Functions of CNKSR2 and Its Association with Neurodevelopmental Disorders
Abstract
:1. Introduction
2. Molecular Characteristics of CNKSR2
3. Interaction of CNKSR2 with Cellular Signaling Molecules
3.1. CNKSR2 and Kinase Signaling Pathway
3.2. CNKSR2 and Small GTPase Signaling
3.3. Interaction of CNKSR2 with Synaptic Molecules
3.4. Interaction of CNKSR2 to Other Signaling Molecules
4. CNKSR2 and Neurodevelopmental Disorders
4.1. Deletion of Xp22.12 Involving the CNKSR2 Gene
4.2. Nonsense Variants of CNKSR2
4.3. Frameshift Variants of CNKSR2
4.4. Splicing Variants of CNKSR2
4.5. Cnksr2-Null Mouse Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Parenti, I.; Rabaneda, L.G.; Schoen, H.; Novarino, G. Neurodevelopmental Disorders: From Genetics to Functional Pathways. Trends Neurosci. 2020, 43, 608–621. [Google Scholar] [CrossRef]
- Morris-Rosendahl, D.J.; Crocq, M.-A. Neurodevelopmental disorders-the history and future of a diagnostic concept. Dialogues Clin. Neurosci. 2020, 22, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Maulik, P.K.; Mascarenhas, M.N.; Mathers, C.D.; Dua, T.; Saxena, S. Prevalence of intellectual disability: A meta-analysis of population-based studies. Res. Dev. Disabil. 2011, 32, 419–436. [Google Scholar] [CrossRef]
- Hughes-McCormack, L.A.; Rydzewska, E.; Henderson, A.; MacIntyre, C.; Rintoul, J.; Cooper, S.-A. Prevalence of mental health conditions and relationship with general health in a whole-country population of people with intellectual disabilities compared with the general population. BJPsych Open 2017, 3, 243–248. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, K.; Milton, M.; Smith, G.; Ouellette-Kuntz, H. Systematic Review of the Prevalence and Incidence of Intellectual Disabilities: Current Trends and Issues. Curr. Dev. Disord. Rep. 2016, 3, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Oberlé, I.; Rousseau, F.; Heitz, D.; Kretz, C.; Devys, D.; Hanauer, A.; Boué, J.; Bertheas, M.F.; Mandel, J.L. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 1991, 252, 1097–1102. [Google Scholar] [CrossRef]
- Neri, G.; Schwartz, C.E.; Lubs, H.A.; Stevenson, R.E. X-linked intellectual disability update 2017. Am. J. Med. Genet. Part A 2018, 176, 1375–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houge, G.; Rasmussen, I.H.; Hovland, R. Loss-of-function CNKSR2 mutation is a likely cause of non-syndromic X-linked intellectual disability. Mol. Syndromol. 2012, 2, 60–63. [Google Scholar] [CrossRef]
- Yao, I.; Hata, Y.; Ide, N.; Hirao, K.; Deguchi, M.; Nishioka, H.; Mizoguchi, A.; Takai, Y. MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein. J. Biol. Chem. 1999, 274, 11889–11896. [Google Scholar] [CrossRef] [Green Version]
- Therrien, M.; Wong, A.M.; Rubin, G.M. CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 1998, 95, 343–353. [Google Scholar] [CrossRef] [Green Version]
- Lanigan, T.M.; Liu, A.; Huang, Y.Z.; Mei, L.; Margolis, B.; Guan, K.L. Human homologue of Drosophila CNK interacts with Ras effector proteins Raf and Rlf. FASEB J. 2003, 17, 2048–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, J.; Ponting, C.P.; Hofmann, K.; Bork, P. SAM as a protein interaction domain involved in developmental regulation. Protein Sci. 1997, 6, 249–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, B.Z.; Lim, W.A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 2001, 114, 3219–3231. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, A.B.; Aspenström, P.; Hall, A. Human CNK1 Acts as a Scaffold Protein, Linking Rho and Ras Signal Transduction Pathways. Mol. Cell. Biol. 2004, 24, 1736–1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, R.D.; Radziwill, G. The scaffold protein CNK1 interacts with the angiotensin II type 2 receptor. Biochem. Biophys. Res. Commun. 2005, 338, 1906–1912. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, M.A.; Ferguson, K.M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem. J. 2000, 350, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Iida, J.; Nishimura, W.; Yao, I.; Hata, Y. Synaptic localization of membrane-associated guanylate kinase-interacting protein mediated by the pleckstrin homology domain. Eur. J. Neurosci. 2002, 15, 1493–1498. [Google Scholar] [CrossRef]
- Lim, J.; Ritt, D.A.; Zhou, M.; Morrison, D.K. The CNK2 scaffold interacts with vilse and modulates Rac cycling during spine morphogenesis in hippocampal neurons. Curr. Biol. 2014, 24, 786–792. [Google Scholar] [CrossRef] [Green Version]
- Yao, I.; Ohtsuka, T.; Kawabe, H.; Matsuura, Y.; Takai, Y.; Hata, Y. Association of membrane-associated guanylate kinase-interacting protein-1 with Raf-1. Biochem. Biophys. Res. Commun. 2000, 270, 538–542. [Google Scholar] [CrossRef]
- Desideri, E.; Cavallo, A.L.; Baccarini, M. Leading Edge Minireview Alike but Different: RAF Paralogs and Their Signaling Outputs. Cell 2015, 161, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Bumeister, R.; Rosse, C.; Anselmo, A.; Camonis, J.; White, M.A. CNK2 couples NGF signal propagation to multiple regulatory cascades driving cell differentiation. Curr. Biol. 2004, 14, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Lundström, A.; Gallio, M.; Englund, C.; Steneberg, P.; Hemphälä, J.; Aspenström, P.; Keleman, K.; Falileeva, L.; Dickson, B.J.; Samakovlis, C. Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes Dev. 2004, 18, 2161–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Li, M.; Labrador, J.P.; McEwen, J.; Lai, E.C.; Goodman, C.S.; Bashaw, G.J. Cross GTPase-activating protein (CrossGAP)/Vilse links the roundabout receptor to Rac to regulate midline repulsion. Proc. Natl. Acad. Sci. USA 2005, 102, 4613–4618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Lee, L.J.; Fan, C.C.; Chang, H.C.; Shih, H.A.; Min, M.Y.; Chang, M.S. Important roles of Vilse in dendritic architecture and synaptic plasticity. Sci. Rep. 2017, 7, 45646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, H.; Morishita, R.; Noda, M.; Ishiguro, T.; Nishikawa, M.; Nagata, K. The synaptic scaffolding protein CNKSR2 interacts with CYTH2 to mediate hippocampal granule cell development. J. Biol. Chem. 2021, 297, 101427. [Google Scholar] [CrossRef] [PubMed]
- Chardin, P.; Paris, S.; Antonny, B.; Robineau, S.; Béraud-Dufour, S.; Jackson, C.L.; Chabre, M. A human exchange factor for ARF contains Sec7- and pleckstrin-homology domains. Nature 1996, 384, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Deviez, D.J.; Casanova, J.E.; Wilson, J.M.; Hernandez-Deviez, D.J.; Casanova, J.E.; Wilson, J.M. Regulation of dendritic development by the ARF exchange factor ARNO. Nat. Neurosci. 2002, 5, 623–624. [Google Scholar] [CrossRef]
- Hernández-Deviez, D.J.; Roth, M.G.; Casanova, J.E.; Wilson, J.M. ARNO and ARF6 Regulate Axonal Elongation and Branching through Downstream Activation of Phosphatidylinositol 4-Phosphate 5-Kinase α. Mol. Biol. Cell. 2004, 15, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Fukaya, M.; Sugawara, T.; Hara, Y.; Okamoto, H.; Yamauchi, J.; Sakagami, H. Cytohesin-2 mediates group I metabotropic glutamate receptor-dependent mechanical allodynia through the activation of ADP ribosylation factor 6 in the spinal cord. Neurobiol. Dis. 2021, 159, 105466. [Google Scholar] [CrossRef]
- Ito, H.; Morishita, R.; Iwamoto, I.; Nagata, K. Establishment of an in vivo electroporation method into postnatal newborn neurons in the dentate gyrus. Hippocampus 2014, 24, 1449–1457. [Google Scholar] [CrossRef]
- Wood, J.; Yuan, J.; Margolis, R.; Colomer, V.; Duan, K.; Kushi, J.; Kaminsky, Z.; Kleiderlein, J.; Sharp, A.; Ross, C. Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins. Mol. Cell. Neurosci. 1998, 11, 149–160. [Google Scholar] [CrossRef]
- Shoji, H.; Tsuchida, K.; Kishi, H.; Yamakawa, N.; Matsuzaki, T.; Liu, Z.; Nakamura, T.; Sugino, H. Identification and characterization of a PDZ protein that interacts with activin type II receptors. J. Biol. Chem. 2000, 275, 5485–5492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirao, K.; Hata, Y.; Ide, N.; Takeuchi, M.; Irie, M.; Yao, I.; Deguchi, M.; Toyoda, A.; Sudhof, T.C.; Takai, Y. A novel multiple PDZ domain-containing molecule interacting with N-methyl-d-aspartate receptors and neuronal cell adhesion proteins. J. Biol. Chem. 1998, 273, 21105–21110. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, R.; Graae, L.; Lekman, M.; Wang, D.; Favis, R.; Axelsson, T.; Galter, D.; Carmine Belin, A.; Paddock, S. MAGI1 Copy Number Variation in Bipolar Affective Disorder and Schizophrenia. Biol Psychiatry 2012, 71, 922–930. [Google Scholar] [CrossRef] [Green Version]
- Koide, T.; Banno, M.; Aleksic, B.; Yamashita, S.; Kikuchi, T.; Kohmura, K.; Adachi, Y.; Kawano, N.; Kushima, I.; Nakamura, Y.; et al. Common variants in MAGI2 gene are associated with increased risk for cognitive impairment in Schizophrenic patients. PLoS ONE 2012, 7, e36836. [Google Scholar] [CrossRef]
- Marshall, C.R.; Young, E.J.; Pani, A.M.; Freckmann, M.L.; Lacassie, Y.; Howald, C.; Fitzgerald, K.K.; Peippo, M.; Morris, C.A.; Shane, K.; et al. Infantile Spasms Is Associated with Deletion of the MAGI2 Gene on Chromosome 7q11.23-q21.11. Am. J. Hum. Genet. 2008, 83, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Ohtakara, K.; Nishizawa, M.; Izawa, I.; Hata, Y.; Matsushima, S.; Taki, W.; Inada, H.; Takai, Y.; Inagaki, M. Densin-180, a synaptic protein, links to PSD-95 through its direct interaction with MAGUIN-1. Genes Cells 2002, 7, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Apperson, M.; Moon, I.; Kennedy, M. Characterization of densin-180, a new brain-specific synaptic protein of the O-sialoglycoprotein family. J. Neurosci. 1996, 16, 6839–6852. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Shen, M.; Huang, B.; Lasaga, J.; Payan, D.; Luo, Y. TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton. J. Biol. Chem. 1999, 274, 30729–30737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coba, M.P.; Komiyama, N.H.; Nithianantharajah, J.; Kopanitsa, M.V.; Indersmitten, T.; Skene, N.G.; Tuck, E.J.; Fricker, D.G.; Elsegood, K.A.; Stanford, L.E.; et al. TNiK Is Required for Postsynaptic and Nuclear Signaling Pathways and Cognitive Function. J. Neurosci. 2012, 32, 13987–13999. [Google Scholar] [CrossRef] [Green Version]
- Anazi, S.; Shamseldin, H.E.; AlNaqeb, D.; Abouelhoda, M.; Monies, D.; Salih, M.A.; Al-Rubeaan, K.; Alkuraya, F.S. A null mutation in TNIK defines a novel locus for intellectual disability. Hum. Genet. 2016, 135, 773–778. [Google Scholar] [CrossRef]
- Zieger, H.L.; Kunde, S.A.; Rademacher, N.; Schmerl, B.; Shoichet, S.A. Disease-associated synaptic scaffold protein CNK2 modulates PSD size and influences localisation of the regulatory kinase TNIK. Sci. Rep. 2020, 10, 5709. [Google Scholar] [CrossRef]
- Sun, C.; Robb, V.; Gutmann, D. Protein 4.1 tumor suppressors: Getting a FERM grip on growth regulation. J. Cell Sci. 2002, 115, 3991–4000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, Y.K.; Bögler, O.; Gorse, K.M.; Wieland, I.; Green, M.R.; Newsham, I.F. A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res. 1999, 59, 35–43. [Google Scholar]
- Hoover, K.; Bryant, P. The genetics of the protein 4.1 family: Organizers of the membrane and cytoskeleton. Curr. Opin. Cell Biol. 2000, 12, 229–234. [Google Scholar] [CrossRef]
- David, D.; Jagadeeshan, S.; Hariharan, R.; Nair, A.S.; Pillai, R.M. Smurf2 E3 ubiquitin ligase modulates proliferation and invasiveness of breast cancer cells in a CNKSR2 dependent manner. Cell Div. 2014, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Kavsak, P.; Rasmussen, R.; Causing, C.; Bonni, S.; Zhu, H.; Thomsen, G.; Wrana, J. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol. Cell 2000, 6, 1365–1375. [Google Scholar] [CrossRef]
- Mandel, J.L.; Chelly, J. Monogenic X-linked mental retardation: Is it as frequent as currently estimated? The paradox of the ARX (Aristaless X) mutations. Eur. J. Hum. Genet. 2004, 12, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Ropers, H.H.; Hamel, B.C.J. X-linked mental retardation. Nat. Rev. Genet. 2005, 6, 46–57. [Google Scholar] [CrossRef] [PubMed]
- de Brouwer, A.P.M.; Yntema, H.G.; Kleefstra, T.; Lugtenberg, D.; Oudakker, A.R.; de Vries, B.B.A.; van Bokhoven, H.; Van Esch, H.; Frints, S.G.M.; Froyen, G.; et al. Mutation frequencies of X-linked mental retardation genes in families from the EuroMRX consortium. Hum. Mutat. 2007, 28, 207–208. [Google Scholar] [CrossRef]
- Lubs, H.A.; Stevenson, R.E.; Schwartz, C.E. Fragile X and X-linked intellectual disability: Four decades of discovery. Am. J. Hum. Genet. 2012, 90, 579–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibarluzea, N.; de la Hoz, A.B.; Villate, O.; Llano, I.; Ocio, I.; Martí, I.; Guitart, M.; Gabau, E.; Andrade, F.; Gener, B.; et al. Targeted next-generation sequencing in patients with suggestive X-linked intellectual disability. Genes 2020, 11, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damiano, J.A.; Burgess, R.; Kivity, S.; Lerman-Sagie, T.; Afawi, Z.; Scheffer, I.E.; Berkovic, S.F.; Hildebrand, M.S. Frequency of CNKSR2 mutation in the X-linked epilepsy-aphasia spectrum. Epilepsia 2017, 58, e40–e43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaags, A.K.; Bowdin, S.; Smith, M.L.; Gilbert-Dussardier, B.; Brocke-Holmefjord, K.S.; Sinopoli, K.; Gilles, C.; Haaland, T.B.; Vincent-Delorme, C.; Lagrue, E.; et al. Absent CNKSR2 causes seizures and intellectual, attention, and language deficits. Ann. Neurol. 2014, 76, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Aypar, U.; Wirrell, E.C.; Hoppman, N.L. CNKSR2 deletions: A novel cause of X-linked intellectual disability and seizures. Am. J. Med. Genet. A 2015, 167, 1668–1670. [Google Scholar] [CrossRef]
- Daoqi, M.; Guohong, C.; Yuan, W.; Zhixiao, Y.; Kaili, X.; Shiyue, M. Exons deletion of CNKSR2 gene identified in X-linked syndromic intellectual disability. BMC Med. Genet. 2020, 21, 69. [Google Scholar] [CrossRef] [Green Version]
- Higa, L.; Wardley, J.; Wardley, C.; Singh, S.; Foster, T.; Shen, J. CNKSR2-related neurodevelopmental and epilepsy disorder: A cohort of 13 new families and literature review indicating a predominance of loss of function pathogenic variants. BMC Med. Genom. 2021, 14, 186. [Google Scholar] [CrossRef]
- Bonardi, C.M.; Mignot, C.; Serratosa, J.M.; Giraldez, B.G.; Moretti, R.; Rudolf, G.; Reale, C.; Gellert, P.M.; Johannesen, K.M.; Lesca, G.; et al. Expanding the clinical and EEG spectrum of CNKSR2-related encephalopathy with status epilepticus during slow sleep (ESES). Clin. Neurophysiol. 2020, 131, 1030–1039. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, T.; Li, N.; Wang, J.; Wang, J.; Ge, Y.; Yao, R. Psychomotor development and attention problems caused by a splicing variant of CNKSR2. BMC Med. Genom. 2020, 13, 182. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.D.; Xu, Z.F.; Kong, Q.X.; Wang, Y.L. CNKSR2 mutation causes the X-linked epilepsy-aphasia syndrome: A case report and review of literature. World J. Clin. Cases 2018, 6, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Polla, D.L.; Saunders, H.R.; Vries, B.B.A.; Bokhoven, H.; Brouwer, A.P.M.; de Vries, B.B.A.; van Bokhoven, H.; de Brouwer, A.P.M. A de novo variant in the X-linked gene CNKSR2 is associated with seizures and mild intellectual disability in a female patient. Mol. Genet. Genom. Med. 2019, 7, e00861. [Google Scholar] [CrossRef]
- Kang, Q.; Yang, L.; Liao, H.; Wu, L.; Chen, B.; Yang, S.; Kuang, X.; Yang, H.; Liao, C. CNKSR2 gene mutation leads to Houge type of X-linked syndromic mental retardation. Medicine 2021, 100, e26093. [Google Scholar] [CrossRef] [PubMed]
- Nagase, T.; Ishikawa, K.I.; Suyama, M.; Kikuno, R.; Hirosawa, M.; Miyajima, N.; Tanaka, A.; Kotani, H.; Nomura, N.; Ohara, O. Prediction of the Coding Sequences of Unidentified Human Genes. XII. The Complete Sequences of 100 New cDNA Clones from Brain Which Code for Large Proteins in vitro. DNA Res. 1998, 5, 355–364. [Google Scholar] [CrossRef]
- Herrero, M.J.; Velmeshev, D.; Hernandez-Pineda, D.; Sethi, S.; Sorrells, S.; Banerjee, P.; Sullivan, C.; Gupta, A.R.; Kriegstein, A.R.; Corbin, J.G. Identification of amygdala-expressed genes associated with autism spectrum disorder. Mol. Autism 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Landau, W.M.; Kleffner, F.R. Syndrome of acquired aphasia with convulsive disorder in children. Neurology 1957, 7, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.H.; Vears, D.F.; Turner, S.J.; Smith, R.L.; Berkovic, S.F.; Sadleir, L.G.; Scheffer, I.E. Clinical genetic study of the epilepsy-aphasia spectrum. Epilepsia 2013, 54, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Erata, E.; Gao, Y.; Purkey, A.M.; Soderblom, E.J.; McNamara, J.O.; Soderling, S.H. Cnksr2 loss in mice leads to increased neural activity and behavioral phenotypes of Epilepsy-Aphasia Syndrome. J. Neurosci. 2021, 41, 9633–9649. [Google Scholar] [CrossRef] [PubMed]
Family ID | Ethnicity | CNKSR2 Variant a | Gender | Affected Patients | Segregations | Intellectual Disability | Epilepsy/ Seizures | Hyper-Activity | Language Defect | Other Clinical Features | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|
#1 | Norwegian | deletion Xp22.12 (21,375,312–21,609,484) | male | proband | maternal | mild/moderate | yes | yes | yes | borderline microcephaly | [8] [54] |
#2 | Canadian | deletion Xp22.12 (20,297,696–21,471,387) | male | proband | maternal | yes | yes | yes | yes | [54] | |
deletion Xp22.12 (20,297,696–21,471,387) | male | brother | maternal | yes | yes | yes | yes | ||||
deletion Xp22.12 (20,297,696–21,471,387) | female | mother | NR | mild | no | NR | NR | ||||
#3 | French | deletion Xp22.12 (21,193,947–21,707,169) | male | proband | maternal | yes | yes | yes | yes | non-specific periventricular white matter hyperintensity | [54] |
deletion Xp22.12 (21,193,947–21,707,169) | male | brother | maternal | yes | no | yes | yes | ||||
#4 | French | frameshift (g.21,458,832_3insA, p.D152Rfs*8) | male | proband | maternal | yes | yes | yes | yes | minor cortical atrophy | [54] |
frameshift (g.21,458,832_3insA, p.D152Rfs*8) | male | brother | maternal | yes | febrile | yes | mild | ||||
frameshift (g.21,458,832_3insA, p.D152Rfs*8) | male | brother | maternal | yes | yes | yes | yes | ||||
#5 | NR | deletion Xp22.12 (21,328,677–21,670,497) | male | proband | maternal | yes | yes | NR | yes | [55] | |
#6 | Ashkenazi | nonsense (c.2134 C > T, p.Arg712*) b | male | proband | maternal | yes | yes | yes | yes | [53] | |
nonsense (c.2134C > T, p.Arg712*) b | male | brother | maternal | mild | yes | yes | mild | ||||
nonsense (c.2134C > T, p.Arg712*) b | female | sister | maternal | mild | mild | NR | mild | ||||
nonsense (c.2134C > T, p.Arg712*) b | female | mother | NR | no | febrile | NR | no | ||||
#7 | Chinese | nonsense (c.2185C > T, p.Arg729*) | male | proband | de novo | yes | yes | yes | yes | autism performance | [60] |
#8 | Dutch | nonsense (c.2304G > A, p.Trp768*) | female | proband | de novo | mild | yes | no | no | [61] | |
#9 | Chinese | deletion Xp22.12 (21,606,698–21,616,207) | male | proband | maternal | yes | yes | yes | yes | white matter lesions | [56] |
deletion Xp22.12 (21,606,698–21,616,207) | male | brother | maternal | yes | yes | yes | yes | small multifocal white matter lesions | |||
deletion Xp22.12 (21,606,698–21,616,207) | female | mother | de novo | mild | febrile | no | mild | ||||
#10 | Danish | frameshift c.2024_2027delAGAG, p.Glu675Glyfs*41 | male | proband | de novo | mild | yes | NR | yes | [58] | |
#11 | Spanish | frameshift c.246–247delAG, p.Thr83Lysfs*30 | male | proband | de novo | mild | yes | yes | NR | [58] | |
#12 | French | frameshift c.457_461del, p.Tyr153Serfs*5 | male | proband | maternal | moderate/severe | yes | NR | yes | [58] | |
#13 | French | deletion Xp22.12 (21,523,673–21,558,329) | female | proband | NR | mild | yes | yes | yes | [58] | |
#14 | Spanish | deletion Xp22.12 (21,609,392–21,619,786) | male | proband | de novo | moderate | yes | yes | yes | [58] | |
#15 | Chinese | splicing c.1904 + 1G > A | male | proband | maternal | mild | no | yes | no | [59] | |
#16 | Chinese | nonsense c.625C > T, p.Gln209* | male | proband | maternal | yes | yes | yes | yes | [62] | |
#17 | NR | nonsense c.2349T > G, p.Tyr783* | male | proband | de novo | yes | yes | yes | yes | autism | [57] |
#18 | NR | missense c.1537C > T, p.Pro513Ser) | male | proband | maternal | yes | yes | no | yes | [57] | |
#19 | NR | frameshift c.1988_1989del, p.Arg663Asnfs*2 | male | proband | de novo | yes | yes | yes | yes | [57] | |
#20 | NR | frameshift c.1653_1656del, p.Asn551Lysfs*4 | male | proband | de novo | yes | yes | no | yes | [57] | |
#21 | NR | nonsense c.2545C > T, p.Arg849* | male | proband | maternal | yes | yes | yes | yes | [57] | |
#22 | NR | splicing c.2145 + 1G >A | male | proband | de novo | yes | yes | yes | yes | [57] | |
#23 | NR | deletion Xp22.12 (21,278,397–21,678,707) | male | proband | maternal | yes | yes | yes | yes | autism | [57] |
#24 | NR | nonsense c.1198C > T, p.Arg400* | male | proband | de novo | yes | yes | yes | yes | [57] | |
#25 | NR | splicing c.2044 + 2 T>A | male | proband | de novo | yes | yes | yes | yes | [57] | |
#26 | NR | splicing c.520 − 1G > A | male | proband | de novo | yes | yes | yes | yes | [57] | |
#27 | NR | frameshift c.2005del, p.Ala669Glnfs*48 | male | proband | de novo | yes | yes | no | yes | [57] | |
#28 | NR | splicing c.1905 − 2A > G | male | proband | de novo | yes | yes | no | yes | [57] | |
#29 | NR | frameshift c.2026_2027del, p.Arg676Aspfs*2 | male | proband | de novo | yes | yes | yes | yes | autism | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, H.; Nagata, K.-i. Functions of CNKSR2 and Its Association with Neurodevelopmental Disorders. Cells 2022, 11, 303. https://doi.org/10.3390/cells11020303
Ito H, Nagata K-i. Functions of CNKSR2 and Its Association with Neurodevelopmental Disorders. Cells. 2022; 11(2):303. https://doi.org/10.3390/cells11020303
Chicago/Turabian StyleIto, Hidenori, and Koh-ichi Nagata. 2022. "Functions of CNKSR2 and Its Association with Neurodevelopmental Disorders" Cells 11, no. 2: 303. https://doi.org/10.3390/cells11020303
APA StyleIto, H., & Nagata, K. -i. (2022). Functions of CNKSR2 and Its Association with Neurodevelopmental Disorders. Cells, 11(2), 303. https://doi.org/10.3390/cells11020303