 November 2021).
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2020, arXiv:1802.03426. [Google Scholar]
- Yang, Y.; Sun, H.; Zhang, Y.; Zhang, T.; Gong, J.; Wei, Y.; Duan, Y.-G.; Shu, M.; Yang, Y.; Wu, D.; et al. Dimensionality Reduction by UMAP Reinforces Sample Heterogeneity Analysis in Bulk Transcriptomic Data. Cell Rep. 2021, 36, 109442. [Google Scholar] [CrossRef]
- Basic UMAP Parameters—Umap 0.5 Documentation. Available online: https://umap-learn.readthedocs.io/en/latest/parameters.html (accessed on 17 August 2021).
- Tran, P.M.H.; Tran, L.K.H.; Nechtman, J.; Dos Santos, B.; Purohit, S.; Satter, K.B.; Dun, B.; Kolhe, R.; Sharma, S.; Bollag, R.; et al. Comparative Analysis of Transcriptomic Profile, Histology, and IDH Mutation for Classification of Gliomas. Sci. Rep. 2020, 10, 20651. [Google Scholar] [CrossRef]
- Hennig, C. Fpc: Flexible Procedures for Clustering. 2020. Available online: https://CRAN.R-project.org/package=fpc (accessed on 14 March 2021).
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.1.1. 2020. Available online: https://CRAN.R-project.org/package=gplots (accessed on 14 March 2021).
- Brunson, J.C.; Read, Q.D. Ggalluvial: Alluvial Plots in “Ggplot2”. 2020. Available online: http://corybrunson.github.io/ggalluvial/ (accessed on 12 May 2020).
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Sergushichev, A.A. An Algorithm for Fast Preranked Gene Set Enrichment Analysis Using Cumulative Statistic Calculation. Biorxiv 2016, 060012. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; He, Q.-Y. ReactomePA: An R/Bioconductor Package for Reactome Pathway Analysis and Visualization. Mol. BioSyst. 2016, 12, 477–479. [Google Scholar] [CrossRef]
- Carlson, M. Org.Hs.Eg.Db. Available online: http://bioconductor.org/packages/org.Hs.eg.db/ (accessed on 3 March 2021).
- Gu, Z.; Eils, R.; Schlesner, M. Complex Heatmaps Reveal Patterns and Correlations in Multidimensional Genomic Data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiele, C.; Hirschfeld, G. Cutpointr: Improved Estimation and Validation of Optimal Cutpoints in R. J. Stat. Softw. 2021, 8, 1–27. [Google Scholar] [CrossRef]
- Conner, J.R.; Hirsch, M.S.; Jo, V.Y. HNF1β and S100A1 are useful biomarkers for distinguishing renal oncocytoma and chromophobe renal cell carcinoma in FNA and core needle biopsies. Cancer Cytopathol. 2015, 123, 298–305. [Google Scholar] [CrossRef]
- Tickoo, S.K.; Amin, M.B.; Zarbo, R.J. Colloidal Iron Staining in Renal Epithelial Neoplasms, Including Chromophobe Renal Cell Carcinoma. Am. J. Surg. Pathol. 1998, 22, 419–424. [Google Scholar] [CrossRef]
- Wu, H.; Fan, L.; Liu, H.; Guan, B.; Hu, B.; Liu, F.; Hocher, B.; Yin, L. Identification of Key Genes and Prognostic Analysis between Chromophobe Renal Cell Carcinoma and Renal Oncocytoma by Bioinformatic Analysis. BioMed Res. Int. 2020, 2020, 4030915. [Google Scholar] [CrossRef]
GEO Accession ID | Number of Probes | Total Number of Arrays/Study | Number of Arrays Selected | ||
---|---|---|---|---|---|
RO | ChRCC | Normal Kidney | |||
GSE11024 | 17,700 | 79 | 7 | 6 | 12 |
GSE11151 | 54,676 | 67 | 4 | 4 | 5 |
GSE19982 | 54,676 | 30 | 15 | 15 | 0 |
GSE8271 | 54,676 | 34 | 10 | 10 | 0 |
GSE2109 | 17,232 | 2158 | 0 | 18 | 0 |
TCGA-KICH | 60,483 | 89 | 0 | 65 | 24 |
GSE12090 | 54,676 | 18 | 9 | 9 | 0 |
Gene | Optimum Cutpoint | Accuracy | Sensitivity | Specificity | AUROC | FC * | Adj p-Val |
---|---|---|---|---|---|---|---|
AP1M2 | 8.87 | 0.98 | 0.96 | 1.00 | 1.00 | 4.48 | 4.63 × 10−26 |
AQP6 | 8.29 | 0.98 | 0.94 | 1.00 | 1.00 | 36.98 | 2.61 × 10−32 |
ATP2C1 | 8.02 | 0.94 | 0.91 | 0.97 | 0.99 | 2.76 | 1.07 × 10−21 |
BSPRY | 7.82 | 1.00 | 1.00 | 1.00 | 1.00 | 3.52 | 1.73 × 10−26 |
CLDN8 | 10.50 | 0.93 | 0.91 | 0.94 | 0.97 | 42.73 | 1.12 × 10−19 |
DNAI3 | 5.23 | 0.94 | 0.94 | 0.94 | 0.98 | 3.32 | 9.59 × 10−20 |
ELMO3 | 7.86 | 1.00 | 1.00 | 1.00 | 1.00 | 3.07 | 1.85 × 10−28 |
ESRP1 | 7.99 | 0.99 | 0.98 | 1.00 | 1.00 | 10.32 | 5.01 × 1031 |
HOOK2 | 9.42 | 1.00 | 1.00 | 1.00 | 1.00 | 3.84 | 5.12 × 10−36 |
ITGB3 | 6.79 | 0.99 | 1.00 | 0.98 | 1.00 | 3.68 | 3.84 × 10−23 |
KCNG3 | 5.49 | 1.00 | 1.00 | 1.00 | 1.00 | 2.80 | 9.52 × 10−24 |
KIDINS220 | 9.19 | 1.00 | 1.00 | 1.00 | 1.00 | 2.93 | 3.08 × 10−28 |
KRT7 | 7.72 | 0.96 | 0.94 | 1.00 | 0.98 | 55.34 | 4.83 × 10−27 |
LAMA1 | 5.87 | 0.94 | 0.96 | 0.92 | 0.97 | 6.88 | 1.60 × 10−21 |
LIMS1 | 10.35 | 0.94 | 0.94 | 0.94 | 0.97 | 3.33 | 3.70 × 10−16 |
LRFN5 | 6.31 | 0.96 | 0.94 | 1.00 | 0.99 | 8.02 | 3.03 × 10−23 |
LSR | 8.72 | 1.00 | 1.00 | 1.00 | 1.00 | 3.46 | 1.51 × 10−34 |
MANEA | 5.70 | 0.99 | 1.00 | 0.98 | 1.00 | 3.04 | 1.26 × 10−28 |
MAP4K3 | 8.91 | 1.00 | 1.00 | 1.00 | 1.00 | 5.22 | 2.91 × 10−31 |
MSH2 | 6.54 | 0.99 | 1.00 | 0.98 | 1.00 | 3.63 | 2.68 × 10−29 |
NDUFS1 | 9.18 | 0.99 | 0.97 | 1.00 | 0.99 | 3.16 | 2.79 × 10−27 |
PLCL1 | 8.52 | 0.96 | 0.94 | 0.98 | 0.95 | 6.05 | 6.35 × 10−19 |
PLCL2 | 7.79 | 0.98 | 0.96 | 1.00 | 1.00 | 5.78 | 2.48 × 10−27 |
PNPT1 | 8.38 | 1.00 | 1.00 | 1.00 | 1.00 | 2.80 | 5.05 × 10−34 |
PRDX3 | 11.59 | 0.98 | 0.97 | 0.98 | 1.00 | 4.02 | 4.40 × 10−26 |
RSPO3 | 6.89 | 0.98 | 0.96 | 1.00 | 0.99 | 6.29 | 4.17 × 10−23 |
S100A1 | 8.43 | 0.95 | 1.00 | 0.91 | 0.98 | 3.70 | 3.90 × 10−19 |
SOCS1 | 7.32 | 0.92 | 0.91 | 0.92 | 0.97 | 3.59 | 1.05 × 10−18 |
SPINT2 | 10.59 | 1.00 | 1.00 | 1.00 | 1.00 | 3.53 | 4.32 × 10−30 |
SUCLA2 | 9.71 | 0.99 | 1.00 | 0.98 | 1.00 | 3.68 | 1.09 × 10−26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satter, K.B.; Tran, P.M.H.; Tran, L.K.H.; Ramsey, Z.; Pinkerton, K.; Bai, S.; Savage, N.M.; Kavuri, S.; Terris, M.K.; She, J.-X.; et al. Oncocytoma-Related Gene Signature to Differentiate Chromophobe Renal Cancer and Oncocytoma Using Machine Learning. Cells 2022, 11, 287. https://doi.org/10.3390/cells11020287
Satter KB, Tran PMH, Tran LKH, Ramsey Z, Pinkerton K, Bai S, Savage NM, Kavuri S, Terris MK, She J-X, et al. Oncocytoma-Related Gene Signature to Differentiate Chromophobe Renal Cancer and Oncocytoma Using Machine Learning. Cells. 2022; 11(2):287. https://doi.org/10.3390/cells11020287
Chicago/Turabian StyleSatter, Khaled Bin, Paul Minh Huy Tran, Lynn Kim Hoang Tran, Zach Ramsey, Katheine Pinkerton, Shan Bai, Natasha M. Savage, Sravan Kavuri, Martha K. Terris, Jin-Xiong She, and et al. 2022. "Oncocytoma-Related Gene Signature to Differentiate Chromophobe Renal Cancer and Oncocytoma Using Machine Learning" Cells 11, no. 2: 287. https://doi.org/10.3390/cells11020287
APA StyleSatter, K. B., Tran, P. M. H., Tran, L. K. H., Ramsey, Z., Pinkerton, K., Bai, S., Savage, N. M., Kavuri, S., Terris, M. K., She, J. -X., & Purohit, S. (2022). Oncocytoma-Related Gene Signature to Differentiate Chromophobe Renal Cancer and Oncocytoma Using Machine Learning. Cells, 11(2), 287. https://doi.org/10.3390/cells11020287