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Abstract: Cell replacement therapies may be key in achieving functional recovery in neurodegenera-
tive optic neuropathies diseases such as glaucoma. One strategy that holds promise in this regard
is the use of human embryonic stem cell and induced pluripotent stem-derived retinal ganglion
cells (hRGCs). Previous hRGC transplantation studies have shown modest success. This is in part
due to the low survival and integration of the transplanted cells in the host retina. The field is
further challenged by mixed assays and outcome measurements that probe and determine trans-
plantation success. Thefore, we have devised a transplantation assay involving hRGCs and mouse
retina explants that bypasses physical barriers imposed by retinal membranes. We show that hRGC
neurites and somas are capable of invading mouse explants with a subset of hRGC neurites being
guided by mouse RGC axons. Neonatal mouse retina explants, and to a lesser extent, adult explants,
promote hRGC integrity and neurite outgrowth. Using this assay, we tested whether suppmenting
cultures with brain derived neurotrophic factor (BDNF) and the adenylate cyclase activator, forskolin,
enhances hRGC neurite integration, neurite outgrowth, and integrity. We show that supplementing
cultures with a combination BDNF and forskolin strongly favors hRGC integrity, increasing neurite
outgrowth and complexity as well as the invasion of mouse explants. The transplantation assay
presented here is a practical tool for investigating strategies for testing and optimizing the integration
of donor cells into host tissues.

Keywords: human stem cells; retinal ganglion cell; mouse retina explant; glaucoma; cell
replacement therapy

1. Introduction

Optic neuropathies diminish the relay of sensory information from the eye to the
brain by targeting afferent retinal ganglion cells (RGCs) and their axons, composing the
optic nerve. These include both age-related and congenital conditions [1,2]. Chief among
age-related conditions is glaucomatous optic neuropathy, or glaucoma, which affects many
millions worldwide [3]. Degeneration in glaucoma is progressive and is associated strongly
with sensitivity of visual tissues to intraocular pressure [4,5]. Once RGCs and their axons
are lost to glaucoma, intrinsic neuronal repair and regeneration is limited [3,6–8]. Currently,
glaucoma is clinically treated by lowering intraocular pressure, but despite these regimens,
visual function often continues to decline as tissue degenerates [9,10]. For these patients, cell
replacement strategies hold promise to repair the optic projection and promote restoration
of vision [11–13].
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The last several years have seen great progress in the generation of RGC-like cells
from either induced pluripotent or embryonic stem cell origins, though their use in RGC
replacement therapies remain in the pre-clinical stage [14,15]. Investigations on transplant-
ing donor RGCs in animal models of optic neuropathy have produced modest success [15].
Major barriers to RGC transplantation include, among others, survival of the grafted cells
and integration into host circuitry [15,16]. Transplanted RGCs are further challenged by
pro-degenerative environments, immune system responses, and the necessity to project
long axons destined for appropriate central targets in the brain. Success in this regard will
depend on incorporating many strategies to enhance survival, integration, appropriate
axon guidance, and synapse formation of donor RGCs.

At the molecular level, human embryonic stem RGCs (hRGC) appear similar to native
RGCs, expressing transcripts for BRN3B, ATOH7, ISL1, and SOX4 [17–19]. Moreover, these
cells express the RGC-specific protein, RBPMS, and neuron-associated protein, TUJ1 [18,20].
hRGCs produce excitatory inward currents in response to glutamate, and generate action
potentials in response to depolarizing stimuli [17,20]. Furthermore, hRGC neurites accumu-
late excitatory postsynaptic proteins, suggesting the potential to form contacts with other
cells [20,21].

Here, we demonstrate a transplantation strategy to test interactions beteween hRGCs
and mouse retinal explants, hRGC neurite outgrowth and integrity. We found that hRGC
bodies and neurites are capable of cohabitating with retinal explants, with a subset of hRGC
neurites displaying affinity for both neonatal and adult mouse RGC axons. Supplementa-
tion with brain-derived neurotrophic factor (BDNF) and the adenylate cyclase activator,
forskolin, increased hRGC neurite outgrowth through maintaining structural integrity.
Interestingly, we provide evidence for the alteration of hRGC neurite maturation by adult
mouse retina explants. Our results highlight the importance of exogenous neurotrophic
supplementation to promote donor cell neurite outgrowth in adult retinal tissue and the
potential for hRGC integration with adult retinal tissues.

2. Materials and Methods
2.1. Animals

All experimental procedures were approved by the Vanderbilt University Institutional
Animal Care and Use Committee. C57Bl/6 (WT) mice were obtained from Charles River
Laboratory (Wilmington, MA, USA).

2.2. Coverslip Preparation

One day prior to culture, circular coverslips (Electron Microscopy Sciences, 18 mm #1.5,
cat. # 7222201) were coated with Poly-D-lysine (0.5 mg/mL in ultrapure water, Millipore
Sigma, St. Louis, MO, USA, cat. # P6407) overnight at room temperature. Coverslips
were rinsed with ultrapure water and incubated with laminin (20 µg/mL in PBS, Thermo
Fisher, Waltham, MA, USA, cat. # 23017015) for 2 h at 37 ◦C in a tissue culture incubator.
Coverslips were rinsed once with ultrapure water, water was replaced with 200 µL of
coating medium (0.2 g of Methyl cellulose (Millipore Sigma, cat. # M0512) in 48.5 mL of
Hibernate A (Thermo Fisher, A1247501) and 1 ml of B-27 (Thermo Fisher, cat. #175040440)
and 500 µL of L-glutamine (200 mM, Thermo Fisher, cat. # 25030081).

2.3. Culture Medium

Culture medium was composed of Neurobasal-A (Thermo Fisher, cat. # 10888022),
2% B-27 supplement (Thermo Fisher, cat. # 17504044), 1% N2 supplement (Thermo Fisher,
cat. # 17502048), 0.1% gentamicin (Millipore Sigma, cat. # G1397), 200 mM L-glutamine
(Thermo Fisher, cat. # 25030081). With or without the addition of 50 ng/mL recombinant
human BDNF (R&D Systems, Minneapolis, MN, USA, cat. # 248-BDB) and 5 µM Forskolin
(Stemcell Technologies, Cambridge, MA, USA, cat. # 72114).
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2.4. Mouse Retina Explant Culture

The mouse retina explant culture protocol was modified from [22]. Briefly, eyes of
sacrificed mice were placed in ice-cold PBS. Under a dissection microscope, retinas were
extracted and placed in ice-cold Hibernate-A solution. Using #55 Dumont forceps, retinas
where cut into roughly 100 pieces, approximately 500 µm in diameter. 5–6 retina explants
were transferred to individual coverslips, distributing them roughly homogenously, RGC
layer facing down. After letting the explants adhere to the surface for approximately 10
min., the coating medium was removed using a micropipette fitted with a fine PCR tip and
explants were allowed to adhere for an additional 5 min. Coverslips containing explants
were than transferred to 12 well culture plates (Greiner Bio-One North America, Monroe,
NC, USA, cat. # 665180) and 2 mL of room temperature culture media was gently added
to wells. Culture plates were than transferred to a cell culture incubator set to 37 ◦C, 5%
CO2. The next day, explants that were not adhered were removed, half of the culture media
was replaced every other day. Explants were cultured for 48–72 hrs prior to the addition
of hRGCs.

2.5. Stem Cell Culture

BRN3B-H9 reporter hESCs differentiated by chemical induction toward a RGC fate
(hRGCs) were generated by Dr. Donald Zack’s laboratory at Johns Hopkins University [18].
hRGCs were shipped frozen to Vanderbilt University Medical Center and stored in liquid
nitrogen upon arrival. Cells were thawed in a 37 ◦C water bath and plated at the density of
5000 cells/cm2.

2.6. Immunocytochemistry

Cultures were fixed by adding an equal volume of 37 ◦C fixative (8% Paraformalde-
hyde (Electron Microscopy Sciences, Hatfield, PA, USA, cat. # 15714-S), 3% sucrose in
PBS) to the volume of culture medium. Cultures were fixed for 20 min at room temper-
ature and washed 3 times with PBS. Primary and secondary antibodies were diluted in
a solution of 0.5% Triton X-100, 1% donkey serum in PBS. Cultures were incubated with
primary antibodies overnight at 4 ◦C, washed 3 times with PBS and incubated for 1 hr with
secondary antibodies at room temperature, followed by 3 PBS washes. Coverslips were
mounted with Fluoromount G (Southern Biotech, Birmingham, AL, USA). The following
primary antibodies were used: rabbit anti-RFP (1:1000, Rockland, Pottstown, PA, USA,
cat. # 600401379), mouse anti-Tubulin β III (1:1000, Millipore, cat. # MAB5564), goat anti-
PSD95 (1:1000, Abcam, Waltham, MA, USA, cat. # ab12093). Secondary antibodies used
were Alexa-conjugated donkey anti-rabbit Cy3, anti-mouse 488, anti guinea pig 647, and
anti-goat 647, all used at 1:1000.

2.7. Imaging

Sixteen-bit tiled images (2.9 × 2.9 mm) were acquired with a Nikon Multi Excitation
TIRF equipped with a Andor Xyla sCMOS camera and a Plan Apo VC 20x/0.75 DIC
N2 WD = 1.0 mm lens. Images of hRGCs within explants were acquired with a Zeiss
LSM800 confocal microscope using a 20x/0.80 Plan-Apochromat, WD = 0.55 mm lens. For
conditions including explants, images were captured by setting the explant as the center
point (Figure S1A).Image analysis

Images were processed and analyzed with Fiji ImageJ Version 1.53 (NIH). Background
subtraction was performed prior to all measurements. To obtain cell counts, DAPI images
were binarized followed by a particle analysis set to include particles ranging 15–500 µm2

with a circularity of 0.7–1. To obtain hRGC skeleton length measurements, tdTomato images
were binarized, pixels were then dilated twice, a Gaussian blur with a sigma value of 10
was applied followed by the application of the skeletonize function. The total length of the
skeletonized hRGCs was obtained by running the Summarize Skeleton function, and the
average skeleton length was obtained by dividing the total skeleton length by the cell count.
Neurite complexity measurements were obtained by quantifying the number of truncated
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hRGC skeleton branches by running the Summarize Skeleton function, and dividing the
number of branches by the cell count. hRGC skeletons were truncated by dilating pixels
of binarized DAPI 55 times, generating and combining ROIs of the dilated DAPI signal,
inverting the generated combined ROI, and clearing the signal within the inverted ROI in
the skeletonized hRGC images. For confocal images of hRGCs within retina explants, maxi-
mum Z projections were generated from Z stacks. For the mouse RGC axon/hRGC neurite
interaction analysis, hRGCs within 500 µm of explant body edges were excluded from the
analysis to avoid potential contact-dependent effects between hRGCs and explants. When a
cell body was identified beyond the 500 µm threshold of analysis, only primary outgrowths
from the hRGC soma were recorded as events (i.e., intersecting/guided/terminating). For
fragmentation analysis, a particle analysis was set to include particles ranging 0.3–20 µm2

with a circularity of 0.7–1. A ratio of the area occupied by fragments of tdTomato over the
total area of tdTomato was calculated to obtain the fragmentation index. The lower limit
of 0.3 µm2 was chosen to reduce the inclusion of remaining noise as well as small particle
artifacts that occur when imaging regions slightly out of focus. The higher limit of 20 µm2

was chosen to exclude small hRGCs without neurite outgrowth. The circularity setting of
0.7–1 was chosen to avoid including small portions of intact neurites that can result from
discontinuous tdTomato. For presentation, fragments were dilated 3 times for visualization
purposes by using the dilate function in ImageJ. For PSD-95 analysis in neurites, ROIs of
cell somas were generated by dilating pixels of binarized DAPI 19 times to approximately
cover the cell somas.

2.8. Statistical Analysis

We quantified data using Graphpad Version 9 (Graphpad Software LLC., San Diego,
CA, USA). We first determined if datasets formed a normal distribution using Shapiro–Wilk
tests. If datasets were normally distributed, we performed parametric statistics; otherwise,
we performed non-parametric statistics. We defined statistical significance as a p value of
0.05 or less.

3. Results
3.1. Neonatal and Adult Mouse Retina Explants Differentially Enhance hRGC Development
In Vitro

Towards developmenting a strategy to test for hRGC transplantation success, we
sought to optimize the chances of hRGC integration. Therefore, we plated hRGCs with
retinal explant bodies from both young (P5) and adult (P38) mice cultured in medium sup-
plemented with BDNF and forskolin [23]. We included retinal explants from young mice
because postnatal development (P1-14) is marked by extensive plasticity. RGC dendritic ar-
bors expand as postsynaptic densities are refined, the axon initial segment length decreases,
indicating changes in excitability, and extraneous RGC bodies are eliminated [24–27]. Given
this period of enhanced plasticity, we reasoned retinal explants from young mice would
provide an accommodating environment for interactions between hRGCs and their neu-
rites with explants and RGC axon projections. To test our hypothesis, we compared hRGC
neurite interactions when transplanted into mouse neonatal and adult retinal explant bod-
ies. Following 6 days in vitro (DIV), we noted more RGC axons projecting from neonatal
explants compared to adult (Figure 1A,B). hRGC neurites interacted with axons projecting
from explant bodies in three distinct patterns. Some hRGC neurites seemingly intersected
and crossed explant axons without changing their trajectory (termed “intersecting”). In
some cases, hRGC neurites ran along explant axons for variable distances before bifurcating
(“guided”). Finally, some hRGC neurites abutted axons extending from the explant and
stopped (“terminated”). When quantified, the relative occurrence of intersecting hRGC
neurites in neonatal retina explants exceeded that of adult explants (+43%, p = 0.0065), while
the occurrence of terminations was significantly lower (−44%, p = 0.0085; Figure 1C). The
frequency of hRGC neurite guided events was similar between neonatal and adult explants
(p = 0.8349, Figure 1C). Finally, many hRGC neurites and somas colocalized with both
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neonatal and adult mouse retina explants (Figure 1D,E). Some hRGCs located proximal to
explants projected neurites within the explant tissue. Conversely, we also observed hRGCs
somas within explants that extend neurites outside the explant. The area occupied by
hRGCs within mouse retina explant bodies trended higher within adult explants, though
not significantly different from neonatal explants (p = 0.070).
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Figure 1. Interactions between hRGCs and mouse retina explants of neonatal and adult age. hRGCs
were cocultured for 6 days with either neonatal (P5) or adult (P38) mouse retina explants (A,B). Cul-
tures were immunostained with an anti-RFP antibody to amplify the tdTomato signal from hRGCs,
β-III tubulin to label neurites and DAPI to label nuclei. Middle and right panels show magnified
views of the boxes in the left panels. White arrows: examples of hRGC seemingly stalling in proximity
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to mouse RGC axons (terminated); white squares: examples of hRGCs seemingly disregarding mouse
RGC axons (intersecting); white dashed rectangles: hRGC neurites extending upon mouse axons
(guided). (C) Quantification of the interactions between hRGC primary neurites and mouse RGC
axons. The occurrence of hRGC primary neurites intersecting with mouse RGC axons is greater
with neonatal explants (p = 0.0065). The occurrence of guided events does not differ significantly
between neonatal and adult cocultures (p = 0.8349). The occurrence of terminated events is greater in
the presence of adult explants (p = 0.0085) (D,E) Representative maximum Z projections of confocal
images showing the localization of hRGC neurites and cell bodies within mouse retinal explant tissue.
Data are shown as mean ± SEM, ** indicates p < 0.01, ns = no significance. (C) Statistical significance
was tested using a 2-way ANOVA, Šidák post hoc test. Neonatal explants: N = 25 2.9 × 2.9 mm
images, n = 3–35 hRGCs, adult explants: N = 20 2.9 × 2.9 mm images, n = 1–24 hRGCs. Scale bars: A
left = 500 µm, A right = 50 µm, D = 100 µm.

We next determined the influence of neonatal versus adult retina explants on neurite
outgrowth of surrounding hRGCs. We measured the average length of digitally skele-
tonized hRGC neurites (Figure 2A–C). We found both neonatal (+90%, p = 0.0015) and
adult explants (+51%, p = 0.0475) increased total neurite length of hRGCs compared to
hRGC cultured alone (Figure 2D). To ensure our analysis was not biased by the number
of cells within each group, we counted the number of DAPI+ cells. We did not detect
a significant difference in cell numbers between hRGCs cultured alone or with retinal
explants (neonatal explants: p = 0.9100, adult explants: p = 0.1128, Figure S1B). Our results
suggest that neonatal and adult mouse explants are permissive for and promote hRGC
neurite outgrowth.
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Figure 2. Mouse retina explants increase hRGC neurite outgrowth. (A–C) Representative images of
6 DIV hRGCs overlayed with their generated skeletons, cultured alone (A), with neonatal explants
(B), and adult explants (C). A magenta outline of the explant perimeter is depicted in (B,C) Bottom
panels represent magnified views of the square boxes in top panels. (D) The average hRGC skeleton
length was quantified by dividing the total length of hRGC skeletons by the number of DAPI+ cells.
The presence of both neonatal (p = 0.0015) and adult (p = 0.0475) increases the average length of hRGC
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skeletons. hRGCs alone: N = 4 coverslips, n = 4 2.9 × 2.9 mm images, +Neonatal explants: N = 6,
n = 3–5, +Adult explants: N = 7, n = 3–5. Scale bars: A top = 500 µm, A bottom = 100 µm. Data are
shown as mean ± SEM, * indicate p < 0.05, ** indicates p < 0.01. Statistical significance was tested
using an ordinary one-way ANOVA, Dunnett’s post hoc test.

We assessed the effect of neonatal and adult explants on hRGC degeneration following
6 DIV by measuring the ratio of the area occupied by small neuronal fragments over total
area [28–31]. The hRGC fragmentation index was calculated as the ratio of small tdTomato-
positive fragments (size: 0.3–20 µm2, circularity:0.7–1) over total tdTomato positive area
(Figure 3A–F). We found that fragmentation was lower in the presence of neonatal but
not adult explants (−35%, p = 0.0438 and +14% p = 0.5150, respectively, Figure 3G). These
results suggest that neonatal mouse retinal tissue protects hRGC neurites in culture.
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condition, right panels represent magnified views of the dashed magenta boxes in the left pan-
els. hRGCs fragments have been digitally colorized in green for visualization. (G) A quantifi-
cation of fragmentation reveals lower levels of fragmentation when hRGCs are cocultured with
neonatal explants compared to hRGCs cultured alone (p = 0.0310). hRGCs alone: N = 4 coverslips,
n = 4 2.9 × 2.9 mm images, +Neonatal explants: N = 6, n = 3–5, +Adult explants: N = 7, n = 3.-5. Scale
bars: F = 150 µm, F zoom = 50 µm. Data are shown as mean ± SEM, * indicates p < 0.05, ns = no
significance. Statistical significance was tested using an ordinary one-way ANOVA, Dunnett’s post
hoc test.

3.2. Investigating the Influence of Adult Mouse Retina Explants and a Combination of BDNF and
Forskolin on hRGCs

Although neonatal retinal explant bodies reduced hRGC fragmentation following
transplantation compared to adult retinas, the population requiring strong interventions
such as cell replacement therapy will typically be adults with age-related optic neuropathies.
Thus, we used adult retinal explants and determined the benefit of BDNF + forskolin on
hRGC localization and morphology after 7 and 14 DIV (Figure 4A,B). At 7 DIV, BDNF +
forskolin produced a 68% increase in area occupied by hRGCs within explants (p = 0.0113,
Figure 4C). When extending culture duration to 14 DIV, the addition of BDNF + forskolin
did not further enhance hRGC localization (p ≥ 0.07, Figure 4C). These results suggest
BDNF + forskolin enhanced hRGC localization into adult retinal explants. We next evalu-
ated the potential influence of adult mouse retina explants and a combination of BDNF +
forskolin on hRGC neurite complexity by quantifying the number of skeletonized hRGC
branches. Skeletons of individual cells were truncated to minimize the inclusion of neurites
from neighboring cells (Figure 4D,E). Our results show that after 7 DIV, BDNF + forskolin
(+81%, p = 0.0017), adult explants (+46%, p = 0.0368) and a combination of BDNF + forskolin
with adult explants (+118%, p < 0.0001) increased the average number of skeletonized hRGC
branches (Figure 4F).

Then, we sought to determine the potential effect of adult mouse retina explants
and a combination of BDNF + forskolin on hRGCs neurite extension after 7 and 14 DIV.
Quantification of the number of DAPI+ cells indicated that BDNF + forskolin or the presence
of explants after 7 and 14 DIV did not alter the cell number compared to hRGCs cultured
alone at 7 DIV (Figure S1C). Following microscopy of 7 and 14 DIV cultures, we noticed
the addition of BDNF + forskolin appeared to increase hRGC neurite outgrowth relative to
hRGC monocultures and retinal explant (Figure 5A,B). As described above, we quantified
neurite length by skeletonizing contiguous tdTomato fluorescence, and we found that
at 7 and 14 DIV, BDNF + forskolin supplementation significantly increased the average
neurite length compared to the control condition (7 DIV: +58%, p = 0.0025, 14 DIV: +120%,
p < 0.0001, Figure 5E,F). Without BDNF + forskolin supplementation, explant did not
significantly affect average hRGC neurite length at either time point (7 DIV: p = 0.9356,
14 DIV: p = 0.1052, Figure 5C,E,F). As expected, hRGC length significantly increased when
cultured with explants supplemented with BDNF + forskolin (7 DIV: +67%, p = 0.0006,
14 DIV: +167%, p <0.0001, Figure 5E,F).



Cells 2022, 11, 3241 9 of 17
Cells 2022, 11, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 4. Supplementation with BDNF and forskolin increases the localization of hRGCs within 

adult mouse retina explants and hRGC neurite complexity. (A,B) Representative maximum Z pro-

jections of confocal images showing the invasion of hRGC neurites and cell bodies within mouse 

retinal explant tissue after 7DIV without (A) and with the addition of BDNF and forskolin (B). (C) 

Quantification of the area occupied by hRGCs within mouse retina explants shows that after 7DIV, 

a combination of BDNF and forskolin increases the area occupied by hRGCs within explant bodies 

(p = 0.0226). At 14 DIV, the area occupied by hRGCs without and with the addition of BDNF and 

forskolin is not significantly greater than at 7 DIV (p = 0.0751 and p = 0.0903 respectively). (D,E) 

Representative images of 7 DIV hRGCs with their truncated skeletons overlayed, cultured alone (D) 

or cocultured with adult explants (E) without (top panels) or with (bottom panels) BDNF and for-

skolin. Skeletons were digitally truncated to reduce the inclusion of neurite intersects from neigh-

boring cells (F) A quantification of neurite complexity measured by counting the number of trun-

cated skeleton branches divided by the number of DAPI+ cells shows that BDNF and forskolin, the 

presence of explants as well as a combination of BDNF and forskolin with explants, increases neurite 

complexity (p = 0.0017, p = 0.0368, p < 0.0001 respectively). Scale bars: 100 μm. Data are shown as 

mean ± SEM, * indicates p < 0.05, ** indicates p < 0.01, **** indicates p < 0.0001. (C) Data did not pass 

Figure 4. Supplementation with BDNF and forskolin increases the localization of hRGCs within adult
mouse retina explants and hRGC neurite complexity. (A,B) Representative maximum Z projections of
confocal images showing the invasion of hRGC neurites and cell bodies within mouse retinal explant
tissue after 7DIV without (A) and with the addition of BDNF and forskolin (B). (C) Quantification of
the area occupied by hRGCs within mouse retina explants shows that after 7DIV, a combination of
BDNF and forskolin increases the area occupied by hRGCs within explant bodies (p = 0.0226). At
14 DIV, the area occupied by hRGCs without and with the addition of BDNF and forskolin is not
significantly greater than at 7 DIV (p = 0.0751 and p = 0.0903 respectively). (D,E) Representative
images of 7 DIV hRGCs with their truncated skeletons overlayed, cultured alone (D) or cocultured
with adult explants (E) without (top panels) or with (bottom panels) BDNF and forskolin. Skeletons
were digitally truncated to reduce the inclusion of neurite intersects from neighboring cells (F) A
quantification of neurite complexity measured by counting the number of truncated skeleton branches
divided by the number of DAPI+ cells shows that BDNF and forskolin, the presence of explants as
well as a combination of BDNF and forskolin with explants, increases neurite complexity (p = 0.0017,
p = 0.0368, p < 0.0001 respectively). Scale bars: 100 µm. Data are shown as mean ± SEM, * indicates
p < 0.05, ** indicates p < 0.01, **** indicates p < 0.0001. (C) Data did not pass the normality test and
is shown as Kruskal–Wallis test, (F) statistical significance was tested using an ordinary one-way
ANOVA, Dunnett’s post hoc test. (C) 7DIV hRGC alone N = 13 explants, 7DIV + BDNF, forskolin
N = 12, 14DIV hRGC alone N = 9, 14DIV + BDNF, forskolin N = 12. (F) hRGCs alone: N = 3 coverslips,
n = 3 2.9 × 2.9 mm images, + BDNF, forskolin: N = 3, n = 3, + explants: N = 4, n = 3–4, + explants +
BDNF, forskolin: N = 4, n = 3–5.
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Figure 5. The effect of adult mouse retina explants and a combination of BDNF and forskolin on
hRGC neurite outgrowth. (A–D) Representative images of 7 DIV (top panels) and 14 DIV (bottom
panels) hRGCs overlayed with their generated skeletons. hRGCs alone (A), with BDNF/forskolin
(B), cocultured with adult explants (C) and cocultured with adult explants and BDNF/forskolin.
A magenta outline of the explant perimeter is depicted in (C,D). Insets depict magnified views of
the boxes. (E–G) A quantification of the average length of skeletonized hRGCs at 7 DIV (E), 14 DIV
(F) and a comparison between 7 and 14 DIV (G). At 7 and 14 DIV, both a combination of BDNF and
forskolin without and with the presence of adult explants, increases the average hRGC skeleton
length (7 DIV: p = 0.0025 and p = 0.0006, respectively, 14 DIV: p < 0.0001). A comparison between
the average hRGC skeleton length between 7 and 14 DIV shows that without the addition of BDNF
and forskolin or the presence of explants, the average hRGC skeleton length does not significantly
differ (p = 0.2421). Conversely, supplementation with BDNF and Forskolin, the presence of explants
as well as a combination of supplementation with explants, increases the average hRGC skeleton
length at 14 DIV compared to 7DIV (p = 0.0098, p = 0.0067 and p < 0.0001 respectively). Scale bars:
A top panel= 500 µm, A top panel inset = 100 µm. Data are shown as mean ± SEM, ** indicates
p < 0.01, *** indicates p < 0.001, **** indicates p < 0.0001, ns = no significance. Statistical significance
was tested using an ordinary one-way ANOVA, Dunnett’s post hoc test (E,F) and unpaired t test (G).
7DIV hRGCs alone: N = 3 coverslips, n = 3 2.9 × 2.9 mm images, 7DIV + BDNF, forskolin: N = 3,
n = 3, 7DIV + explants: N = 4, n = 3–4, 7DIV + explants + BDNF, forskolin: N = 4, n = 3–5, 14DIV
hRGCs alone: N = 4, n = 3, 14DIV + BDNF, forskolin: N = 4, n = 3, 14DIV + explants: N = 3, n = 3–4,
14DIV + explants + BDNF, forskolin: N = 4, n = 3–6.
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We then determined culture duration affected the average hRGC neurite length within
each condition. In hRGC monocultures without supplementation, we did not detect a
significant difference in average neurite length between 7 and 14 DIV cultures (p = 0.2421,
Figure 5G). However, we found the average hRGC neurite length significantly increased
over time in monocultures supplemented with BDNF + forskolin (+141%, p = 0.0098),
in explant cultures without supplementation (+42%, p = 0.0067), and the combination of
supplements and explants (+75%, p < 0.0001, Figure 5G).

We also explored the effect of adult mouse retina explants and a combination of BDNF
+ forskolin on hRGCs integrity following 7 and 14 DIV (Figure 6). At 7 DIV, supplementation
with BDNF + forskolin in monocultures as well as with retinal explants, decreased the
fragmentation index of hRGCs (7 DIV, −42%, p = 0.0010, −40%, p = 0.0011, respectively,
Figure 6E). At 14 DIV, supplementation, the presence of explants, and a combination
of supplementation and explants decreased the fragmentation index of hRGCs (−66%,
p < 0.0001, −39%, p = 0.0034, −64%, p < 0.0001, respectively, Figure 6G). It is also noteworthy
that without supplementation or the presence of explants, fragmentation index was 2.8-fold
greater at 14 DIV compared to 7 DIV (p = 0.0017, Figure 6G). Taken together, these results
suggests that a combination of BDNF + forskolin and to a lesser extent, adult mouse retina
explants, increase hRGC neurite outgrowth and are protective against degeneration.
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hRGCs and their fragments, digitally dilated and colorized in green for ease of visualization. hRGCs
alone (A), with BDNF/forskolin (B), cocultured with adult explants (C), cocultured with adult
explants and BDNF/forskolin. A magenta outline of the explant perimeter is depicted in (C,D).
Insets depict magnified views of the boxes. (E–G) A quantification of fragmentation after 7 DIV (E),
14 DIV (F) and a comparison between 7 and 14 DIV (G). At 7 and 14 DIV, both a combination of
BDNF/forskolin without and with the presence of adult explants, decreases hRGC fragmentation
(7 DIV: p = 0.0010 and p = 0.0011, respectively, 14 DIV: p < 0.0001). At 14 but not 7 DIV, the presence
of explants significantly decreases hRGC fragmentation (p = 0.0034 and p = 0.4204 respectively).
A comparison between fragmentation levels between 7 and 14 DIV shows that fragmentation is
greater at 14 DIV in all instances (hRGCs alone: p = 0.0017, +BDNF, Forskolin: p < 0.0001, +Explants:
p < 0.0001, +BDNF, Forskolin, Explants: p = 0.0088). Scale bars: A top panel = 500 µm, A top panel
inset = 100 µm. Data are shown as mean ± SEM, ** indicates p < 0.01, **** indicates p < 0.0001, ns = no
significance. Statistical significance was tested using an ordinary one-way ANOVA, Dunnett’s post
hoc test (E,F) and unpaired t test (G). 7DIV hRGCs alone: N = 3 coverslips, n = 3 2.9 × 2.9 mm images,
7DIV + BDNF, forskolin: N = 3, n = 3, 7DIV + explants: N = 4, n = 3–4, 7DIV + explants + BDNF,
forskolin: N = 4, n = 3–5, 14DIV hRGCs alone: N = 4, n = 3, 14DIV + BDNF, forskolin: N = 4, n = 3,
14DIV + explants: N = 3, n = 3–4, 14DIV + explants + BDNF, forskolin: N = 4, n = 3–6.

Previously, we found immunofluorescence for the postsynaptic marker, PSD-95, de-
creases in hRGC somas after 4 weeks and increases in neurites after 3 and 4 weeks compared
to 1-week cultures, suggesting maturation of hRGCs over time in culture [20]. Notably,
our previous experiments were performed in cultures without BDNF + forskolin supple-
mentation. Here, we tested the influence of BDNF + forskolin, adult retinal explants, and
time in vitro on PSD-95 accumulation in hRGCs. We analyzed area occupied by PSD-95
labeling in neurites relative somas (PSD-95 neurite/soma). We did not detect a significant
change in PSD-95 neurite/soma in 7 DIV cultures with supplementation alone, (p = 0.7276,
Figure 7A–C). However, addition of retinal explants with or without BDNF + forskolin
significantly enhanced PSD-95 neurite/soma after 7 DIV (+35%, p = 0.0144 and +40%,
p = 0.0064, respectively, Figure 7A–C). Following 14 DIV, retinal explant tended to increase
hRGC PSD-95 neurite/soma, but this finding did not meet statistical significance (+Ex-
plants: p = 0.0853, +Explants, BDNF + forskolin: p = 0.1608, Figure 7D). We then sought to
isolate the influence of time in vitro on PSD-95 neurite/soma for each condition. In the ab-
sence of explants or supplementation or with explants with and without supplementation,
we found time in vitro did not affect PSD-95 neurite/soma at this time point (p = 0.4844,
p = 0.6577, p = 0.2317, Figure 7E). Interestingly, supplementing monocultures, significantly
reduced PSD-95 neurite/soma by 34% (p = 0.0055, Figure 7E). Overall, our results suggests
that following 7 DIV adult retinal explants may enhance hRGC maturation as indicated by
the accumulation of PSD-95 in neurites.
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Figure 7. The effect of adult mouse retina explants and a combination of BDNF and forskolin on
PSD-95 distribution in hRGCs. (A,B) Representative images of hRGCs immunostained against PSD-95
with an approximation of somatic and dendritic PSD-95 localization, cultured alone (A) or in the
presence of adult mouse retina explants and a combination of BDNF/forskolin (B) for either 7DIV
or 14DIV. (C) A quantification of the ratio of the area occupied by PSD-95 in neurites over PSD-95
in somas (PSD-95 neurite/soma) at 7 DIV shows that the presence of adult mouse retina explants
without and with the inclusion of BDNF+ forskolin, increases PSD-95 neurites/somas (p = 0.0249,
p = 0.0112 respectively). (D) At 14 DIV, supplementation with BDNF, Forskolin or the presence of
explants did not significantly alter PSD-95 neurite/soma compared to hRGCs cultured alone. (E) A
comparison between PSD-95 neurites/somas at 7 and 14 DIV. PSD-95 neurite/soma is lower at
14 DIV when supplemented with BDNF, Forskolin (p = 0.0055), Scale bar = 200 µm. Data are shown
as mean ± SEM, * indicates p < 0.05, ** indicates p < 0.01, ns = no significance. Statistical significance
was tested using an ordinary one-way ANOVA, Dunnett’s post hoc test. 7DIV hRGCs alone: N = 3
coverslips, n = 3 2.9 × 2.9 mm images, 7DIV + BDNF, forskolin: N = 3, n = 3, 7DIV + explants: N = 4,
n = 3–4, 7DIV + explants + BDNF, forskolin: N = 4, n = 3–5, 14DIV hRGCs alone: N = 4, n = 3, 14DIV +
BDNF, forskolin: N = 4, n = 3, 14DIV + explants: N = 3, n = 3–4, 14DIV + explants + BDNF, forskolin:
N = 4, n = 3–6.
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4. Discussion

Evidence indicates that hRGCs physically interact with rodent organotypic retinal ex-
plants [21,32]. Here, we qualify and quantify how hRGCs interact with neonatal and adult
mouse retinal explants. Our results indicate some hRGC neurites seemingly stall or disre-
gard mouse RGC axons, and some extend contiguously with mouse RGC axons for variable
distances (Figure 1A,B). Our quantification of the occurrence of hRGC neurite-mouse RGC
axon events revealed a greater frequency of intersecting events and a lower frequency
of terminating events in neonatal versus adult expants (Figure 1C). The differences we
observed may partly be a consequence of the discrepancy in RGC axon density between
neonatal and adult explants. However, we attempted to overcome this potential confound
by normalizing the number of events by total events. Alternatively, the differences in
hRGC interaction with neonatal and adult explants may reflect differences in factors that
promote/repel neurite guidance (Figure 1A,B) [33]. In our transplantation assay and analy-
ses, the strength and pattern of electrical activity generated by retinal explant axons may
predict the interaction profile of nearby hRGC neurites [34,35]. To avoid the potential
confound that cells contacting the explant may behave differently to cells within paracrine
signaling distance, we excluded hRGCs within 500 µm of the explant edge from all analyses.
Nonetheless, our results indicate a similar frequency of guided events, suggesting that
hRGC neurites have comparable affinities for neonatal and adult mouse RGC axons. We
also found a similar degree of localization of hRGCs within neonatal and adult mouse
explants (Figure 1D,E). Although a tantalizing result, hRGC localization within neonatal
explants may be under sampled due to the dense RGC axon outgrowth along the perimeter
explant bodies, which might act as a physical barrier (Figure 1A).

Interstingly, when supplemented with BDNF and forskolin, our results suggest that
both neonatal and adult retinal explants enhance hRGC neurite outgrowth (Figure 2).
Through a quantitative assessment of hRGC fragmentation, we further explored this
finding by determining the influence of neonatal and adult retinal explants on hRGC
degeneration. We found neonatal retinal explants reduced hRGC fragmentation (Figure 3).
This result suggest neonatal retinal tissue reduces degeneration of hRGCs in vitro. However,
this measure of fragmentation may indicate neurite remodeling [26]. In support of this
idea, we did not detect a significant loss of tdTomato-positive hRGCs between culture
conditions (Figure S1B). Follow-up studies will directly compare fragmentation to markers
of degeneration and synaptic plasticity in such transplantation strategies.

To determine the influence of BDNF + forskolin on hRGC localization and neurite
outgrowth in adult retinal explant over 7–14 DIV, we compared the area occupied by hRGC
cultured with explants with and without supplementation. We found BDNF + forskolin
significantly enhanced hRGC invasion at 7 DIV compared to explants without supplemen-
tation (Figure 4A–C). Similarly, we found adult retinal expant did not significantly impact
hRGC skeleton length independent of time in vitro (Figure 5). Regarding the potential
engraftment of donor cells into host tissue, the inconsequential affect of adult retinal ex-
plants on donor cell neurite outgrowth may be better than a detrimental influence. When
supplemented with BDNF + forskolin neurite length is increased with or without explant
and regardless of DIV (Figure 5). Based on this finding, cell replacement therapy combined
with growth factor supplementation may increase efficacy of donor cell engraftment with
host tissue.

Although retinal explant alone did not increase hRGC neurite length (Figure 5), we
did observe a beneficial effect of adult retinal explants on hRGCs. hRGCs appeared to
intrinsically degenerate from 7–14 DIV as indicated by our fragmentation index (Figure 6G).
However, we found retinal explants reduced hRGC degeneration after 14 DIV (Figure 6F).
Fragmentation was further reduced with the addition of BDNF + forskolin (Figure 6F).
Interestingly, the combination of BDNF + forskolin and explant did not provide an additive
effect on fragmentation (Figure 6F). Our results indicate a partially overlapping protective
influence of BDNF + forskolin supplementation and adult retinal explants on hRGCs. In
regard to BDNF supplementation, evidence suggests chronic exposure to 50 ng/mL BDNF,
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as used in this study, may promote growth cone collapse [36,37]. Therefore, the concentra-
tion of BDNF may need to be modulated in vitro or in vivo to maintain engraftment. In
addition, the influence of other factors produced by host tissues on donor cells needs to be
thoroughly examined [38].

In the inner plexiform layer of the retina (IPL), RGCs synapse with amacrine and
bipolar cells to receive inhibitory and excitatory inputs, respectively [39]. In the rat retina,
immunostaining for the postsynaptic marker PSD-95 in the IPL can be seen as early as P0
and reaches an adult staining pattern at P10 [40]. Our quantitative assessment of PSD-95
distribution demonstrates that in the presence of adult explants at 7 DIV, PSD-95 is enriched
in neurites, a phenomenon that has also been previously observed in hRGCs over time
in culture (Figure 7A–C) [20]. However, our quantificatin of PSD-95 may not represent
functional post-synaptic densities. We measured PSD-95 immunolabeling using a 20x
objective, which does not provide resolution of punctate PSD-95 labeling. We attempted
to overcome this problem by measuring only PSD-95 immunolabeling associated with
tdTomato-positive hRGC neurites. Notwithstanding this potential limitation, our finding
suggests that adult mouse explants may be secreting factors that influence hRGC neurite
maturation/integration. Previous reports lend support to the idea that donor cells can
integrate and function in host tissues [41].

Light evoked activity is required for synaptic refinement between RGCs and bipolar
cells [42,43]. Furthermore, light stimulation has been shown to enhance RGC regenera-
tion [44]. The transplantation system presented here could be useful in determining the
potential effect of light stimulation on enhancing hRGC outgrowth and integration. Future
successful RGC replacement therapies will likely be dependent on the axons of grafted
replacement cells to use remaining endogenous RGC axons as guidance towards peripheral
targets. Through pharmacological and genetic manipulations, the current experimental
paradigm may also be useful for investigating strategies for enhancing the affinity of hRGC
axons for endogenous axons.

5. Conclusions

Retinal ganglion cell replacement in animals indicate modest success due to low
survival and integration of donor cells into host retinas. We developed a transplantation
assay combining human stem cell-derived RGCs (hRGCs) with mouse retina explants to
investigate factors that may optimize the integration of hRGCs into retinal tissue. We
found hRGCs invade mouse retina explants with a subset of hRGC neurites guided by
mouse RGC axons. BDNF, forskolin, and retina explants enhance hRGC neurite outgrowth
and integrity. Our transplantation assay and analytic techniques provide a platform to
test mechanisms that may enhance donor cell integration, interactions, and integrity in
host tissues.
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