Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome
Abstract
:1. Novelty and Significance
1.1. What Is Known?
1.2. What New Information Does This Article Contribute?
2. Introduction
3. Methods
3.1. Analysis of Public Transcriptomic Data of Mouse Heart
3.2. Protein Expression Level Analysis of 14-3-3 Isoforms in Mouse
3.3. Animals
3.4. Extraction of Heart Tissue and Co-Immunoprecipitation (Co-IP) with Pan-14-3-3 Antibody (Ab) and IgG Ab
3.5. SDS-PAGE Coomassie Staining
3.6. Mass Spectrometry and Data Processing
3.7. Validation of Binding to 14-3-3 via Co-IP and Western Blotting
3.8. 14-3-3 Interacting Proteins in the IP Samples Compared to the IgG Control Samples
- 1)
- TTEST: It is the most often used method to calculate the difference between two groups of samples. We adopted the paired t-test to calculate the fold-change, log2(fold-change), and p-value using the log2NSAF data. If there were equal to or greater than one sample with NA value for a certain protein, we curated the statistical results for the protein manually. At last, we adjusted the p-value using the BH method to obtain the FDR.
- 2)
- QSPEC: [43] This method was based upon the hierarchical Bayes estimation of Generalized Linear Mixed effects Model (GLMM). This modeling strategy is proposed to be more powerful than calculating the signal-to-noise ratio type of differential expression test statistics. We adopted the pair alternating algorithm to calculate the fold-change, log2(fold-change), and FDR using the SpC data.
- 3)
- Countdata: [41,42] This is a new R package to use the statistical method described in two published articles for mass spectrometry data. It is built based upon the beta-binomial model to analyze the spectral count data in label-free tandem mass spectrometry-based proteomics [42]. We adopted the paired comparison [41] to calculate the fold-change, log2(fold-change), and FDR using the SpC data. The normalized countdata was also used in the data distribution, sample distance and PCA analyses (Supplementary Figure S1D–F).
3.9. Isolation of Adult Mouse Left Ventricular Myocytes and Immunofluorescence Staining
3.10. Comparison of Proteins Identified in Our Interactome and Proteins in Annotation and Integrated Analysis (ANIA) Database
3.11. Comparison of Proteins Identified in Our Interactome and Proteins in BioPlex Database
3.12. Prediction of 14-3-3 Binding Sites via 14-3-3-Pred
3.13. Functional Analyses in clusterProfiler
3.14. Visualization of GO Analysis Results after Redundancy Reduction in REVIGO
3.15. Canonical Pathway Analysis and Visualization in Ingenuity Pathway Analysis (IPA)
3.16. Protein Localization Analysis in Integrated Mitochondrial Protein Index (IMPI), MitoCarta and AmiGO Databases
3.17. Integration of Information about Proteins Identified in Our Interactome and Summarized in the Review about Cellular Energy Metabolism
3.18. Data Process and Graphics Production
4. Results
4.1. 14-3-3 Isoform Protein Expression in Mouse Heart
4.2. A Global Landscape of 14-3-3 Interaction Network in Mouse Heart
4.3. STRING PPIs Analysis
4.4. STRING Cluster 1: The Cardiac 14-3-3 Mitochondrial and Metabolic PPI
4.5. STRING Clusters 2: The Cardiac 14-3-3 Homeostatic PPI
4.6. STRING Clusters 3: The Cardiac 14-3-3 Cytoskeleton PPI
4.7. Functional Analyses of 14-3-3 Interacting Proteins in Mouse Heart
4.8. Localization Validation of 14-3-3 Interacting Proteins in the Mouse Heart
4.9. Mapping the Cardiac 14-3-3 Interactome to Cellular Metabolic Network
5. Discussion
5.1. The Cardiac 14-3-3 PPIs and Energy Production
5.2. The Cardiac 14-3-3 PPIs and Energy Consumption
5.3. Limitations
5.4. Therapeutic Potential
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS | ATP Synthase |
BP | biological process |
CC | cellular component |
co-IP | co-immunoprecipitation |
ER | endoplasmic reticulum |
GO | Gene Ontology |
IPA | Ingenuity Pathway Analysis |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LV | left ventricle |
MF | molecular function |
MS | mass spectrometry |
OXPHOS | oxidative phosphorylation |
PPIs | protein–protein interactions |
References
- Moore, B.W. Specific acidic proteins of the nervous system. In Physiological and Biochemical Aspects of Nervous Integration; Prentice-Hall: New York, NY, USA, 1967; pp. 343–359. [Google Scholar]
- Ichimura, T.; Isobe, T.; Okuyama, T.; Yamauchi, T.; Fujisawa, H. Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of ca2+,calmodulin-dependent protein kinase ii. FEBS Lett. 1987, 219, 79–82. [Google Scholar]
- Aitken, A. Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants. Plant Mol. Biol. 2002, 50, 993–1010. [Google Scholar]
- Bradshaw, R.A.; Dennis, E.A. Handbook of Cell Signaling; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Ferl, R.J.; Manak, M.S.; Reyes, M.F. The 14-3-3s. Genome Biol. 2002, 3, reviews3010.1. [Google Scholar]
- Celis, J.E.; Gesser, B.; Rasmussen, H.H.; Madsen, P.; Leffers, H.; Dejgaard, K.; Honore, B.; Olsen, E.; Ratz, G.; Lauridsen, J.B.; et al. Comprehensive two-dimensional gel protein databases offer a global approach to the analysis of human cells: The transformed amnion cells (ama) master database and its link to genome DNA sequence data. Electrophoresis 1990, 11, 989–1071. [Google Scholar]
- Kleppe, R.; Martinez, A.; Doskeland, S.O.; Haavik, J. The 14-3-3 proteins in regulation of cellular metabolism. Semin. Cell Dev. Biol. 2011, 22, 713–719. [Google Scholar]
- Matta, A.; Masui, O.; Siu, K.W.; Ralhan, R. Identification of 14-3-3zeta associated protein networks in oral cancer. Proteomics 2016, 16, 1079–1089. [Google Scholar]
- Inoue, M.; Okamoto, K.; Uemura, H.; Yasuda, K.; Motohara, Y.; Morita, K.; Hiromura, M.; Reddy, E.P.; Fukuma, T.; Horikoshi, N. Identification and characterization of a cell division-regulating kinase akb1 (associated kinase of trypanosoma brucei 14-3-3) through proteomics study of the tb14-3-3 binding proteins. J. Biochem. 2015, 158, 49–60. [Google Scholar]
- Zeng, Q.Z.; Liu, W.T.; Lu, J.L.; Liu, X.H.; Zhang, Y.F.; Liu, L.X.; Gao, X.J. Ywhaz binds to trim21 but is not involved in trim21-stimulated osteosarcoma cell proliferation. Biomed. Environ. Sci. 2018, 31, 186–196. [Google Scholar]
- Yang, X.; Zou, P.; Yao, J.; Yun, D.; Bao, H.; Du, R.; Long, J.; Chen, X. Proteomic dissection of cell type-specific h2ax-interacting protein complex associated with hepatocellular carcinoma. J. Proteome Res. 2010, 9, 1402–1415. [Google Scholar]
- Li, F.Q.; Mofunanya, A.; Harris, K.; Takemaru, K. Chibby cooperates with 14-3-3 to regulate beta-catenin subcellular distribution and signaling activity. J. Cell Biol. 2008, 181, 1141–1154. [Google Scholar]
- Kumar, M.; Matta, A.; Masui, O.; Srivastava, G.; Kaur, J.; Thakar, A.; Shukla, N.K.; RoyChoudhury, A.; Sharma, M.; Walfish, P.G.; et al. Nuclear heterogeneous nuclear ribonucleoprotein d is associated with poor prognosis and interactome analysis reveals its novel binding partners in oral cancer. J. Transl. Med. 2015, 13, 285. [Google Scholar]
- Pennington, K.L.; Chan, T.Y.; Torres, M.P.; Andersen, J.L. The dynamic and stress-adaptive signaling hub of 14-3-3: Emerging mechanisms of regulation and context-dependent protein-protein interactions. Oncogene 2018, 37, 5587–5604. [Google Scholar]
- Holman, G.D.; Sakamoto, K. Regulating the motor for glut4 vesicle traffic. Cell Metab. 2008, 8, 344–346. [Google Scholar]
- Yip, M.F.; Ramm, G.; Larance, M.; Hoehn, K.L.; Wagner, M.C.; Guilhaus, M.; James, D.E. Camkii-mediated phosphorylation of the myosin motor myo1c is required for insulin-stimulated glut4 translocation in adipocytes. Cell Metab. 2008, 8, 384–398. [Google Scholar]
- Tang, Y.; Liu, S.; Li, N.; Guo, W.; Shi, J.; Yu, H.; Zhang, L.; Wang, K.; Liu, S.; Cheng, S. 14-3-3zeta promotes hepatocellular carcinoma venous metastasis by modulating hypoxia-inducible factor-1alpha. Oncotarget 2016, 7, 15854–15867. [Google Scholar]
- Tang, Y.; Lv, P.; Sun, Z.; Han, L.; Luo, B.; Zhou, W. 14-3-3zeta up-regulates hypoxia-inducible factor-1alpha in hepatocellular carcinoma via activation of pi3k/akt/nf-small ka, cyrillicb signal transduction pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 15845–15853. [Google Scholar]
- Noguchi, T.; Takeda, K.; Matsuzawa, A.; Saegusa, K.; Nakano, H.; Gohda, J.; Inoue, J.; Ichijo, H. Recruitment of tumor necrosis factor receptor-associated factor family proteins to apoptosis signal-regulating kinase 1 signalosome is essential for oxidative stress-induced cell death. J. Biol. Chem. 2005, 280, 37033–37040. [Google Scholar]
- Papa, L.; Hahn, M.; Marsh, E.L.; Evans, B.S.; Germain, D. Sod2 to sod1 switch in breast cancer. J. Biol. Chem. 2014, 289, 5412–5416. [Google Scholar]
- Schindler, C.K.; Heverin, M.; Henshall, D.C. Isoform- and subcellular fraction-specific differences in hippocampal 14-3-3 levels following experimentally evoked seizures and in human temporal lobe epilepsy. J. Neurochem. 2006, 99, 561–569. [Google Scholar]
- Aghazadeh, Y.; Papadopoulos, V. The role of the 14-3-3 protein family in health, disease, and drug development. Drug Discov. Today 2016, 21, 278–287. [Google Scholar]
- Zhao, J.; Meyerkord, C.L.; Du, Y.; Khuri, F.R.; Fu, H. 14-3-3 proteins as potential therapeutic targets. Semin. Cell Dev. Biol. 2011, 22, 705–712. [Google Scholar]
- Hong, L.; Chen, W.; Xing, A.; Wu, D.; Wang, S. Inhibition of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (ywhaz) overcomes drug resistance and tumorigenicity in ovarian cancer. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 49, 53–64. [Google Scholar]
- Dal Lin, C.; Tona, F.; Osto, E. The heart as a psychoneuroendocrine and immunoregulatory organ. Adv. Exp. Med. Biol. 2018, 1065, 225–239. [Google Scholar]
- Dal Lin, C.; Tona, F.; Osto, E. Coronary microvascular function and beyond: The crosstalk between hormones, cytokines, and neurotransmitters. Int. J. Endocrinol. 2015, 2015, 312848. [Google Scholar]
- Mazzeo, A.T.; Micalizzi, A.; Mascia, L.; Scicolone, A.; Siracusano, L. Brain-heart crosstalk: The many faces of stress-related cardiomyopathy syndromes in anaesthesia and intensive care. Br. J. Anaesth. 2014, 112, 803–815. [Google Scholar]
- Stohr, E.J.; McDonnell, B.J.; Colombo, P.C.; Willey, J.Z. Crosstalk proposal: Blood flow pulsatility in left ventricular assist device patients is essential to maintain normal brain physiology. J. Physiol. 2019, 597, 353–356. [Google Scholar]
- Gurusamy, N.; Watanabe, K.; Ma, M.; Zhang, S.; Muslin, A.J.; Kodama, M.; Aizawa, Y. Dominant negative 14-3-3 promotes cardiomyocyte apoptosis in early stage of type i diabetes mellitus through activation of jnk. Biochem. Biophys. Res. Commun. 2004, 320, 773–780. [Google Scholar]
- Gurusamy, N.; Watanabe, K.; Ma, M.; Prakash, P.; Hirabayashi, K.; Zhang, S.; Muslin, A.J.; Kodama, M.; Aizawa, Y. Glycogen synthase kinase 3beta together with 14-3-3 protein regulates diabetic cardiomyopathy: Effect of losartan and tempol. FEBS Lett. 2006, 580, 1932–1940. [Google Scholar]
- Sreedhar, R.; Arumugam, S.; Thandavarayan, R.A.; Karuppagounder, V.; Koga, Y.; Nakamura, T.; Harima, M.; Watanabe, K. Role of 14-3-3eta protein on cardiac fatty acid metabolism and macrophage polarization after high fat diet induced type 2 diabetes mellitus. Int. J. Biochem. Cell Biol. 2017, 88, 92–99. [Google Scholar]
- Thandavarayan, R.A.; Watanabe, K.; Ma, M.; Veeraveedu, P.T.; Gurusamy, N.; Palaniyandi, S.S.; Zhang, S.; Muslin, A.J.; Kodama, M.; Aizawa, Y. 14-3-3 protein regulates ask1 signaling and protects against diabetic cardiomyopathy. Biochem. Pharmacol. 2008, 75, 1797–1806. [Google Scholar]
- Menzel, J.; Kownatzki-Danger, D.; Tokar, S.; Ballone, A.; Unthan-Fechner, K.; Kilisch, M.; Lenz, C.; Urlaub, H.; Mori, M.; Ottmann, C.; et al. 14-3-3 binding creates a memory of kinase action by stabilizing the modified state of phospholamban. Sci. Signal. 2020, 13, eaaz1436. [Google Scholar]
- He, T.; Huang, J.; Chen, L.; Han, G.; Stanmore, D.; Krebs-Haupenthal, J.; Avkiran, M.; Hagenmüller, M.; Backs, J. Cyclic amp represses pathological mef2 activation by myocyte-specific hypo-phosphorylation of hdac5. J. Mol. Cell. Cardiol. 2020, 145, 88–98. [Google Scholar]
- Cockcroft, S.; Garner, K. 14-3-3 protein and atrap bind to the soluble class iib phosphatidylinositol transfer protein rdgbβ at distinct sites. Biochem. Soc. Trans. 2012, 40, 451–456. [Google Scholar]
- Ravera, A.; Carubelli, V.; Sciatti, E.; Bonadei, I.; Gorga, E.; Cani, D.; Vizzardi, E.; Metra, M.; Lombardi, C. Nutrition and cardiovascular disease: Finding the perfect recipe for cardiovascular health. Nutrients 2016, 8, 363. [Google Scholar]
- Sankaralingam, S.; Lopaschuk, G.D. Cardiac energy metabolic alterations in pressure overload-induced left and right heart failure (2013 grover conference series). Pulm. Circ. 2015, 5, 15–28. [Google Scholar]
- Wheeler-Jones, C.P. Cell signalling in the cardiovascular system: An overview. Heart (Br. Card. Soc.) 2005, 91, 1366–1374. [Google Scholar]
- Song, M.; Matkovich, S.J.; Zhang, Y.; Hammer, D.J.; Dorn, G.W., 2nd. Combined cardiomyocyte pkcdelta and pkcepsilon gene deletion uncovers their central role in restraining developmental and reactive heart growth. Sci. Signal. 2015, 8, ra39. [Google Scholar]
- Geiger, T.; Velic, A.; Macek, B.; Lundberg, E.; Kampf, C.; Nagaraj, N.; Uhlen, M.; Cox, J.; Mann, M. Initial quantitative proteomic map of 28 mouse tissues using the silac mouse. Mol. Cell. Proteom. MCP 2013, 12, 1709–1722. [Google Scholar]
- Pham, T.V.; Jimenez, C.R. An accurate paired sample test for count data. Bioinformatics 2012, 28, i596–i602. [Google Scholar]
- Pham, T.V.; Piersma, S.R.; Warmoes, M.; Jimenez, C.R. On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics. Bioinformatics 2009, 26, 363–369. [Google Scholar]
- Choi, H.; Fermin, D.; Nesvizhskii, A.I. Significance analysis of spectral count data in label-free shotgun proteomics. Mol. Cell. Proteom. MCP 2008, 7, 2373–2385. [Google Scholar]
- Zhou, Y.Y.; Wang, S.Q.; Zhu, W.Z.; Chruscinski, A.; Kobilka, B.K.; Ziman, B.; Wang, S.; Lakatta, E.G.; Cheng, H.; Xiao, R.P. Culture and adenoviral infection of adult mouse cardiac myocytes: Methods for cellular genetic physiology. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H429–H436. [Google Scholar]
- Tinti, M.; Johnson, C.; Toth, R.; Ferrier, D.E.; Mackintosh, C. Evolution of signal multiplexing by 14-3-3-binding 2r-ohnologue protein families in the vertebrates. Open Biol. 2012, 2, 120103. [Google Scholar]
- Tinti, M.; Madeira, F.; Murugesan, G.; Hoxhaj, G.; Toth, R.; Mackintosh, C. Ania: Annotation and integrated analysis of the 14-3-3 interactome. Database 2014, 2014, bat085. [Google Scholar]
- Huttlin, E.L.; Bruckner, R.J.; Navarrete-Perea, J.; Cannon, J.R.; Baltier, K.; Gebreab, F.; Gygi, M.P.; Thornock, A.; Zarraga, G.; Tam, S.; et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 2021, 184, 3022–3040.e3028. [Google Scholar]
- Madeira, F.; Tinti, M.; Murugesan, G.; Berrett, E.; Stafford, M.; Toth, R.; Cole, C.; MacKintosh, C.; Barton, G.J. 14-3-3-pred: Improved methods to predict 14-3-3-binding phosphopeptides. Bioinformatics 2015, 31, 2276–2283. [Google Scholar]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. String v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. Clusterprofiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar]
- Supek, F.; Bosnjak, M.; Skunca, N.; Smuc, T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar]
- Pesquita, C.; Faria, D.; Falcao, A.O.; Lord, P.; Couto, F.M. Semantic similarity in biomedical ontologies. PLoS Comput. Biol. 2009, 5, e1000443. [Google Scholar]
- Schlicker, A.; Domingues, F.S.; Rahnenführer, J.; Lengauer, T. A new measure for functional similarity of gene products based on gene ontology. BMC Bioinform. 2006, 7, 302. [Google Scholar]
- Kramer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar]
- Smith, A.C.; Robinson, A.J. Mitominer v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res. 2016, 44, D1258–D1261. [Google Scholar]
- Calvo, S.E.; Clauser, K.R.; Mootha, V.K. Mitocarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2016, 44, D1251–D1257. [Google Scholar]
- Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex i disease biology. Cell 2008, 134, 112–123. [Google Scholar]
- Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 2019, 47, D330–D338. [Google Scholar]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar]
- Carbon, S.; Ireland, A.; Mungall, C.J.; Shu, S.; Marshall, B.; Lewis, S. Amigo: Online access to ontology and annotation data. Bioinformatics 2009, 25, 288–289. [Google Scholar]
- Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009, 19, 1639–1645. [Google Scholar]
- Yaffe, M.B.; Rittinger, K.; Volinia, S.; Caron, P.R.; Aitken, A.; Leffers, H.; Gamblin, S.J.; Smerdon, S.J.; Cantley, L.C. The structural basis for 14-3-3:Phosphopeptide binding specificity. Cell 1997, 91, 961–971. [Google Scholar]
- Rittinger, K.; Budman, J.; Xu, J.; Volinia, S.; Cantley, L.C.; Smerdon, S.J.; Gamblin, S.J.; Yaffe, M.B. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol. Cell 1999, 4, 153–166. [Google Scholar]
- Obsil, T.; Ghirlando, R.; Klein, D.C.; Ganguly, S.; Dyda, F. Crystal structure of the 14-3-3zeta:Serotonin n-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell 2001, 105, 257–267. [Google Scholar]
- Luo, M.; Ma, W.; Sand, Z.; Finlayson, J.; Wang, T.; Brinton, R.D.; Willis, W.T.; Mandarino, L.J. Von willebrand factor a domain-containing protein 8 (vwa8) localizes to the matrix side of the inner mitochondrial membrane. Biochem. Biophys. Res. Commun. 2020, 521, 158–163. [Google Scholar]
- Hager, P.W.; Collart, F.R.; Huberman, E.; Mitchell, B.S. Recombinant human inosine monophosphate dehydrogenase type i and type ii proteins. Purification and characterization of inhibitor binding. Biochem. Pharmacol. 1995, 49, 1323–1329. [Google Scholar]
- Carr, S.F.; Papp, E.; Wu, J.C.; Natsumeda, Y. Characterization of human type i and type ii imp dehydrogenases. J. Biol. Chem. 1993, 268, 27286–27290. [Google Scholar]
- McLean, J.E.; Hamaguchi, N.; Belenky, P.; Mortimer, S.E.; Stanton, M.; Hedstrom, L. Inosine 5′-monophosphate dehydrogenase binds nucleic acids in vitro and in vivo. Biochem. J. 2004, 379, 243–251. [Google Scholar]
- Walker, J.R.; Corpina, R.A.; Goldberg, J. Structure of the ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 2001, 412, 607–614. [Google Scholar]
- Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 2009, 458, 422–429. [Google Scholar]
- Boullerne, A.I. The history of myelin. Exp. Neurol. 2016, 283, 431–445. [Google Scholar]
- Salzer, J.L.; Zalc, B. Myelination. Curr. Biol. CB 2016, 26, R971–R975. [Google Scholar]
- Larsen, T.H.; Hesketh, J.E.; Rotevatn, S.; Greve, G.; Saetersdal, T. Ribosome distribution in normal and infarcted rat hearts. Histochem. J. 1994, 26, 79–89. [Google Scholar]
- Boncompagni, S.; Rossi, A.E.; Micaroni, M.; Beznoussenko, G.V.; Polishchuk, R.S.; Dirksen, R.T.; Protasi, F. Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol. Biol. Cell 2009, 20, 1058–1067. [Google Scholar]
- Vilardo, E.; Rossmanith, W. Molecular insights into hsd10 disease: Impact of sdr5c1 mutations on the human mitochondrial rnase p complex. Nucleic Acids Res. 2015, 43, 5112–5119. [Google Scholar]
- Falk, M.J.; Gai, X.; Shigematsu, M.; Vilardo, E.; Takase, R.; McCormick, E.; Christian, T.; Place, E.; Pierce, E.A.; Consugar, M.; et al. A novel hsd17b10 mutation impairing the activities of the mitochondrial rnase p complex causes x-linked intractable epilepsy and neurodevelopmental regression. RNA Biol. 2016, 13, 477–485. [Google Scholar]
- Oerum, S.; Roovers, M.; Leichsenring, M.; Acquaviva-Bourdain, C.; Beermann, F.; Gemperle-Britschgi, C.; Fouilhoux, A.; Korwitz-Reichelt, A.; Bailey, H.J.; Droogmans, L.; et al. Novel patient missense mutations in the hsd17b10 gene affect dehydrogenase and mitochondrial trna modification functions of the encoded protein. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 3294–3302. [Google Scholar]
- Rauschenberger, K.; Schöler, K.; Sass, J.O.; Sauer, S.; Djuric, Z.; Rumig, C.; Wolf, N.I.; Okun, J.G.; Kölker, S.; Schwarz, H.; et al. A non-enzymatic function of 17beta-hydroxysteroid dehydrogenase type 10 is required for mitochondrial integrity and cell survival. EMBO Mol. Med. 2010, 2, 51–62. [Google Scholar]
- Tang, S.; Bao, H.; Zhang, Y.; Yao, J.; Yang, P.; Chen, X. 14-3-3ε mediates the cell fate decision-making pathways in response of hepatocellular carcinoma to bleomycin-induced DNA damage. PLoS ONE 2013, 8, e55268. [Google Scholar]
- Rodríguez-Nuevo, A.; Torres-Sanchez, A.; Duran, J.M.; De Guirior, C.; Martínez-Zamora, M.A.; Böke, E. Oocytes maintain ros-free mitochondrial metabolism by suppressing complex i. Nature 2022, 607, 756–761. [Google Scholar]
- Lindqvist, L.M.; Tandoc, K.; Topisirovic, I.; Furic, L. Cross-talk between protein synthesis, energy metabolism and autophagy in cancer. Curr. Opin. Genet. Dev. 2018, 48, 104–111. [Google Scholar]
- Wilker, E.W.; van Vugt, M.A.; Artim, S.A.; Huang, P.H.; Petersen, C.P.; Reinhardt, H.C.; Feng, Y.; Sharp, P.A.; Sonenberg, N.; White, F.M.; et al. 14-3-3sigma controls mitotic translation to facilitate cytokinesis. Nature 2007, 446, 329–332. [Google Scholar]
- Kafri, M.; Metzl-Raz, E.; Jona, G.; Barkai, N. The cost of protein production. Cell Rep. 2016, 14, 22–31. [Google Scholar]
- Puri, P.; Acker-Palmer, A.; Stahler, R.; Chen, Y.; Kline, D.; Vijayaraghavan, S. Identification of testis 14-3-3 binding proteins by tandem affinity purification. Spermatogenesis 2011, 1, 354–365. [Google Scholar]
- Mouchiroud, L.; Houtkooper, R.H.; Moullan, N.; Katsyuba, E.; Ryu, D.; Canto, C.; Mottis, A.; Jo, Y.S.; Viswanathan, M.; Schoonjans, K.; et al. The nad(+)/sirtuin pathway modulates longevity through activation of mitochondrial upr and foxo signaling. Cell 2013, 154, 430–441. [Google Scholar]
- Zhang, R.; Wang, X.; Qu, J.H.; Liu, B.; Zhang, P.; Zhang, T.; Fan, P.C.; Wang, X.M.; Xiao, G.Y.; Su, Y.; et al. Caloric restriction induces micrornas to improve mitochondrial proteostasis. iScience 2019, 17, 155–166. [Google Scholar]
- Branon, T.C.; Bosch, J.A.; Sanchez, A.D.; Udeshi, N.D.; Svinkina, T.; Carr, S.A.; Feldman, J.L.; Perrimon, N.; Ting, A.Y. Efficient proximity labeling in living cells and organisms with turboid. Nat. Biotechnol. 2018, 36, 880–887. [Google Scholar]
- Fernández-Orth, J.; Ehling, P.; Ruck, T.; Pankratz, S.; Hofmann, M.S.; Landgraf, P.; Dieterich, D.C.; Smalla, K.H.; Kähne, T.; Seebohm, G.; et al. 14-3-3 proteins regulate k(2p) 5.1 surface expression on t lymphocytes. Traffic 2017, 18, 29–43. [Google Scholar]
- Corradi, V.; Mancini, M.; Santucci, M.A.; Carlomagno, T.; Sanfelice, D.; Mori, M.; Vignaroli, G.; Falchi, F.; Manetti, F.; Radi, M.; et al. Computational techniques are valuable tools for the discovery of protein-protein interaction inhibitors: The 14-3-3σ case. Bioorg. Med. Chem. Lett. 2011, 21, 6867–6871. [Google Scholar]
- Waløen, K.; Jung-Kc, K.; Vecchia, E.D.; Pandey, S.; Gasparik, N.; Døskeland, A.; Patil, S.; Kleppe, R.; Hritz, J.; Norton, W.H.J.; et al. Cysteine modification by ebselen reduces the stability and cellular levels of 14-3-3 proteins. Mol. Pharmacol. 2021, 100, 155–169. [Google Scholar]
- Iralde-Lorente, L.; Cau, Y.; Clementi, L.; Franci, L.; Tassone, G.; Valensin, D.; Mori, M.; Angelucci, A.; Chiariello, M.; Botta, M. Chemically stable inhibitors of 14-3-3 protein-protein interactions derived from bv02. J. Enzyme Inhib. Med. Chem. 2019, 34, 657–664. [Google Scholar]
- Bellamy-Carter, J.; Mohata, M.; Falcicchio, M.; Basran, J.; Higuchi, Y.; Doveston, R.G.; Leney, A.C. Discovering protein-protein interaction stabilisers by native mass spectrometry. Chem. Sci. 2021, 12, 10724–10731. [Google Scholar]
- Cossar, P.J.; Wolter, M.; van Dijck, L.; Valenti, D.; Levy, L.M.; Ottmann, C.; Brunsveld, L. Reversible covalent imine-tethering for selective stabilization of 14-3-3 hub protein interactions. J. Am. Chem. Soc. 2021, 143, 8454–8464. [Google Scholar]
- Brink, H.J.; Riemens, R.; Thee, S.; Beishuizen, B.; da Costa Pereira, D.; Wijtmans, M.; de Esch, I.; Smit, M.J.; de Boer, A.H. Fragment screening yields a small-molecule stabilizer of 14-3-3 dimers that modulates client protein interactions. ChemBioChem 2022, 23, e202200178. [Google Scholar]
- Hartman, A.M.; Elgaher, W.A.M.; Hertrich, N.; Andrei, S.A.; Ottmann, C.; Hirsch, A.K.H. Discovery of small-molecule stabilizers of 14-3-3 protein-protein interactions via dynamic combinatorial chemistry. ACS Med. Chem. Lett. 2020, 11, 1041–1046. [Google Scholar]
- Stevers, L.M.; Sijbesma, E.; Botta, M.; MacKintosh, C.; Obsil, T.; Landrieu, I.; Cau, Y.; Wilson, A.J.; Karawajczyk, A.; Eickhoff, J.; et al. Modulators of 14-3-3 protein-protein interactions. J. Med. Chem. 2018, 61, 3755–3778. [Google Scholar]
- Bartel, M.; Schäfer, A.; Stevers, L.M.; Ottmann, C. Small molecules, peptides and natural products: Getting a grip on 14-3-3 protein-protein modulation. Future Med. Chem. 2014, 6, 903–921. [Google Scholar]
- Yue, F.; Cheng, Y.; Breschi, A.; Vierstra, J.; Wu, W.; Ryba, T.; Sandstrom, R.; Samantha, K.; Davis, C.; Pope, B.D.; et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 2014, 515, 355–364. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, J.-H.; Tarasov, K.V.; Chakir, K.; Tarasova, Y.S.; Riordon, D.R.; Lakatta, E.G. Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome. Cells 2022, 11, 3496. https://doi.org/10.3390/cells11213496
Qu J-H, Tarasov KV, Chakir K, Tarasova YS, Riordon DR, Lakatta EG. Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome. Cells. 2022; 11(21):3496. https://doi.org/10.3390/cells11213496
Chicago/Turabian StyleQu, Jia-Hua, Kirill V. Tarasov, Khalid Chakir, Yelena S. Tarasova, Daniel R. Riordon, and Edward G. Lakatta. 2022. "Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome" Cells 11, no. 21: 3496. https://doi.org/10.3390/cells11213496
APA StyleQu, J. -H., Tarasov, K. V., Chakir, K., Tarasova, Y. S., Riordon, D. R., & Lakatta, E. G. (2022). Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome. Cells, 11(21), 3496. https://doi.org/10.3390/cells11213496