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Abstract: Bacterial biofilm infections associated with wounded skin are prevalent, recalcitrant, and in
urgent need of treatments. Additionally, host responses in the skin to biofilm infections are not well
understood. Here we employed a human organoid skin model to explore the transcriptomic changes
of thermally-injured epidermis to methicillin-resistant Staphylococcus aureus (MRSA) biofilm colo-
nization. MRSA biofilm impaired skin barrier function, enhanced extracellular matrix remodelling,
elicited inflammatory responses including IL-17, IL-12 family and IL-6 family interleukin signalling,
and modulated skin metabolism. Synthetic antibiofilm peptide DJK-5 effectively diminished MRSA
biofilm and associated skin inflammation in wounded human ex vivo skin. In the epidermis, DJK-5
shifted the overall skin transcriptome towards homeostasis including modulating the biofilm in-
duced inflammatory response, promoting the skin DNA repair function, and downregulating MRSA
invasion of thermally damaged skin. These data clarified the underlying immunopathogenesis of
biofilm infections and revealed the intrinsic promise of synthetic peptides in reducing inflammation
and biofilm infections.

Keywords: biofilm immunopathogenesis; innate immune response; inflammation; skin barrier
function; extracellular matrix remodeling; DNA repair; host defense peptide; human skin; RNA-Seq
transcriptomic analysis

1. Introduction

The emergence of antibiotic resistance poses a global public health concern leading to
prolonged illness, increased treatment failure, and elevated rates of disability and mortal-
ity [1]. Staphylococcus aureus, ranked highly important in the World Health Organization’s
global priority list of antibiotic-resistant bacterial pathogens [2], can form multicellular
biofilms that are 10- to 1000-times more resistant to conventional antibiotics when compared
to planktonic bacteria [3]. Critically, S. aureus is a common cause of skin and soft tissue
infections [4] and the most frequently isolated bacterium from chronic wound infections
(e.g., found in 88–93.5% of chronic venous leg ulcers), causing excessive inflammation
and delaying wound healing and the re-epithelialization process [5]. In one study, all
160 S. aureus isolates from patients with skin infections were capable of biofilm formation,
suggesting that biofilms are a universal behavior of S. aureus skin infections [6].

Human skin, the largest organ of the human body, functions as a physical barrier be-
tween the external environment and internal organs, provides immune protection, regulates
body temperature and water balance, and supplies hormones and neurotransmitters [7].
The host response to biofilm infections is complex and dynamic, since bacterial signature
molecules that are readily recognized by the host immune system can be hindered by extra-
cellular polymeric substances and other components of the biofilm extracellular matrix as
it develops [8]. This is particularly complicated for S. aureus infections since this organism
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is capable of both intracellular and extracellular survival [9]. The inflammatory response
also depends on the site of infection and types of immune cells present. Immune responses
against S. aureus infections involve coordinated activities of immune cells (e.g., neutrophils,
macrophages, B cells, and T cells) and host defense peptides [10]. Stratified keratinocytes
in the epidermis are essential for skin barrier function, structural integrity, and initiation of
skin inflammation. However, their role in biofilm infection is not well understood.

Effective treatments for skin biofilm infections are urgently required, since the clin-
ical pipeline of new antimicrobials is currently dry and there is currently no treatment
specifically targeting biofilm infections. Host defense peptides (HDPs), also known as
antimicrobial peptides, are short, positively charged polypeptides that are rich in hydropho-
bic residues [11]. Synthetic analogs of naturally occurring HDPs have improved beneficial
activities such as antibiofilm as well as immunomodulatory and anti-inflammatory proper-
ties while maintaining low cytotoxicity toward mammalian cells [12]. For example, DJK-
5, a D-enantiomeric peptide, has broad-spectrum activity in both biofilm inhibition and
eradication [13,14]. As a potentially universal mechanism of action, DJK-5 targets the
bacterial stringent response, required for biofilm formation, by binding and triggering the
degradation of the stringent response alarmones guanosine tetraphosphate and pentaphos-
phate [15]. As a promising anti-biofilm therapeutic candidate, it is of interest to explore the
influence of DJK-5 on host tissue responses during biofilm infections.

In this study we found that methicillin-resistant Staphylococcus aureus (MRSA) biofilm
infection suppressed genes involved in cornified envelope formation such as loricrin and
keratins. Additionally, biofilm infection increased both skin extracellular matrix (ECM)
formation and degradation and enhanced the expression of matrix metalloproteinases
(MMPs) that mediate tissue remodeling during physiological or pathological processes.
DJK-5 treatment modulated MRSA biofilm-induced skin inflammation, especially the
interleukin response, by downregulating IL-12 and IL-6 family signalling while promoting
IL-10, IL-4, and IL-13 cascades. DJK-5 also uniquely promoted pathways regulating cell
cycle progression and the repair of DNA damage promoting the DNA damage sensor, ATR,
and the BRCA1-associated genome surveillance complex components expression, which
play roles in DNA mismatch repair, excisional repair, and the homologous recombination
pathway. DJK-5 reduced MRSA intracellular invasion, in part by downregulating MRSA
interaction with host cell adhesion molecules, intracellular kinase signalling cascades and
MRSA mobilization of actin cytoskeleton.

2. Material and Methods
2.1. Peptide and Reagents

Peptide DJK-5 (VQWRAIRVRVIR-NH2; all D amino acids as indicated in italics) was
synthesized by CPC Scientific (Sunnyvale, CA, USA) using solid-phase 9-fluorenylmethoxy
carbonyl chemistry and purified to ~95% using reverse-phase high-performance liquid
chromatography. Peptide identity was confirmed by mass spectrometry. N/TERT cell and
skin culture medium including Keratinocyte-SFM medium, Dulbecco’s Modified Eagle
Medium (DMEM, high glucose, GlutaMAX™ Supplement, pyruvate), and Ham’s F-12
Nutrient Mix were purchased from ThermoFisher Scientific (Waltham, MA, USA). CnT-
Prime 3D Barrier Medium was obtained from CELLnTEC Advanced Cell Systems AG
(Zurich, Switzerland). DermaLife K Keratinocyte Medium Complete Kit was purchased
from Lifeline Cell Technology (Oceanside, CA, USA). Supplements for skin culture medium
including isoproterenol, hydrocortisone, bovine insulin, selenious acid, L-serine, L-carnitine,
bovine serum albumin, palmitic acid, linoleic acid, and arachidonic acid were obtained from
Sigma-Aldrich (St. Louis, MI, USA). Antibiotic controls (gentamicin and fusidic acid) and
10% neutral-buffered formalin solution were also purchased from Sigma-Aldrich. Reagents
for bacterial culture and resuspension including tryptic soy broth (TSB), Luria broth, D-
glucose, and phosphate-buffered saline (PBS) were purchased from ThermoFisher Scientific.
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2.2. Bacteria Culture

MRSA USA300-LAC [16] was grown overnight in TSB (supplemented with 1% D-
glucose) at 37 ◦C with shaking at 180 rpm. The next day, bacteria were sub-cultured and
grown to mid-exponential growth phase in TSB (1% D-glucose), harvested by centrifugation
at 6200× g for 5 min and resuspended in PBS or TSB containing 1% D-glucose before seeding
2 × 106 CFU onto each skin sample.

2.3. MRSA USA300-LAC Thermal Wounding ex Vivo Skin Model

The surplus human skin experimental protocol (H18-000657) was approved by the
UBC Clinical Research Ethics Board and the College of Physicians and Surgeons of British
Columbia. Healthy breast surplus skin samples (3–5 mm in thickness) were collected from
consenting healthy donors (age 19–45) post-breast reduction surgery. The procedure for ex
vivo skin culture and infection was adapted from de Breij et al. [17]. Skin was rinsed 3 times
with PBS and cut into 8 mm biopsies. The apical side of the skin was thermally injured
with a digital soldering iron (FX888D, American Hakko Products Inc., Valencia, CA, USA)
at 150 ◦C for 10 s. A reservoir for infection and treatment was created by building a barrier
surrounding the skin containing the burn wound with a light-curing dental liquid dam
(Ultradent Products Inc., South Jordan, UT, USA), followed by 4 s of ultraviolet light fixation.
Skin with treatment reservoir was cultured in a 12-well plate at the air–liquid interface on
a metal wire rack with 3.2 mL of the culture medium (DMEM/Ham’s F-12/CnT-Prime 3D
Barrier Medium in a 3:1:4 ratio supplemented with 0.1 µg/mL hydrocortisone, 0.125 µg/mL
isoproterenol, 0.25 µg/mL bovine insulin, 26.5 pM selenious acid, 5 mM L-serine, 5 µM L-
carnitine, 1.6 mg/mL BSA, 25 µM palmitic acid, 30 µM linoleic acid, and 7 µM arachidonic
acid) underneath. MRSA biofilm was established by seeding 3 µL of 6.7 × 108 CFU/mL
(2 × 106 CFU) USA300-LAC in TSB (1% D-glucose) on top of the thermally damaged skin
and cultured at 37 ◦C and 5% CO2 for 24 h. Skin biofilm was treated with 5 µL of 0.1%
(5 µg) or 0.4% (20 µg) DJK-5 or fusidic acid dissolved in water or 5 µL of water as a control
for 4 h. To quantify bacterial counts, each skin sample was homogenized using a mini-
beadbeater-96 (BioSpec Products Inc., Bartlesville, OK, USA) for 3 cycles of 30 s in 1 mL
PBS with a 3 mm diameter Tungsten carbide bead (Qiagen, Hilden, Germany), vortexed,
serially diluted, and plated on Luria broth agar plates. The colony count detection limit
was 10 CFU/skin. To determine the concentrations of cytokines and chemokine released
by the ex vivo skin samples, culture medium underneath the skin was used to measure
IL-1β, IL-6, and IL-8 production using ELISA kits from eBioscience.

2.4. H&E Staining

Ex vivo skin samples were sandwiched between two foam biopsy pads (ThermoFisher
Scientific) in a tissue embedding cassette (Sigma-Aldrich) and fixed in 10% neutral-buffered
formalin for 48 h. H&E staining of skin and biofilm cross sections was performed by Wax-it
Histology Services Inc. (Vancouver, BC, Canada) and images were analyzed using the
Aperio ImageScope software v12.4.0.5043 (Leica Biosystems, Wetzlar, Germany).

2.5. MRSA USA300-LAC Thermal Wounding N/TERT Skin Model

N/TERT keratinocytes were provided by Dr. Peter Nibbering (Leiden University
Medical Center) with permission from Dr. James Rheinwald (Harvard Medical School).
N/TERT cell culture and the N/TERT skin biofilm model were carried out as published
previously [18]. In brief, skin models were created from 3 × 105 N/TERT cells on filter
inserts (ThinCert™ Cell culture insert, Greiner bio-one) in a 12-well ThinCert™ Plate
(Greiner bio-one) as described previously. When cells reached confluency (after 3–4 days)
the culture medium was switched to a differentiation medium (DMEM/Ham’s F-12/CnT-
Prime 3D Barrier Media in a 3:1:4 ratio supplemented with 0.1 µg/mL hydrocortisone,
0.125 µg/mL isoproterenol, 0.25 µg/mL bovine insulin, 26.5 pM selenious acid, 5 mM
L-serine, 5 µM L-carnitine, 1.6 mg/mL BSA, 25 µM palmitic acid, 15 µM linoleic acid,
and 7 µM arachidonic acid). The apical side of the skin was air-exposed the next day to
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induce stratification. After 2–3 days, the concentration of linoleic acid in the differentiation
medium was increased to 30 µM. N/TERT skin was ready for experiments after culturing
at the air–liquid interface at 37 ◦C and 7.3% CO2 for 10 days. Thermal damage was created
by applying a digital soldering iron to N/TERT skin at 100 ◦C for 4 s. MRSA biofilm was
established by seeding 5 µL of 4 × 108 CFU/mL (2 × 106 CFU) on top of the thermally
damaged skin and cultured at 37 ◦C and 5% CO2 for 24 h. DJK-5 peptide (30 µL of 0.4%)
was administered on top of the pre-formed biofilm. Skin samples were collected 24 h
post-peptide treatment for RNA-isolation.

2.6. RNA Isolation

N/TERT epidermal skin was collected from 4 treatment groups, namely: (1) untreated
skin control; (2) burned skin control (skin thermally challenged at 100 ◦C for 4 s); (3) burned
skin with MRSA biofilm (burned skin spotted with 2 × 106 CFU MRSA USA300-LAC
for 24 h then treated with 30 µL water for 24 h); and (4) burned skin with MRSA biofilm
and DJK-5 treatment (burned skin with 24 h MRSA USA300-LAC biofilm then treated
with 30 µL of 0.4% DJK-5 for 24 h). Skin models were excised from the cell culture insert
using a disposable scalpel (VWR, Radnor, PA, USA) and immediately submerged in 800 µL
RNAlater RNA stabilization solution (ThermoFisher Scientific), stored at 4 ◦C overnight
and then transferred to a −80 ◦C freezer until the RNA isolation could be performed. To
harvest enough RNA for RNA-Seq analysis, three skin models with the same treatment
were pooled into each sample before RNA extraction. Total RNA was extracted from four
independent pooled samples per treatment group using the RNeasy Micro Kit (Qiagen)
following the manufacturer’s protocol. For quality control, 1 µL of each sample was run
on the Agilent 2100 Bioanalyzer using the Eukaryotic Total RNA Nano Chip (Agilent
Technologies, Santa Clara, CA, USA).

2.7. RNA-Seq Library Preparation

To ensure data quality, the changes in expression of representative inflammatory genes
were confirmed using RT-qPCR (Supplementary Table S1). The primer sequences used
in the RT-qPCR experiments are listed in Supplementary Table S2. The production of
inflammatory cytokine IL-1β and chemokine IL-8 from the skin culture medium were
measured using ELISA (Supplementary Table S3).

RNA-Seq library construction was performed as described previously [19] using
1–2 µg of each RNA sample. Poly-A tailed RNA enrichment was done using the Magnetic
mRNA Isolation Kit (New England Biolabs, Ipswich, MA, USA). To prepare complementary
DNA libraries, mRNAs were enzymatically fragmented followed by first and second strand
complementary DNA synthesis and unique indices were ligated using the Kapa Stranded
RNA-Seq Kit (Kapa Biosystems, Wilmington, MA, USA). DNA libraries were amplified by
polymerase chain reaction followed by cleaning and size selection using the AMPure XP
kit (Agencourt Bioscience, Beverly, MA, USA). DNA samples were quantified using the
Quant-iT™ dsDNA Assay Kit (ThermoFisher Scientific) and normalized to 4 nM. RNA-Seq
libraries were sequenced on a HiSeqX sequencer (Illumina) at Canada’s Michael Smith
Genome Sciences Centre at the British Columbia Cancer Agency.

2.8. RNA-Seq Analysis

Quality control of the N/TERT skin sequenced data was performed using FastQC [20]
v0.11.8 and MultiQC v1.8 [21]. Sample libraries were then aligned to the human reference
genome, Ensembl GRCh38 v98 [22] using STAR v2.7.3a [23]. Uniquely mapped reads
included a minimum of 12.3 million, median of 29.5 million, and a maximum of 47.6 million
reads. A read count table was generated using HTSeq-count v0.11.2 [24], and genes that
had fewer than 50 counts across four biological replicates were removed. Differentially
expressed (DE) gene analysis was performed using DESeq2 v1.28.1 with the Wald statistical
test, and DE genes were considered significant if they had an absolute fold change value of
≥1.5 and adjusted p-value ≤ 0.05 [25]. Reactome [26] pathway enrichment of DE genes was
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performed using ReactomePA [27], with significance defined as a Bonferroni-adjusted p-value
≤ 0.05 [28]. Network analysis was done by uploading genes and their respective fold change
values to NetworkAnalyst for construction of protein–protein interaction networks [29].

2.9. Statistical Analysis

Statistical significance of bacterial colony counts recovered from the ex vivo skin model
was determined by the Kruskal–Wallis test (a non-parametric test) with Dunn’s multiple
comparisons. Statistical significance of cytokine and chemokine concentrations from the ex
vivo skin comparing peptide treated skins to MRSA control was performed using one-way
ANOVA, Dunnett’s multiple comparisons test. Statistical analysis was performed using
GraphPad Prism Version 8.0.2. Statistical significance was reported using the following
cut-offs: * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001; **** p-value ≤ 0.0001.

3. Results
3.1. DJK-5 Reduced MRSA Biofilm and Inflammation in Thermally Wounded Human Skin

We previously showed that DJK-5 effectively killed MRSA in biofilms grown on
thermally-injured epidermal skin organoids and dampened biofilm-induced skin inflam-
mation [18]. To study if the antibiofilm and anti-inflammatory activities of DJK-5 were
conserved under conditions more representative of human burn wounds, we employed
an air–liquid interface model using human breast surplus skin (Figure 1). Unlike the
N/TERT skin, this model contained, in addition to epidermis, both dermis and immune
cells. H&E staining of a human skin cross section showed this structural complexity with
the epidermal rete ridges extending into the dermis (Figure 1a). To facilitate biofilm col-
onization, the surface of this ex vivo skin was thermally injured at 150 ◦C for 10 s before
MRSA infection (Figure 1b). This thermal injury caused a large number of epidermal cells
to lose their circular appearance and severely damaged the integration of the epidermis,
causing it to separate from the dermis, while no major alterations in the dermis were ob-
served. Consistent with previous observations with N/TERT epidermal skin [18], one-day
MRSA biofilm appeared as purple clusters associated with the epidermis (Figure 1c), and
the remaining biofilms or debris were stained pink after peptide treatments (Figure 1d).
Colony counts recovered after 4 h peptide treatment of MRSA biofilm showed that DJK-5
reduced the CFU by about 2 and 5 log orders of magnitude at 0.1% (5 µg) and 0.4% (20 µg)
respectively (Figure 1e). Notably, 0.4% DJK-5 performed considerably better than the
antibiotic control, 0.4% fusidic acid, by around 3 log orders of magnitude. Additionally,
DJK-5 at both doses completely inhibited IL-1β production (Figure 1f), and 0.4% DJK-5
significantly suppressed IL-6 (Figure 1g) and IL-8 (Figure 1h) levels by about 3.4-fold and
4.1-fold respectively.
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Figure 1. Antibiofilm activity of DJK-5 in the human burned skin MRSA biofilm model. Human
surplus skin obtained post-breast reduction surgery was thermally challenged at 150 ◦C for 10 s
and cultured at the air–liquid interface. Two million MRSA (USA300-LAC) were spotted on top of
the burned skin and cultured for 24 h, followed by 4 h topical peptide treatment [0.1% (5 µg) or
0.4% (20 µg) DJK-5 or fusidic acid]. Skin cross sections were visualized by H&E staining (a–d). The
colony count recovered from each skin sample was determined (e). Statistical significance comparing
peptide treated skins to MRSA control was performed using the Kruskal–Wallis test, Dunn’s multiple
comparisons test. Geometric mean of colony-count from 3 donors (7–9 replicates per conditions)
was indicated. The concentrations of IL-1β (f), IL-6 (g), and IL-8 (h) in the skin culture medium was
determined by ELISA. Error bars indicate mean with standard error in (f–h). Statistical significance of
5 replicates per condition from 3 donors was performed using one-way ANOVA, Dunnett’s multiple
comparisons test (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001).
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3.2. Effect of DJK-5 Treatment on MRSA Biofilm Infected Thermally-Injured Skin Transcriptome

Keratinocytes are the predominant cells in the epidermis. They recognize microbial
pathogens in part through Toll-like receptors (TLRs), and act as the first line of innate
immune defense against infection [30]. Since histological changes were prominently ob-
served in the epidermis (Figure 1a–d), we employed the epidermal skin organoid model to
further study the impact of MRSA infection and 0.4% (120 ng) DJK-5 treatment on the host
epidermal immune response.

RNA-Seq analysis was performed on total mRNA samples extracted from burned
skin controls and thermally-challenged N/TERT epidermal skin infected with 24 h MRSA
biofilm, followed by 24 h DJK-5 treatment. When comparing other treatment groups to
burned skin, genes were considered differentially expressed (DE), if they had ≥1.5 absolute
fold changes, with an adjusted p-value < 0.05. MRSA biofilm infection of burned skin
led to very large transcriptomic changes with 3674 upregulated genes and 3700 down-
regulated genes when compared to the burned skin control (Supplementary Figure S1).
DJK-5-treated, MRSA-infected burned skin also had a large number of DE genes when
compared to MRSA biofilm infected skin (3411 upregulated and 3396 downregulated). This
appeared to be largely due to the reversal of the inflammation and skin damage caused by
MRSA biofilm infection, since comparing DJK-5-treated, MRSA-infected burned skin to
the burned control revealed very few DE genes (152 upregulated and 7 downregulated,
Supplementary Figure S1). Thus DJK-5 treatment shifted the overall skin transcriptome
closer to homeostasis without infection.

3.3. MRSA Biofilm Infection Impaired Skin Barrier Function and Enhanced Extracellular Matrix
Turnover in Thermally-Injured Skin

The cornified envelope, layers of terminally differentiated keratinocytes atop the
skin, functions as a permeability and mechanical defense barrier preventing pathogen
colonization through its low water content, acidic pH, associated normal microflora, and
surface-deposited antimicrobial lipids [31]. Pathway enrichment analysis using Reac-
tomePA [27] revealed the differential influence of MRSA infection and DJK-5 treatment on
the burned skin (Table 1). MRSA biofilm infection impaired the formation of cornified en-
velope (adjusted p < 1.1 × 10−2). NetworkAnalyst provides a method to display functional
interactions (direct, biochemical, and regulatory) of dysregulated genes as a protein–protein
interaction network. While using this method, it was discovered that MRSA biofilm in-
fection downregulated the expression of loricrin and multiple components of the keratin
intermediate filaments (e.g., KRT1, 2, 9 and 10), which are responsible for forming strong
tissue networks and providing strength and resiliency to the skin [32] (Figure 2a). DJK-5
treatment upregulated this pathway (1.3 × 10−2), indicating a protective role in restoring
barrier function (Table 1).

Table 1. Selected pathways dysregulated by MRSA biofilm infection with or without DJK-5 treatment
in thermally damaged N/TERT skin. Pathway enrichment analysis was performed on DE genes using
ReactomePA [27] with an adjusted p-value < 0.05 used as the cut-off for overrepresented differentially
expressed pathways.

Function Pathway Direction Adjusted
p-Value

MRSA biofilm infected burned skin vs. burned skin control

Keratinization Formation of the cornified envelope down 1.1 × 10−2

Cell junction
organization Cell-extracellular matrix interactions up 2.2 × 10−4

Extracellular matrix
organization

Anchoring fibril formation up 7.2 × 10−3

Crosslinking of collagen fibrils up 3.5 × 10−2
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Table 1. Cont.

Function Pathway Direction Adjusted
p-Value

Degradation of the extracellular matrix up 8.6 ×10−4

Collagen degradation up 1.0 × 10−2

Infectious disease Cell recruitment
(pro-inflammatory response) up 3.5 × 10−2

Innate
immune system

Toll-like receptor cascades up 1.9 × 10−3

MAP kinase activation up 1.9 × 10−3

Cytokine signalling in
immune system

Interleukin-17 signalling up 3.2 × 10−3

Interleukin-12 family signalling up 3.5 × 10−2

Interleukin-6 family signalling up 7.7 × 10−3

Signal transduction

GPCR downstream signalling up 6.0 × 10−8

Death receptor signalling up 3.3 × 10−3

RHO GTPase cycle up 7.7 × 10−3

Metabolism of RNA rRNA processing up 4.3 × 10−9

Metabolism
of proteins

Translation up 2.1 × 10−4

Post-translational
protein phosphorylation up 5.1 × 10−3

Metabolism of
amino acids

Metabolism of amino acids
and derivatives up 1.1 × 10−2

Metabolism of lipids Peroxisomal lipid metabolism down 1.1 × 10−2

DJK-5 treated MRSA biofilm infected burned skin vs. biofilm infected burned skin

Keratinization Formation of the cornified envelope up 1.3 × 10−2

Cell junction
organization Cell-extracellular matrix interactions down 2.6 × 10-2

Extracellular
matrix organization

Anchoring fibril formation down 5.3 × 10−3

Crosslinking of collagen fibrils down 3.0 × 10−2

Collagen degradation down 3.7 × 10−2

Toll-like
receptor cascades

TLR3 cascade down 4.6 × 10−2

TLR9 cascade down 3.8 × 10−2

Cytokine signalling in
immune system

IL-12 family signalling down 8.6 × 10−3

IL-6 family signalling down 5.3 × 10−3

Signal transduction

Signalling by MET down 8.4 × 10−4

Signalling by ERBB2 down 5.1 × 10−3

Death receptor signalling down 1.2 × 10−2

GPCR downstream signalling down 1.3 × 10−5

Cell cycle Activation of ATR in response to
replication stress up 4.6 × 10−2

DNA repair
Homologous DNA pairing and

strand exchange up 2.9 × 10−2

Resolution of abasic sites up 4.6 × 10−2

Metabolism
rRNA processing down 9.5 × 10−13

Translation down 2.8 × 10−11
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Table 1. Cont.

Function Pathway Direction Adjusted
p-Value

Post-translational
protein phosphorylation down 4.7 × 10−3

Metabolism of amino acids
and derivatives down 2.0 × 10−4

Peroxisomal lipid metabolism up 1.7 × 10−2

Cellular responses
to stress

Cellular response to starvation down 5.4 × 10v21

Response of EIF2AK4 to amino
acid deficiency down 1.2 × 10−36

DJK-5 treated MRSA biofilm infected burned skin vs. burned skin control

Cytokine signalling in
immune system

IL-10 signalling up 5.2 × 10−6

IL-4 and IL-13 signalling up 2.2 × 10−3

Signalling by GPCR Chemokine receptors bind chemokines up 4.2 × 10−2
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The host ECM is a highly dynamic yet strictly regulated tissue component that plays
essential roles during immune response to infections (e.g., microbial recognition, and im-
mune cell recruitment and activation) and regulation of inflammatory networks [33]. MRSA
biofilm upregulated pathways in cell-extracellular matrix interactions (2.2 × 10−4) and
both the formation and degradation of ECM, which were correspondingly downregulated
by DJK-5 treatment (Table 1). These genes include type IV, type VII, and type XVI collagens,
laminins (e.g., LAMA1, 3, 5, LAMB1, 3 and LAMC1, 2), integrins (e.g., ITGA1, 2, 3, 5,
6 and ITGB1, 4, 6, 7) and matrix metalloproteinases (e.g., MMP1, 3 and 9) (Figure 2b),
reflecting increased ECM remodeling processes in response to MRSA colonization and
skin inflammation [34].

3.4. DJK-5 Dampened MRSA Biofilm-Induced Skin Inflammation

In the burned skin, MRSA biofilm infection provoked innate immune responses,
including pathways directing proinflammatory cell recruitment (p = 3.5 × 10−2), TLR
cascades (1.9 × 10−3), MAP kinase activation (1.9 × 10−3), and several signal transduction
pathways (Table 1). In addition, multiple cytokine pathways such as IL-17 (3.2 × 10−3),
IL-12 family (3.5 × 10−2), and IL-6 family (7.7 × 10−3) were upregulated by MRSA biofilm
infection. These included skin inflammation related cytokines such as IL17C (fold-change:
803.8), IL23A (68.3), LIF (10.6), IL11 (5.2), MIF (2.2), and essential transcription factors such
as AP-1 subunits FOS (31.9) and JUN (6.9), NFKB1 (3.0), ATF1 (1.6), ATF2 (3.0), and CREB1
(2.4) (Figure 3). Skin treated with DJK-5 led to an overall dampened inflammatory state
by downregulating the above pathways. In particular, DJK-5 modulated the interleukin
response by downregulating IL-12 (p = 8.6 × 10−3) and IL-6 (8.6 × 10−3) family signalling
(compared to MRSA biofilm infected skin) while promoting IL-10 (5.2 × 10−6), IL-4 and
IL-13 (2.2 × 10−3) signalling (compared to the burned skin control) (Table 1).
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family signalling cascades in response to MRSA biofilm-induced skin inflammation with or without
DJK-5 treatment. Color scale based on log2fold-change of DE genes with red indicating upregulation
and green indicating downregulation.
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3.5. DJK-5 Reduced the Cellular Stress Response to Amino Acid Starvation

Host integrated stress response can shape the innate immune response during infec-
tions through detection of cellular stresses and damages caused by pathogenic bacteria
regardless of their specific virulence factors [35]. MRSA biofilm infection increased skin
metabolism including rRNA processing (p = 4.3 × 10−9), translation (2.1 × 10−4), and
metabolism of amino acids (1.1 × 10−2), reflecting increased protein synthesis demands
for host defenses (e.g., synthesis of proinflammatory cytokines) (Table 1). MRSA skin
biofilm treated with DJK-5 resulted in reduced RNA, protein and amino acid metabolism.
The decreased demand for amino acids also contributed to the reduction in cellular stress
responses including the cellular response to starvation (p = 5.4 × 10−21) and the response
of protein kinase EIF2AK4 sensing amino acid deficiency (1.2 × 10−36) (Table 1), which
is mediated by binding to uncharged tRNAs near the ribosome and phosphorylating the
translation initiation factor EIF2, resulting in decreased translation [36].

3.6. DJK-5 Promoted DNA Repair Function in MRSA Biofilm Infected Skin

DNA repair mechanisms are essential host responses in correcting physico-chemical
aberrations in the genome and can arouse the immune system through, for example, activa-
tion of immune signalling pathways and induction of antimicrobial peptide expression [37].
Pathway enrichment analysis (Table 1) revealed that DJK-5 treatment uniquely promoted
pathways regulating cell cycle progression and the repair of DNA damage, therefore we
further investigated DE genes within these pathways using known protein–protein interac-
tions as visualized by NetworkAnalyst (Figure 4). Compared to MRSA biofilm infected skin
without peptide treatment, skin treated with DJK-5 had elevated expression of DNA dam-
age sensor ATR serine/threonine kinase and multiple components of the BRCA1-associated
genome surveillance complex including BRCA1, BLM, NBN, and PCNA and subunits of
the replicative factor C (e.g., RFC2, RFC3, and RFC5) that are involved in DNA mismatch
repair and excisional repair [38]. In addition, peptide treatment also upregulated the ex-
pression of key factors in the homologous recombination pathway for double-strand DNA
repair (e.g., PALB2, BRCA2, RPA1, RPA2, RAD51D, RAD51B, RAD51AP1, and XRCC2) [39].
Together these results suggested that DJK-5 was able to reverse effects on the recognition
and repair of aberrant DNA structures during MRSA biofilm skin infection.
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A zero-order protein–protein interaction network of DE genes comparing DJK-5 treated vs. untreated
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3.7. DJK-5 Reduced Pathways Mediating MRSA Invasion of Thermally-Injured Skin

Studies have demonstrated that MRSA can invade and persist within host cells in-
cluding keratinocytes [40,41]. Therefore, we further studied the effect of DJK-5 on bacterial
internalization upon colonization. MRSA infection of thermally wounded skin upregulated
multiple skin extracellular matrix genes such as collagen, fibronectin, and laminin as well as
their integrin receptors (Figure 5). Following fibronectin and integrin-mediated adhesion,
MRSA infection upregulated multiple kinases such as the integrin-linked kinase (ILK),
focal adhesion kinase (FAK), and Src kinase. Additionally, activation of the hepatocyte
growth factor receptor MET led to upregulation of downstream WAVE family proteins,
which associated with an actin related protein 2/3 complex and function to enhance actin
polymerization and internalization of MRSA. Conversely, DJK-5 treatment of biofilm in-
fected burned skin led to downregulation of both the fibronectin–integrin pathway and
the MET pathway including the essential kinases (e.g., ILK, Src and PI3K), and resulted
in reduced septin assembly. These results indicated that DJK-5 reduced the mechanisms
driving MRSA intracellular invasion.
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Figure 5. DJK-5 downregulated MRSA invasion of thermally damaged N/TERT skin. Modified
KEGG Pathview graph of extracellular matrix–receptor interactions and bacterial invasion of epithelial
cells. Left half of each gene compares MRSA infected burned skin to burned skin control, and the
right half of each gene compares DJK-5 treated to untreated MRSA infection of burned skin. Red
indicates upregulation and green indicates downregulation.
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4. Discussion

Skin is an essential protective barrier of the human body that is constantly challenged
by environmental insults and microbial pathogens and is considered to have an important
role in early immune responses [42]. Biofilms colonizing wounds can impede wound
healing [43] and cause hyper-inflammatory [44] responses that are detrimental to the
host. In particular, S. aureus biofilms are among the most common in burn and chronic
wounds [45]. Despite the high prevalence and severe consequences, there is currently
limited knowledge about the impact of S. aureus biofilm on essential biological functions of
human skin during infection.

The results of the ex vivo human skin model confirmed the antibiofilm and anti-
inflammatory effects of DJK-5 against MRSA biofilm (Figure 1). These results were consis-
tent with our previous study using the epidermal N/TERT skin model, where DJK-5 was
able to reduce the numbers of live biofilm bacteria by >2000-fold, MRSA-induced IL-1β
secretion by 10-fold, and IL-8 secretion by 2.4-fold [18]. This wounded surplus skin model,
as compared to the N/TERT epidermal skin model [18], added structural complexity (e.g.,
dermis) and cellular diversity (e.g., CD14+ or CD1c+ monocytes/macrophages, CD11c+

DCs, CD56+CD3- natural killer cells, CD4+ T cells, CD8+ T cells, and CD19+ B cells [46,47]),
and better reflected donor variability. However, the complexity of the ex vivo skin model
due to genetic differences in individual donors and its compositional complexity, makes
molecular studies difficult since any changes observed are hard to ascribe to any given cell
type. The use here of an organoid model based on differentiated keratinocytes overcame
these issues and was justified by the similar morphology (of the epidermis) and response
to MRSA and DJK-5 peptide.

Using transcriptomics coupled with bioinformatic analysis, we explored skin organoid
epithelial responses to MRSA biofilm infection and DJK-5 treatment. Although H&E
staining showed substantial skin damage in the epidermis due to thermal injury [18],
surprisingly no DE genes were found when comparing burned skin to untreated skin
(Supplementary Figure S1). This is likely because the burned skin controls (as for other
experimental conditions) were collected 48 h post-thermal challenge for RNA-Seq analysis,
and this was likely too late to capture transcriptomic changes due to moderate thermal in-
jury. By comparison, MRSA biofilm infection triggered tremendous transcriptional changes
in burned skin. For example, MRSA biofilm suppressed skin structural genes such as
loricrin and keratins that are responsible for maintaining the skin barrier function and the
mechanical stability of individual cells in the epidermal tissue (Figure 2a), while breaching
such defenses, renders skin tissue more vulnerable to functionally diverse virulence factors
(e.g., toxins and immune modulators) produced by MRSA [48]. The disruption of skin
integrity, observed histologically, also helps to explain the refractory nature of S. aureus
biofilm associated with chronic inflammatory conditions such as in the atopic dermatitis
skin lesions [49,50]. Skin extracellular matrix (ECM) is a three-dimensional scaffold inter-
woven with multiple components that provides physical strength and elasticity, facilitates
immune cell recruitment and regulates inflammation in response to pathologic stimuli [34].
Upon infection, pathogens can alter the synthesis and turnover of ECM and impact on
its composition and spatial distribution [33]. For example, Rhinovirus infections induce
airway remodeling through increased deposition of ECM components such as fibronectin,
perlecan, and collagen IV [51].

Here we observed that MRSA biofilm infection increased the expression of skin base-
ment membrane-related ECM components including type IV collagen, type VII collagen,
laminins and their integrin receptors (Figure 2b). MRSA biofilm also increased the expres-
sion of MMPs (e.g., MMP1, 3 and 9), a class of proteinases involved in extracellular matrix
degradation, potentially affecting the ability of MRSA to colonize and invade skin tissue.
Importantly, MMPs are associated with pathological processes of chronic skin inflammation.
MMP3 and MMP9 have been found to accumulate in psoriatic plaques, cause cleavage of
basement membrane, and facilitate pathogenic T cell infiltration [52]. MMP9 induction also
contributes to the activation of IL-1β and plasminogen, mediates skin damage, and impairs
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wound healing [52]. Similarly in biofilm wound infection, the consequential excessive
release of harmful MMPs prolongs the inflammatory response and fuels biofilm forma-
tion [53]. Indeed, MRSA biofilm elicited multiple interleukin cascades, including the strong
induction of IL-17C and IL23A expression (Figure 3). Previous studies have shown that
induction of IL-17A and IL-17F from γδ T cells is essential for neutrophil recruitment and
host defenses against cutaneous S. aureus infection in mice [54,55] while IL-17C has been
shown to promote wound closure during S. aureus wound infection in mice [56]. Critically,
the IL-17 and IL-23 axis have well-recognized roles in chronic inflammation [57]; IL-23
stimulates IL-17 production by activating Th17 cells and elevated expression of IL-23 has
been observed in psoriatic lesional skin [57,58]. IL-17C amplifies epithelial inflammation
in human psoriasis and atopic eczema by potentiating the expression of other cytokines,
chemokines, and HDPs as well as the autocrine induction of IL-17C in keratinocytes [59].
Interestingly, MRSA biofilm also induced the expression of the IL-6 family cytokines LIF
and IL-11, both of which exert anti-inflammatory effects such as favoring regulatory T cell
development, promoting alternative macrophage differentiation, and reducing systemic
TNF production in mouse models of endotoxin-induced septic shock [60,61]. Together
these data highlight the complexity of host immune responses in stratified keratinocytes to
MRSA biofilm infections, whereby injured skin recognizes MRSA surface antigens (e.g.,
lipoteichoic acid), biofilm extracellular matrix components (e.g., exopolysaccharides and
extracellular DNA), and debrided dead host cells [62], both on the skin surface and after
invasion into host cells.

In addition to the direct antibiofilm activity shown in Figure 1, DJK-5 treatment also
modulated host skin transcriptional responses so that they became similar to the burned
skin control without MRSA infection, including promoting cornified envelope formation
and reducing ECM turnover (Table 1). Interestingly DJK-5 modulated the inflammatory
response by promoting anti-inflammatory IL-10 and Th-2 cytokine IL-4 and IL-13 sig-
nalling without significantly affecting IL-17 cascades. Similarly, other synthetic HDPs,
such as IDR-1018, have been shown to drive macrophage differentiation towards an inter-
mediate M1-M2 state, enhancing anti-inflammatory functions while maintaining certain
pro-inflammatory activities important to the resolution of infections [63]. This shifting in
immune response is beneficial as prolonged inflammation and reactive oxygen species
generated by bacterial infection often result in genomic instability. For example, S. aureus
infections can trigger DNA damage and delay the cell cycle transition through induction of
oxidative stress [64,65]. Skin cancer-associated S. aureus secretomes have also been shown
to suppress DNA repair mechanisms including homologous recombination, mismatch, base
excision, nucleotide excision, and double-strand break repair in keratinocytes [65]. Here
we reported a novel protective function of synthetic host defense peptide DJK-5 through
upregulation of DNA repair mechanisms (Figure 4). DJK-5 promoted the expression of ATR,
which responds to a broad spectrum of DNA damage (e.g., double-stranded DNA breaks
and stalled replication forks caused by DNA lesions) and regulates cell cycle progression
and the repair of DNA damage [66]. In addition, DJK-5 enhanced the expression of DNA
repair machineries, such as components of the BRCA1-associated genome surveillance
complex, which can alter composition depending on the type of DNA damage and the
cell cycle status [38]. For example, DJK-5 enhanced BRCA1 together with BRCA2 and
RAD51, which direct DNA double-strand break repair through homologous recombination.
PALB2 and RAD51AP1 have been shown to stimulate RAD51 recombinase activity and
D-loop formation [67]. The interaction of PALB2 and BRCA1 might fine-tune the location
of BRCA2-RAD51 repair machinery at DNA breaks [68]. DJK-5 also upregulated genes that
participated in the base excision repair pathway, a major DNA repair pathway that protects
mammalian cells against single-base DNA damage by genotoxicants such as methylating
and oxidizing agents. This pathway included POLD, POLE which catalyze DNA strand
displacement synthesis (resolution of abasic sites) during the S-phase of the cell cycle in the
presence of PCNA, RPA, RFC, FEN1, and LIG1 [69]. In addition, DJK-5 exhibited a protec-
tive role that would prevent intracellular invasion by MRSA. DJK-5 treatment suppressed
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MRSA biofilm-induced fibronectin and integrin expression in N/TERT epidermal skin
(Figure 5). Interactions between S. aureus fibronectin-binding proteins (e.g., FnBPA and
FnBPB) and host fibronectin and α5β1 integrins mediate bacterial adhesion and invasion
of non-professional phagocytic cells such as epithelial cells, endothelial cells, and fibrob-
lasts [70]. Keratinocytes have been shown to increase the expression of fibronectin and
α5β1 integrins upon wounding [71], providing more potential sites for MRSA attachment.
DJK-5 treatment also downregulated several downstream kinases such as Src, ILK, and
PI3K that are involved in S. aureus invasion of host cells [72–74]. Therefore, DJK-5 treatment
would be able to reduce the susceptibility of thermally damaged skin to MRSA infection, in
part by reducing bacterial adhesion and invasion. Interestingly, DJK-5 also suppressed the
expression of the receptor tyrosine kinase MET, which navigates internalization of Listeria
monocytogenes upon binding of the bacterial surface protein InlB [75], suggesting a potential
protective role against invasion of other bacterial species.

5. Conclusions

In conclusion, synthetic host defense peptide DJK-5 had promising antibiofilm and
anti-inflammatory effects in MRSA biofilm infected burned human skin. Using system biol-
ogy approaches, we studied the influence of MRSA biofilm and the treatment with DJK-5
on the skin transcriptome including effects on skin barrier function, ECM remodeling, and
immune responses including inflammatory mechanisms, therefore providing crucial data
on the dynamic host responses of epidermal skin to biofilm infections (Fold-change of rep-
resentative genes in each biological function was summarized in Supplementary Table S4).
Thus, skin organoid infection serves as an excellent model for teasing apart mechanisms of
S. aureus pathogenesis. These results also revealed the protective roles of DJK-5 treatment,
beyond directly targeting MRSA biofilm, such as restoring skin barrier function, enhancing
beneficial immune reactions, promoting the sensing and repair of aberrant DNA structures,
and reducing MRSA intracellular invasion.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11213459/s1, Table S1: Inflammatory gene expression relative
to untreated control skins; Table S2: Human RT-qPCR Primer Sequences; Table S3: DJK-5 Suppressed
Inflammatory Cytokine and Chemokine Production from MRSA Biofilm Infected Burned Skin;
Table S4: Differential Gene Expression of Representative Genes in Different Biological Functions in
RNA-Seq Analysis; Figure S1: Differential expression analysis of MRSA biofilm infected thermally-
injured skin treated with topical DJK-5.
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