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Abstract: A reduced nephron number at birth, due to critical gestational conditions, including mater-
nal malnutrition, is associated with the risk of developing hypertension and chronic kidney disease in
adulthood. No interventions are currently available to augment nephron number. We have recently
shown that sirtuin 3 (SIRT3) has an important role in dictating proper nephron endowment. The
present study explored whether SIRT3 stimulation, by means of supplementation with nicotinamide
riboside (NR), a precursor of the SIRT3 co-substrate nicotinamide adenine dinucleotide (NAD+),
was able to improve nephron number in a murine model of a low protein (LP) diet. Our findings
show that reduced nephron number in newborn mice (day 1) born to mothers fed a LP diet was
associated with impaired renal SIRT3 expression, which was restored through supplementation
with NR. Glomerular podocyte density, as well as the rarefaction of renal capillaries, also improved
through NR administration. In mechanistic terms, the restoration of SIRT3 expression through NR
was mediated by the induction of proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α).
Moreover, NR restored SIRT3 activity, as shown by the reduction of the acetylation of optic atrophy 1
(OPA1) and superoxide dismutase 2 (SOD2), which resulted in improved mitochondrial morphology
and protection against oxidative damage in mice born to mothers fed the LP diet. Our results pro-
vide evidence that it is feasible to prevent nephron mass shortage at birth through SIRT3 boosting
during nephrogenesis, thus providing a therapeutic option to possibly limit the long-term sequelae
of reduced nephron number in adulthood.

Keywords: renal development; fetal programming; glomerular number; low protein diet; sirtuin 3;
mitochondria; nicotinamide riboside

1. Introduction

Disturbances of the intrauterine environment negatively impact normal embryonic
development in animals and humans [1]. During pregnancy, maternal malnutrition is
among those conditions that have the most harmful effects on embryonic development,
leading to intrauterine growth retardation and low birth weight, both of which significantly
contribute to abnormal programming of the kidneys and a reduced number of nephrons [2–5].
Evidence that has accumulated over the last three decades suggests that renal diseases start
in utero [4,5]. Brenner and colleagues first proposed the developmental origins of kidney
disease; low nephron number is one of the main contributors to chronic kidney disease
(CKD) susceptibility in adulthood [4,6,7]. In line with this hypothesis, several epidemiologic
studies across multiple homogeneous populations have clearly demonstrated the association
between low birth weight, low nephron endowment and a propensity toward CKD in
later life [8–10]. Therefore, adverse developmental programming may have long-term and
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permanent consequences on the health of adult subjects, who are strongly predisposed to
develop hypertension, cardiovascular diseases and CKD [11].

The molecular mechanisms that regulate nephron number are complex and not fully
understood yet [12]. We recently found that in mice, kidney development relies on the
activity of the mitochondrial protein sirtuin 3 (SIRT3) [13], which is a deacetylase whose
activity is dependent on nicotinamide adenine dinucleotide (NAD+) availability [14–16].
Mice lacking SIRT3 exhibited reduced ureteric bud branching, a lower number of the
sine oculis-related homeobox 2 (SIX2) positive progenitor cells, and impaired cell prolif-
eration [13]. Overall, SIRT3 deficient mice experienced impaired nephrogenesis and a
shortage of nephrons at birth, which is permanent [13]. Additionally, lack of SIRT3 in
these mice leads to increased acute renal injury susceptibility and premature death in
adulthood [17,18].

Similarly, a nephron deficit at birth has been established successfully in mice with
gestational protein restriction, an animal model for intrauterine growth retardation that
is useful for investigating the mechanisms underlying the developmental changes in the
kidney that occur during malnutrition [19]. In this setting, the offspring of mothers fed a low
protein (LP) diet had a reduced number of nephrons and morphological and ultrastructural
alterations in the glomerular architecture [20]. A recent paper showed that podocyte
number can be developmentally programmed and was lower in rats born to mothers fed a
LP diet [21]. Moreover, a LP diet during pregnancy induces significant changes in the gene
expression of the developing kidney, the metanephroi [22,23].

Based on these premises, the main aim of the present study was to investigate whether
in a murine model of low nephron number induced by a maternal LP diet, a pharmacologi-
cal strategy based on SIRT3 targeting could support nephron development and prevent
nephron loss. To this end, we chose to supplement pregnant mice fed a LP diet with
the nicotinamide riboside (NR) a precursor of NAD+, which is the co-substrate of SIRT3
enzymatic activity [16,24], as well as a regulator of SIRT3 expression [25].

Here, we show that a nephron number deficit and impaired renal architecture of mice
born to mothers fed a LP diet can be restored by NR supplementation during pregnancy
through the induction of SIRT3 expression and activity. Specifically, gestational NR sup-
plementation during pregnancy restores SIRT3 deacetylase activity and mitochondrial
wellness in the offspring, leading to the normalization of nephrogenesis.

2. Materials and Methods
2.1. Animal Experiments

All procedures involving animals were performed in accordance with institutional
guidelines in compliance with national (D.L.n.26, 4 March 2014), and international laws and
policies (directive 2010/63/EU on the protection of animals used for scientific purposes).
This study was approved by the Institutional Animal Care and Use Committees of Istituto
di Ricerche Farmacologiche Mario Negri IRCCS and by the Italian Ministry of Health
(approval number 16/2017-PR). This study was carried out in compliance with the ARRIVE
guidelines [26].

Seven-week-old female and male C57BL/6 mice were purchased from Charles River
Laboratories Italia (Calco, Lecco, Italy) and maintained in a pathogen-free facility at a
constant temperature with a 12:12-h light-dark cycle. A total of n = 36 females and
n = 18 males were used for matings. At matings, mice were randomly allocated to three
different groups: (1) standard diet (SD), (2) isocaloric LP diet, and (3) isocaloric LP diet
supplemented with NR (LP + NR). The chow used for the SD consisted of 18.6% protein,
44.2% carbohydrates, and 6.2% fat (2018S, Envigo, Indianapolis, IN, USA). The LP diet
composition was 6.1% protein, 75.6% carbohydrates, and 5.5% fat (TD.90016, Envigo).
Nicotinamide riboside (Niagen®) was provided by ChromaDex, Inc. (Irvine, CA, USA) and
was given to mice daily in drinking water at a concentration of 0.36 g/kg/day. Mice had
free access to chow and drinking water. No changes in water or food intake were observed
in experimental groups. A total of n = 5 pregnant mice per group were obtained. No fetal
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mortality occurred in any of the experimental groups. At day 1, both male and female pups
were sacrificed and kidneys were collected and processed for subsequent analysis. No
inclusion or exclusion parameters were used in our studies. Investigators were not blinded
to treatments, but no subjective assessments were made.

In selected experiments, 8-week-old Sirt3−/− female and male mice, generated in a
mixed genetic background (provided by Professor Frederick Alt, Harvard Medical School,
Boston, MA, USA) were used [13,18,27]. At mating, mice were randomly allocated to the
experimental groups: (1) SD, and (2) SD + NR. As a control, their C57BL/6x129 wild-type
(WT) littermates were used. A total of n = 7 matings were performed to obtain a sample
size of n = 3 pregnant mice per group. As above, both male and female pups were sacrificed
at day 1 and their kidneys were collected and processed for subsequent analysis.

2.2. Estimation of Glomerular Number

Maceration of the whole kidney was performed with HCl as previously described [13].
Briefly, isolated kidneys were incubated in NH3 for 2 h, then incubated in 6N HCl at 37 ◦C
in 2.5 mL. Pipetting up and down after maceration further disrupted the kidneys. Distilled
water (7.5 mL) was added to the sample, followed by incubation at 4 ◦C overnight. Then,
100 µL of macerate was pipetted into a cell culture dish with a grid and the number of
glomeruli per area was counted.

2.3. Glomerular Podocyte Count

Formalin-fixed, 3-µm paraffin-embedded kidney sections were incubated with Per-
oxidazed 1 (PX968H, Biocare Medical, Pacheco, CA, USA), after antigen retrieval in a
decloaking chamber with Rodent decloaker (RD913M, Biocare Medical) buffer. After block-
ing for 30 min with Rodent Block M (RBM961G, Biocare Medical), sections were incubated
with rabbit anti- Wilms Tumor 1 (WT1, 1:600; ab89901, abcam, Cambridge, UK) antibody
followed by Rabbit on Rodent horseradish peroxidase (HRP)-Polymer (RMR622G, Biocare
Medical,) for 30 min at room temperature. Staining was visualized using diaminobenzi-
dine (BDB2004H, Biocare Medical) substrate solutions. Slides were counterstained with
Mayer’s hematoxylin (MHS80-2.5L, Bio Optica, Milan, Italy), mounted with Eukitt mount-
ing medium (09-00250, Bio Optica) and finally observed using light microscopy (ApoTome,
Axio Imager Z2, Zeiss, Oberkochen, Germany). Negative controls were obtained by omit-
ting the primary antibody on adjacent sections. At least 15 glomeruli/section for each
animal were randomly acquired. The average number of podocytes per glomerulus and
the glomerular volume were estimated using morphometric analysis, as previously de-
scribed [28].

2.4. Immunoperoxidase Analysis

Formalin-fixed, 3-µm paraffin-embedded kidney sections were incubated with Peroxi-
dazed 1 to quench endogenous peroxidase, after antigen retrieval in a decloaking chamber
with Rodent decloaker buffer. After blocking for 30 min with Rodent Block M, sections
were incubated with rabbit anti-Nitrotyrosine (1:100; 06-284, Merck Millipore, Burlington,
MA, USA) or rabbit anti-CD31 (1:50; ab28364, abcam) antibody followed by Rabbit on
Rodent HRP-Polymer for 30 min at room temperature. Stainings were visualized using di-
aminobenzidine substrate solutions. Slides were counterstained with Mayer’s hematoxylin,
mounted with Eukitt mounting medium and finally observed using light microscopy (Apo-
Tome, Axio Imager Z2). Negative controls were obtained by omitting the primary antibody
on adjacent sections. At least 20 non overlapping fields for each section were examined.
For CD31 staining, images were analyzed using ImageJ 1.40 g software. Digitized images
were dichotomized using a threshold for staining, and the values were expressed as the
percentage of staining per glomerulus or per total area of the acquired field, as appropriate.
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2.5. Immunofluorescence Analysis of Renal Cell Proliferation

For the immunofluorescence analysis of kidney sections, 3-µm periodate-lysine
paraformaldehyde (PLP)-fixed cryosections were air dried. To detect phospho-Histone H3
antibody (pHH3), antigen retrieval was performed in citrate buffer 10 mmol/L (pH 6.0)
at boiling temperature for 20 min, followed by incubation with citrate buffer (20 min) at
room temperature to enhance the reactivity of antibodies to antigens. Slides were washed
with PBS 1× and incubated with 1% BSA to block nonspecific sites. Rabbit anti-pHH3
(1:75; #9701, Cell Signaling, Danvers, MA, USA) was used followed by the specific Cy3-
conjugated secondary antibody (Jackson ImmunoResearch Laboratories, Cambridge, UK).
Nuclei were stained with 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI, 28718-90-
3, Sigma-Aldrich, St. Louis, MO, USA) and the renal structure with fluorescein wheat germ
agglutinin (WGA; FL-1021, Vector Laboratories, Burlingame, CA, USA). Finally, slides were
mounted using Dako Fluorescence Mounting Medium (S3023, Agilent Technologies, Santa
Clara, CA, USA) and examined with an inverted confocal laser scanning microscope (Leica
TCS SP8, Leica Microsystems, Wetzlar, Germany). Negative controls were obtained by
omitting primary antibodies on adjacent sections. pHH3-positive cells in kidney tissue
were evaluated in at least 10 HPF/section (n = 3 mice for each group).

2.6. Protein Extraction and Western Blot Analysis

Kidneys were isolated at day 1 and homogenised in CelLytic MT (C3228, Sigma-
Aldrich), supplemented with a protease inhibitor cocktail (P8340, Sigma-Aldrich). Each
sample consisted of a pool of at least 4 isolated kidneys. Following centrifugation at
16,000× g for 10 min at 4 ◦C, lysates were collected and total protein concentration was
determined using DC™ assay (5000112, Bio-Rad Laboratories, Hercules, CA, USA).

Equal amounts of total proteins (30 µg) were separated on 12% SDS-PAGE under
reducing conditions and transferred to nitrocellulose membranes (1704159, Bio-Rad Labo-
ratories). After blocking with 5% bovine serum albumin (BSA A7030, Sigma-Aldrich) in
Tris-buffered saline (TBS) supplemented with 0.1% Tween-20 (P1379, Sigma-Aldrich), mem-
branes were incubated overnight at 4 ◦C with the following antibodies: goat anti-SIRT3
(1:1000; ab118334, abcam), proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-
1α; 1:1000; ab54481, abcam), sheep anti-superoxide dismutase 2 (SOD2; 1:1000; 574596,
Merck Millipore), rabbit anti-SOD2 acetyl lysine 68 (SOD2KAc68; 1:1000; ab137037, abcam),
mouse anti-optic atrophy 1 (OPA1; 1:1000; 612606, BD Bioscience, Allschwil, Switzerland),
rabbit anti-pan acetyl lysine (1:1000; PTM-105, ptmbiolabs, Chicago, Il, USA). Mouse anti-
α-tubulin (1:2000; T9026, Sigma-Aldrich) was used as the sample-loading control in total
kidney extracts.

The signals were visualized on an Odyssey®FC Imaging System (LiCor, Lincoln, NE,
USA) with infrared (IR) fluorescence using a secondary goat anti-rabbit IRDye 680LT anti-
body (1:1000; FE3680210, LiCor) and a goat anti-mouse IRDye 800CW (1:1000; FE30926210,
LiCor) or with an enhanced chemiluminescence-Western Blotting Detection Reagent (Pierce,
ThermoFisher, Waltham, MA, USA) using donkey anti-goat horseradish peroxidase (HRP)-
conjugated secondary antibodies (1:20,000; AP180P, Sigma-Aldrich), as appropriate.

Bands were quantified with densitometry using the Image Studio Lite 5.0 (LiCor)
software. SOD2 acetylation was expressed as the ratio between the band of SOD2KAc68

and total SOD2, while OPA1 acetylation was evaluated as the ratio between the band of
acetylated-lysine that co-localized with the band corresponding to OPA1.

All uncropped gels of representative Western Blots reported the main figures are
shown in Figure S1.

2.7. Ultrastructural Analysis

Mitochondrial morphology was observed using transmission electron microscopy
(TEM), as performed previously [29]. Fragments of kidney tissue were fixed overnight
in 2.5% glutaraldehyde (340855, Sigma-Aldrich) in 0.1 M cacodylate buffer pH 7.4 (11652,
Electron Microscopy Sciences, Hatfield, PA, USA) and washed repeatedly in the same



Cells 2022, 11, 3316 5 of 15

buffer. After post-fixation in 1% OsO4, specimens were dehydrated through ascending
grades of alcohol and embedded in Epon resin. Ultrathin sections were stained with uranyl
acetate replacement (UAR; 22405, Electron Microscopy Sciences) and lead citrate (22410,
Electron Microscopy Sciences,) and examined using transmission electron microscopy (Fei
Morgagni 268D, Philips, Hillsboro, OR, USA). Quantification of altered mitochondria was
estimated on digitised EM pictures at 11,000 × and expressed as the number of altered
mitochondria out of total mitochondrial number (%) in proximal tubules. The analysis was
performed in n = 6 individual tubules in n = 3 kidneys from 3 newborn mice per group.

2.8. Statistical Analysis

Results were expressed as mean ± standard error of the mean (SEM). Data analysis
was performed using Graph Pad Prism software (Graph Pad, San Diego, CA, USA). The
sample size for each analysis is indicated in the corresponding Figure legend. Comparisons
were made using one-way ANOVA with Tukey’s multiple comparisons post hoc test, and
the statistical significance was defined as a p-value < 0.05.

3. Results
3.1. NR Supplementation Restores Low Nephron Number and Renal SIRT3 Expression in
Maternal LP Diet Offspring

Experimental studies show that restricted maternal protein intake impairs fetal renal
development [20]. Here, we set up a murine model of a low nephron number in mice born
to mothers that have been fed a LP diet between the time of mating and delivery. Prenatal
consumption of LP significantly reduced the average body weight of the offspring at birth
(day 1) as well as kidney weight and the kidney to body ratio (Table 1). In this setting,
we performed renal tissue dissociation to quantify the number of glomeruli, from which
the total nephron number in the kidneys can be extrapolated. Exposing pregnant mice to
a LP diet resulted in the nephron endowment in offspring being significantly impaired
(Figure 1a). The glomerular number observed at birth in mice born to mothers fed LP was
57% lower than in pups born to mothers that received a SD (Figure 1a).

Next, we evaluated whether mice born to mothers fed the LP diet had altered SIRT3
expression and activity in the kidneys. We first analyzed SIRT3 protein expression with
Western Blot. As shown in Figure 1b, we found that at day 1 mice born to LP-fed mothers
had significantly lower levels of SIRT3 in the kidney compared with offspring from SD-
fed mothers. To modulate SIRT3, pregnant mice fed LP received a nicotinamide riboside
(NR) supplement that resulted into a significant increase in renal SIRT3 protein expression
(Figure 1b). Notably, when LP diet-fed pregnant mice were administered NR, the treat-
ment attenuated nephron loss in the offspring and, indeed, the glomerular number was
significantly higher than in mice that received only LP (Figure 1a).

The ability of NR to rescue nephron number during development was tested in mice
that lacked SIRT3. Pregnant Sirt3−/− mice were fed a SD supplemented with NR. As
shown in Figure 1c, NR supplementation failed to restore nephron numbers in Sirt3−/−

newborns. These data indicate that NR effectively normalizes nephron endowment only in
Sirt3 competent mice.

Table 1. Effect of NR supplementation on body and kidney weight of day 1 offspring born to mothers
fed LP diet.

SD Diet LP Diet LP Diet + NR

Body weight of mothers after delivery (g) 26.5 ± 0.1 25.0 ± 1.0 23.9 ± 1.3
Number of pups 5.3 ± 0.029 5.3 ± 0.029 6.0 ± 1.0
Body weight of pups (g) 1.247 ± 0.023 1.009 ± 0.003 *** 1.087 ± 0.025 ***
2 kidney weight of pups (g) 0.013 ± 0.001 0.008 ± 0.001 *** 0.012 ± 0.001 ◦◦

2 kidney weight/body weight of pups (ratio) 1.096 ± 0.067 0.821 ± 0.060 ** 1.060 ± 0.034 ◦

Results are presented as mean ± SEM and were analyzed with ANOVA with Tukey’s post hoc test. Mothers’
weight: n = 5. Body weight and kidney weight: SD, n = 20; LP, n = 15; LP + NR, n = 21; *** p < 0.001 and ** p < 0.01
vs. SD; ◦◦ p < 0.01 and ◦ p < 0.05 vs. LP.
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Figure 1. NR supplementation restores nephron number and SIRT3 expression in the kidneys of
maternal LP diet offspring. (a) Glomerular number quantified in the kidney of newborn mice (day 1)
born to mothers fed a SD during pregnancy or a LP diet supplemented or not with NR; n = 14 kidneys
from 14 newborn mice for each group. (b) Representative Western blots and densitometric analysis of
SIRT3 protein expression in total kidney extracts harvested from newborn mice (day 1) from mothers
fed with SD (n = 8 samples), LP diet alone (n = 9 samples) or with NR (n = 9 samples). Each sample
consisted of a pool of at least 4 kidneys from 4 newborn mice. (c) Quantification of the glomerular
number in kidneys of the offspring of WT (n = 12 kidneys from 12 newborn mice) or Sirt3−/− mice
fed a SD supplemented or not with NR during pregnancy (n = 11 and n = 14 kidneys from 11 and
14 newborn mice, respectively). Results are presented as mean ± SEM and were analyzed with
ANOVA with Tukey’s post hoc test. *** p < 0.001 vs. SD; ◦◦ p < 0.01, and ◦◦◦ p < 0.001 vs. LP.

3.2. NR Supplementation Improves Kidney Weight of Maternal LP Diet Offspring

Based on our finding—that maternal protein restriction resulted in a lower kidney
and body weight at birth in newborn mice at day 1—as shown in Table 1, we investigated
whether supplementing the maternal diet with NR during pregnancy could improve these
parameters. We found that the number of mouse pups was not affected in any experimental
group (Table 1). However, the body weight of pups born to mothers fed LP diet was lower
than in the SD group but was not modulated by NR treatment (Table 1). Notably, the
reduction in kidney weight induced by the LP diet was attenuated significantly by NR
supplementation (Table 1).

3.3. NR Supplementation Normalizes Podocyte Density and the Renal Capillary Deficit in
Maternal LP Diet Offspring

The evidence of an impaired nephron number in LP diet offspring prompted us to
investigate whether major glomerular cell populations, including podocytes and endothe-
lial cells, which strongly impact and regulate renal function, are altered in mice born to
mothers fed a LP diet and are affected by NR supplementation. We analyzed renal sections
stained with the podocyte marker WT-1 and observed that maternal protein restriction
during pregnancy significantly reduced the number of podocytes per glomerulus in off-
spring (Figure 2a) which, given the unchanged glomerular volume (Figure 2b), resulted in
decreased podocyte density (Figure 2c). NR administration to LP-mothers had a rescuing
effect on podocyte number and podocyte density, which were completely normalized and
did not differ from those found in mice on the SD diet (Figure 2a,c).

Moreover, exposure to LP diet during pregnancy had a significant impact on renal
tissue vascularization in newborn mice. Indeed, the analysis of the endothelial marker
CD31 showed that glomeruli from mice born to LP-fed mothers had fewer glomerular
capillaries (Figure 3a). An even greater effect of LP diet was observed in interstitial areas
on peritubular capillary frequency (Figure 3b). NR supplementation to LP-fed mothers was
able to completely restore glomerular capillary density and normalize peritubular capillary
rarefaction in offspring (Figure 3a,b).
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cation of podocyte number per glomerulus in maternal SD, LP or LP + NR offspring (n = 4 kidneys
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Figure 3. NR supplementation protects renal vasculature and increases cell proliferation in maternal
LP diet offspring. (a) Quantification and representative images of the endothelial marker CD31 in
glomeruli of SD, LP or LP + NR offspring (n = 3 kidneys from 3 newborn mice per group). Scale
bars, 20 µm. (b) Quantification and representative images of the peritubular area positive for CD31
in SD, LP or LP + NR offspring (n = 3 kidneys from 3 newborn mice per group). Scale bars, 20 µm.
(c) Representative images and quantification of cell proliferation assessed by pHH3 staining in
kidneys from day 1 mice born to mothers fed a SD or LP supplemented or not with NR (n = 3 kidneys
from 3 newborn mice per group). Scale bars, 20 µm. Results are presented as mean ± SEM and were
analyzed with ANOVA with Tukey’s post hoc test. * p < 0.05, *** p < 0.001 vs. SD; ◦ p < 0.05 vs. LP.
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3.4. NR Supplementation Activates Renal Cell Proliferation in Maternal LP Diet Offspring

A reduced protein intake during pregnancy impacts cell proliferation during the
embryonic development of the kidney [30]. We therefore studied cell proliferation in
the kidneys of newborn mice born to LP-fed mothers that received NR by analyzing
the expression of pHH3, a marker of the G2/M phase of the cell cycle. In SD-mice,
we found discrete and widespread expression of pHH3-positive cells in renal tissue at
day 1 (Figure 3c). The offspring of LP-fed mice exhibited a great reduction in the number
of proliferating cells per field, which was significantly enhanced by NR, indicating that NR
supplementation can restore cell cycle activity in the neonatal kidney (Figure 3c).

3.5. NR Supplementation Re-Establishes PGC-1α Expression in Maternal LP Diet Offspring

To investigate the molecular determinants through which NR could restore SIRT3
expression, we examined PGC-1α, which is a crucial modulator of mitochondrial func-
tion and induces Sirt3 gene expression by binding to estrogen-related receptor elements
mapped in the promoter region [25]. Western Blot analysis revealed that PGC-1α ex-
pression was significantly impaired in renal tissues from the offspring of LP-fed mothers
and was significantly increased by NR treatment (Figure 4a). These data suggest that
NR is able to boost SIRT3 expression in maternal LP diet mouse offspring by increasing
PGC-1α expression.
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Figure 4. NR supplementation upregulates PGC-1α in maternal LP diet offspring and normalizes
hyperacetylation of mitochondrial proteins. (a) Representative Western Blots and densitometric
analysis of PGC-1α protein expression in total kidney extracts harvested from newborn mice (day 1)
from mothers fed a SD, LP diet alone or with NR (n = 7 samples per group). Each sample consisted
of a pool of at least 4 kidneys from 4 newborn mice. (b–e) Representative Western Blots (b) and
densitometric analysis of lysine acetylation (c), OPA1 expression (d), and OPA1 acetylation (e) in
total kidney extracts harvested from newborn mice (day 1) from mothers fed with SD, LP diet alone
or with NR (n = 3 samples per group). Each sample consisted of a pool of at least 4 kidneys from
4 newborn mice. OPA1 acetylation has been evaluated as the colocalizing signal (yellow) between
acetyl lysine (green) and OPA1 (red). In all gels, α-tubulin was used as a sample loading control.
Results are presented as mean ± SEM and were analyzed with ANOVA with Tukey’s post hoc test.
** p < 0.01, and *** p < 0.001 vs. SD; ◦ p < 0.05, and ◦◦◦ p < 0.001 vs. LP.
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3.6. NR Supplementation Reduces Hyperacetylation of the SIRT3 Target OPA1 in Maternal LP
Diet Offspring

We asked ourselves whether NR could affect the deacetylase activity of SIRT3. Western
Blot analysis with a specific antibody that detects protein acetylation at lysine residues
in total renal extracts was performed. As shown in Figure 4b,c, the offspring of LP-fed
mothers exhibited a significant increase in total acetylation levels compared to the offspring
of SD-fed mothers. In newborn mice born to LP-fed mice that received NR supplement
during pregnancy, we found a reduction in total protein acetylation on lysine residues
(Figure 4b,c), possibly suggesting an increase in SIRT3 deacetylase activity.

Having identified an altered acetylome profile in newborn mice from LP-fed moth-
ers, we sought to evaluate the acetylation status of different proteins whose activity is
specifically regulated by SIRT3-dependent deacetylation. First, we investigated OPA1, a
dynamin-like GTPase involved in mitochondrial inner membrane fusion [31,32]. While we
found unchanged levels of total OPA1 protein expression in LP offspring, compared to the
offspring of SD-fed mothers (Figure 4b,d), a significant increase in OPA1 lysine acetylation
was found in kidneys from the offspring of LP-fed mothers and NR significantly reduced
OPA1 hyperacetylation induced by LP diet during pregnancy (Figure 4b,e).

3.7. NR Supplementation Reduces Hyperacetylation of the SIRT3 Target SOD2 in Maternal LP
Diet Offspring

We then evaluated SOD2, another target of SIRT3, whose antioxidant activity is
dependent on its deacetylated status [33]. When we quantified SOD2 expression with
Western Blot analysis, we found that the offspring of LP-fed mothers with or without
NR had significantly higher levels of SOD2 compared to the offspring of SD-fed mothers
(Figure 5a,b). Given that previous studies have identified Lysine 68 as the specific residue
through which SIRT3 can regulate SOD2 activity [34], we evaluated changes in SOD2
acetylation at lysine 68 (SOD2KAc68). In the renal extracts from the offspring from LP-fed
mothers, we found a significant increase in SOD2KAc68 expression compared to the offspring
of SD-fed mothers, which was significantly decreased by gestational NR supplementation
(Figure 5a,c). To fully assess the global SOD2 acetylation status, we normalized SOD2KAc68

expression to total SOD2 expression and found that NR supplementation significantly
reduced SOD2 acetylation levels in renal extracts from the offspring of LP-fed mothers
(Figure 5d). To study the functional relevance of modulation of SOD2 antioxidant activity
in our experimental setting, we evaluated nitrotyrosine—a marker of protein oxidation
in vivo—in renal tissues [18]. Immunohistochemical analysis provided evidence that
newborns from LP-fed mothers exhibited an increase in the nitrotyrosine signal, while NR
treatment reduced protein nitrosylation in both the glomerular and tubular compartments
(Figure 5e), suggesting that NR enhances antioxidant defense in maternal LP diet offspring.

3.8. NR Supplementation Prevents Mitochondrial Ultrastructural Alterations in Maternal LP
Diet Offspring

There is evidence that exposure to a maternal LP diet has a great impact on mitochon-
drial activity, including impairment of mitochondrial functions [35–39]. Having identified
marked alterations in mitochondrial proteins in maternal LP offspring, we sought to ana-
lyze mitochondrial ultrastructure with TEM. As shown in Figure 5f, extensive damage to
mitochondria was found in proximal tubular cells in the kidneys of the offspring of LP-fed
mothers at day 1, as indicated by a significant increase in the number of rounded, swollen
mitochondria with a loss of cristae observed in these pups, compared to the offspring of
SD-fed mothers. In contrast, the renal samples harvested from the offspring of LP-fed moth-
ers supplemented with NR exhibited a focal restoration of mitochondrial ultrastructure
with preserved cristae morphology (Figure 5f). In order to evaluate the extent of mito-
chondrial alterations in our experimental setting, we quantified the percentage of altered
mitochondria out of the total mitochondrial number. We found that the LP diet significantly
increased the percentage of altered mitochondria compared to a SD (p < 0.001) and NR
supplementation partially rescued mitochondrial ultrastructural impairment induced by
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LP diet (p < 0.05), although not to control levels (p < 0.01; % of altered mitochondria: SD:
7.2± 0.4; LP: 53.8± 5.5; LP + NR: 35.4± 2.7; mean± SEM. Data were analyzed by ANOVA
with Tukey’s post hoc test).
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Figure 5. NR supplementation protects from oxidative stress by regulating SOD2 in maternal LP
diet offspring, preserving mitochondrial ultrastructure. (a–c) Representative Western blots (a) and
densitometric analysis of total SOD2 (b) and SOD2 acetylated at lysine 68 (SOD2KAc68) (c) in total
kidney extracts harvested from newborn mice (day 1) from mothers fed a SD, LP diet alone or with
NR; n = 3 samples per group. Each sample consisted of a pool of at least 4 kidneys from 4 newborn
mice. (d) Densitometric analysis of SOD2 acetylation expressed as the ratio between the expression
of SOD2KAc68 and total SOD2 in total kidney extracts harvested from newborn mice (day 1) from
mothers fed a SD, LP diet alone or with NR; n = 3 samples per group. Each sample consisted of a
pool of at least 4 kidneys from 4 newborn mice. (e) Representative images of nitrotyrosine signal
in renal tissues from offspring from mothers fed a SD, LP diet alone or with NR. Scale bars, 20 µm.
(f) Representative micrographs of mitochondrial alterations in proximal tubular cells of newborn
mice (day 1) from mothers fed SD, LP diet alone or with NR; n = 3 kidneys from 3 newborn mice.
Scale bars, 2000 nm. Results are presented as mean ± SEM and were analyzed with ANOVA with
Tukey’s post hoc test; * p < 0.05, *** p < 0.001 vs. SD and ◦◦ p < 0.01 vs. LP.

4. Discussion

Here, we provide evidence that reduced nephron endowment and impairment of the
renal structure in the kidneys of mice born to mothers fed a LP diet were improved through
NR supplementation. These effects were dependent on the ability of NR to normalize renal
SIRT3 expression and activity, as shown by the lack of NR effectiveness in SIRT3 knockout
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mice. The restoration of SIRT3 by NR led to improvement in the striking alterations in
mitochondrial structure induced by the LP diet.

These findings have huge potential for clinical translation, given that inadequate
nephrons at birth increase the risk in adulthood of hypertension and renal diseases [4,40,41].
Chronic kidney disease affects over 10% of the adult population worldwide, with rising
overall morbidity and mortality rates [42]. In view of this, it is evident that prenatal kidney
care is an important global health challenge. Counteracting a nephron shortage has an
additional layer of clinical relevance because nephron number in humans is set at birth and
cannot be increased later in life, so prenatal intervention is the only option to modulate
renal developmental programming. Our study provides evidence that, in pregnancies
complicated by a protein-restricted diet, it is possible to prevent nephron shortage and
reestablish the physiological glomerular structure and proper glomerular and tubular
capillary network by supplementing the mother’s diet.

To modulate nephron endowment, we chose a strategy that aimed to boost SIRT3,
based on our recent study, which showed that SIRT3 is a critical determinant of proper
nephrogenesis and final nephron number [13]. Consistent with our study, we report
the unprecedented findings that renal SIRT3 expression and activity were significantly
reduced in the kidneys of mice born to mothers under gestational protein restriction
regimen, which provided the rationale for targeting the SIRT3-dependent pathway to
restore nephrogenesis. Among the small number of available SIRT3 activators, we focused
on NR, which can increase the bioavailability of NAD+, the essential co-substrate for
SIRT3 activity. Notably, NR takes on particular importance due to its potency in vivo and
the lack of adverse clinical effects [43]. Indeed, several clinical studies are investigating
the therapeutic potential of NR for treating several pathological conditions, including
neurodegenerative and cardiovascular disorders [44].

In this study, we observed that SIRT3 protein expression was induced by NR treatment
in the kidneys of mice born to LP-fed mothers. It has been reported that NR can activate
PGC-1α [45] which, among several other important functions related to mitochondrial
biogenesis and energetic metabolism [46,47], controls SIRT3 transcription through the
coactivation of the orphan nuclear receptor Err (estrogen-related receptor)-α [48]. Accord-
ingly, here we found that PGC-1α protein expression, which was significantly lower in
the kidneys of LP-fed mothers’ pups, was fully restored in mice that received NR. These
results clearly indicate that an NR-mediated increase in SIRT3 expression passes through an
induction of PGC-1α protein expression. In addition, recent studies suggested that PGC-1α
is involved in the maintenance of the NAD+ pool, via multiple mechanisms [49–51]. De-
spite not having evaluated the NAD+ content in our experimental setting, it is conceivable
that NR-induced PGC-1α significantly increased the NAD+ levels, which are reduced by
maternal malnutrition, as revealed by the altered tryptophan metabolism [52].

As a likely consequence of increased NAD+ bioavaibility, we documented that NR
supplementation was able to induce SIRT3 activity, as shown by a significant reduction in
total renal extract hyperacetylation during pregnancies complicated by dietary restriction,
providing evidence of the drug’s effectiveness in activating deacetylase enzymatic activity
of SIRT3. Our finding corroborates previous studies that have shown that NR treatment
enhances SIRT3 activity [33,53]. It is known that SIRT3-mediated deacetylation of lysine
residues of target proteins can positively regulate many intracellular pathways involved
in mitochondrial fission and oxidative stress energy homeostasis and metabolism [16].
Specifically, we focused on OPA1, a protein that is important for mitochondrial integrity
and the fusion of inner mitochondrial membranes, whose activity is regulated by SIRT3
through deacetylation [31]. In line with SIRT3-reduced activity, OPA1 hyperacetylation
was found in the kidneys of mice born to LP-fed mothers and was decreased significantly
by NR treatment. That SIRT3 is functionally impaired in the kidneys of LP-newborn mice
was also confirmed by the finding of increased acetylation of SOD2, the main mitochon-
drial antioxidant enzyme [54]. The impairment of SOD2 activity translates into increased
oxidative stress and the production of reactive oxygen species, as revealed by an increase
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in nitrotyrosine staining in renal tissue from mice exposed to a low protein diet during
pregnancy. Notably, NR effectively enhanced SOD2, thus reducing oxidative stress in vivo,
suggesting that the beneficial effects of NR on kidney development may also relate to its
SIRT3-dependent antioxidant activity.

Given the profound alteration in the acetylation status of mitochondrial proteins, we
investigated the mitochondrial ultrastructure. Consistent with previous studies on the
liver and skeletal muscle [35–39], we found that exposure to a maternal LP diet had a
negative impact on mitochondrial structure in the neonatal kidney. In this setting, NR
significantly rescued defects in mitochondrial morphology, which is recognized as being
strictly connected with key mitochondrial functions. In particular, our finding that NR
was able to increase OPA1 activity via SIRT3 suggests that the restoration of mitochondrial
architecture may be dependent on OPA1-mediated cristae junction organization [55]. In
addition, the ability of NR to impact the activity of OPA1 plays a multifaceted role, given
that OPA1 counteracts oxidative stress [56] and maintains mitochondrial permeability [57],
further supporting the beneficial effect of the SIRT3/OPA1 axis on mitochondrial struc-
ture. In addition, the ability of NR to maintain SOD2 activity via SIRT3 further amplifies
the beneficial effect of OPA1 on preserving mitochondrial oxidative state and function.
These findings further support our previous study, which showed that intact mitochondrial
functions regulated by SIRT3 are fundamental for the maintenance of a proper metabolic
milieu, characterized by sustained oxidative metabolism and decreased glycolysis, to pro-
mote nephrogenesis and dictate nephron number [13]. Our findings are also consistent
with previous investigations that have reported that the stimulation of NAD+ has pro-
tective effects on mitochondrial health across different cells in both animal models and
humans [33,58–61].

5. Conclusions

Collectively, all our data contribute to establishing an intervention pathway to prevent
nephron shortage during pregnancies that are at risk of developmental renal defects,
through specific diet supplementation. Future studies should aim to investigate whether
the NR-induced restoration of nephron endowment ultimately translates into increased
renal resilience following additional renal insults in adult life. These findings could have
significant clinical implications, given the risk of long-term deleterious consequences on
the health of infants born with an inadequate nephron asset at birth and suggest that NR
should be considered for clinical studies to prevent adverse programming and to support
proper organ development.
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