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Abstract: The heart reacts to a large number of pathological stimuli through cardiac hypertrophy,
which finally can lead to heart failure. However, the molecular mechanisms of cardiac hypertrophy
remain elusive. Actin participates in the formation of highly differentiated myofibrils under the
regulation of actin-binding proteins (ABPs), which provides a structural basis for the contractile
function and morphological change in cardiomyocytes. Previous studies have shown that the
functional abnormality of ABPs can contribute to cardiac hypertrophy. Here, we review the function
of various actin-binding proteins associated with the development of cardiac hypertrophy, which
provides more references for the prevention and treatment of cardiomyopathy.
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1. Introduction

Heart failure is one of the leading causes of morbidity and mortality globally [1].
Cardiac hypertrophy is the early pathological structural feature of heart failure and is
usually observed in hypertension, aortic stenosis, diabetic cardiomyopathy and other car-
diovascular diseases. Pathological cardiac hypertrophy is initially identified by a decrease
in ventricular chamber size with an increase in wall thickness (concentric hypertrophy),
in which the thickness of cardiomyocytes is usually increased. Pathological cardiac hy-
pertrophy induces ventricular chamber dilatation (eccentric hypertrophy) accompanied
by impaired systolic function (maladaptive remodeling) and lengthening of cardiomy-
ocytes [2]. It is characterized by enhanced fibrosis, enlarged cardiomyocytes, cell death,
mitochondrial dysfunction, oxidative stress, reactivation of fetal gene expression and dys-
regulation of Ca2+-handling proteins (Figure 1), which result from various mechanical
stresses, genetic stimuli and neurohumoral mechanisms [2–4].
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The research into the molecular mechanism of cardiac hypertrophy plays an important
role in the prevention and treatment of cardiomyopathy, which has received growing
attention in recent years. The E3 ligase tripartite motif-containing protein 16, for example,
was found to effectively restrain the development of cardiac hypertrophy via mitigation
of oxidative stress in cardiomyocytes [5]. Neuraminidase 1, also known as sialidases,
can promote cardiac hypertrophy by reactivating the expression of fetal genes [6]. The
histidine triad nucleotide-binding protein 1 attenuates cardiac hypertrophy via suppressing
the TGF-β signaling pathway [7]. Despite numerous previous studies on cardiomyocyte
morphogenesis, this notable process of cardiac hypertrophy remains poorly understood.

It has been shown that cell morphogenesis is closely linked to the microfilament
cytoskeleton [8]. The microfilament cytoskeleton is mainly composed of actin and actin-
binding proteins (ABPs). Actin is one of the most abundant cytoskeletal proteins in eu-
karyotes and is involved in cell morphology change, migration, division and other cellular
processes [9,10]. Actin takes two forms in cells: actin monomers (also known as globu-
lar actin, G-actin) and actin filaments (also known as filamentous actin, F-actin). Actin
dynamics are finely regulated by a variety of ABPs (Table 1) [11]. Actin is involved in
the formation of sarcomeres in cardiomyocytes [12]. The straight and uniform sarcomeric
F-actin is critical for the contractile function of muscle [13]. In addition, actin assembly
is thought to be related with autophagy [14,15]. The inhibition of F-actin disassembly
can suppress autophagosome formation [16]. Several studies have found that F-actin is
significantly accumulated abnormally in hypertrophic cardiomyocytes [17–19]. The dys-
regulation of F-actin accumulation may lead to cardiac hypertrophy through disrupting
autophagy and sarcomeric structure. The function of ABPs in the development of cardiac
hypertrophy has been gradually elucidated. Based on this, we briefly review the recent
research progress on the various ABPs associated with cardiac hypertrophy, which has
provided new strategies and targets for treating and reversing pathological hypertrophy.

Table 1. Actin-binding proteins.

Types ABPs Basic Function Refs.

G-actin-binding Profilin, thymosin β4,
cofilin Bound to G-actin [11,20,21]

F-actin-binding Dystrophin,
tropomyosin Bound to F-actin [9,11,22]

Actin-nucleating

Formin, Arp2/3
complex, proteins
with tandem WH2

domains, leiomodin

Nucleation to initiate
actin polymerization [11,23–25]

Actin-elongating Formin, tetramers of
Ena/VASP

Regulation of actin
assembly [11,24]

Actin-bundling Fimbrin/Plastin,
hhLIM, gelsolin

Causes parallel
F-actin filaments to

closely pack together
[26–29]

Severing
ADF/cofilin, gelsolin,

twinfilin, FRL-α,
INF-2

Severs F-actin [30–34]

Capping
Twinfilin, gelsolin,

tropomodulin, CapZ,
Arp2/3 complex

Caps F-actin to inhibit
actin polymerization [11,35–37]

Motor Myosin Cargo transfer [38]

2. ABPs in Cardiac Hypertrophy
2.1. Profilin-1

Profilin is widely expressed in most eukaryotes and has a molecular weight of about
17 kDa [39]. There are various profilin isoforms expressed in different tissues. Profilin-1
is universally expressed, profilin-2 is specifically expressed in the brain and profilin-3
and profilin-4 are specifically expressed in kidney and testis, respectively [40]. Profilin
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accelerates the nucleotide exchange of G-actin and delivers ATP-G-actin to the grow-
ing barbed ends of F-actin through interacting with the poly-proline motifs of formin,
vasodilator-stimulated phosphoprotein (VASP) and CDC42-activated Wiskott Aldrich syn-
drome protein (WASP)/WASP family [20,41–43].

Profilin-1 is directly associated with cardiac hypertrophy [44]. Overexpression of
profilin-1 in the vascular tissues of FVB/N mice leads to vascular remodeling and hyperten-
sion by increasing actin aggregation, which provides mechanical stress for the development
of cardiac hypertrophy [45,46]. It has been shown that the protein level of profilin-1 is sig-
nificantly increased in mammalian hypertrophic hearts (Figure 2). The myocardin-related
transcription factor megakaryoblastic leukemia (MKL) induces the expression of the signal
transducer and activator of transcription 1 (STAT1) via its SAP-domain (SAF-A/B, acinus
and PIAS protein domain) activity, which upregulates PFN expression [47]. Whether this is
the explanation for the increased protein level of profilin in cardiac hypertrophy remains to
be investigated. In cardiomyocytes, the functional abnormality of profilin-1 can change the
abundance or activity of multiple proteins associated with cardiomyopathy. For example,
the overexpression of profilin-1 can contribute to decreases in the phosphorylation level
of endothelial nitric oxide synthases (eNOS) at Ser1177 in the hearts of spontaneous hy-
pertensive rats [17]. Levels of atrial natriuretic peptide (ANP), brain natriuretic peptide
(BNP), skeletal muscle α-actin (α-SMA) and phosphorylated ERK1/2 (active form) were
significantly increased in neonatal rat ventricular myocytes (NRVMs) following stimulation
by phenylephrine or endothelin 1, which can be inhibited by siRNA-directed PFN1 silenc-
ing [44]. Increased phosphorylation of ERK1/2 activates the mechanistic (mammalian)
target of rapamycin complex 1 (mTORC1) that subsequently inhibits autophagy [48–50]. It
may be a potential key mechanism of cardiac hypertrophy mediated by the dysregulation
of profilin-1 (Figure 2). Additionally, the inhibition of Rho-associated coiled-coil-containing
protein kinase pathway (ROCK) can suppress the upregulation of profilin-1 induced by
advanced glycation end products (AEGs) in H9c2 cells [51]. By comparison, overexpression
of PFN1 results in the reactivation of fetal genes (NPPA and NPPB), an increase in F-actin
in myocardium and destruction of myofibrils [44]. These processes can be reversed by
inhibiting the expression of profilin-1 [17]. The inhibition of profilin-1 expression in H9c2
cells and Sprague–Dawley rats can attenuate cardiac hypertrophy induced by AEGs [51,52].
In Drosophila, myocyte-specific overexpression of profilin leads to disorders in muscle fibers
and sarcomeres, which result in damaged muscle ultrastructure and function [44].

2.2. ADF/Cofilin

Actin-depolymerizing factor (ADF)/cofilin consists of a single ADF homologous
domain and has a molecular weight of about 15 kDa. The ADF/cofilin family contains
ADF (also known as destrin, mainly expressed in endothelial and epithelial cells) and two
cofilin isoforms (cofilin-1 is universal and cofilin-2 is cardio-specific) [53,54]. ADF/cofilin
can bind to both G-actin and F-actin and can sever and depolymerize F-actin in regulating
actin dynamics, which contributes to the cell contractility power [55]. The activity of
cofilin is regulated by phosphorylation primarily from the ROCK/Lin-11, Isl1 and MEC-3
domain kinase (LIMK)/cofilin signaling pathway (Figure 3) [56,57]. Cofilin is inactivated
via phosphorylation.

The abundance change in cofilin-2 does not play a role in the morphogenesis of neona-
tal rat cardiomyocytes [58], while its activity is closely associated with the development of
cardiac hypertrophy. The levels of phosphorylated cofilin-2 are increased in myocardial
hypertrophy through the activation of LIM-kinase (LIMK) by ROCK, which is induced
by multiple neurohumoral factors, such as angiotensin II [59,60], endothelin 1 [19] and
leptin [18,61]. In hypertrophic cardiomyocytes, the increase in levels of phosphorylated
cofilin-2 results in an increase in F-actin/G-actin ratios and the levels of phosphorylated
ERK1/2 and p38 [19,61–64]. Y-27632 [19], an inhibitor of ROCK, can reduce the levels
of phosphorylated cofilin-2 through the inhibition of ROCK activity, which attenuates
endothelin-1-induced neonatal cardiomyocyte hypertrophy, whereas this is achieved in
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ginseng (Panax quinquefolius) [62] through inhibition of p115Rho guanine nucleotide ex-
change factor (GEF) activity, which inhibits leptin-induced cardiac hypertrophy. In addition,
WD-repeat domain 1 (WDR1), a major cofactor of the ADF/cofilin, has been reported to
protect myocardium from myocardial hypertrophic stimuli [13].
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Figure 2. Profilin-1 mediates cardiac hypertrophy. In normal cardiomyocytes, profilin-1 is at a
basal level and the fetal genes are not activated. Pathological stimuli increase the protein level of
profilin-1, which results in ERK1/2 activation, F-actin accumulation and eNOS inhibition. This results
in the reactivation of hypertrophy-related genes, inhibition of autophagy and damage to sarcomere
structure and, ultimately, the development of cardiac hypertrophy.

Cells 2022, 11, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 3. Proposed roles of cofilin-2 in cardiac hypertrophy. Neurohumoral factors (e.g., Ang II, 

ET 1 and leptin) lead to cofilin-2 phosphorylation through the RhoA/ROCK/LIMK signaling path-

way. Phosphorylated cofilin-2 can lead to F-actin accumulation, which may subsequently contribute 

to cardiac hypertrophy through disrupting autophagy. In addition, it promotes the activation of 

ERK1/2 and p38, which contributes to the inhibition of autophagy and the reactivation of hypertro-

phy-related genes, which subsequently cause cardiac hypertrophy. 

2.3. Formin 

Formin is a type of multidomain protein consisting of 7 subfamilies and 15 members 

in human genes. Formins are characterized by the presence of two conserved domains: 

formin homology 1 (FH1) and FH2. FH1 binds to the profilin–actin complex via poly-pro-

line sequences and brings the G-actin to FH2, which promotes actin nucleation and 

polymerization [11,65]. 

2.3.1. mDia1 

mDia1 (mammalian homologue of Drosophila diaphanous 1) is an important member 

of the formin family. The intramolecular interaction between the N-terminal FH3 and C-

terminal diaphanous autoregulatory domain (DAD) can induce mDia1 autoinhibition. 

Activation occurs when its N-terminal GTPase-binding domain (GBD) interacts with ac-

tive Rho or Rac (Figure 4) [24,66].  

Self-oligomerization of the mDia1 FH2 domain is essential for activation of serum 

response factor (SRF), which may function in the induction of cardiac responses to pres-

sure overload [67,68]. Myocardial hypertrophy induced by the transverse aortic con-

striction (TAC) was attenuated in mDia1 knockout mice. The mDia1KO mice exhibited 

more severe dilation, fibrosis and higher mortality [68]. The molecular mechanism 

through which mDia1 regulates cardiac hypertrophy remains unclear and requires eluci-

dation through further research. 

    

   

    

   

      

    

    

         

                      

       

                 

                   
                         

            

   

       

   
 

         

  

      
 

       

         

      
 

Figure 3. Proposed roles of cofilin-2 in cardiac hypertrophy. Neurohumoral factors (e.g., Ang II, ET
1 and leptin) lead to cofilin-2 phosphorylation through the RhoA/ROCK/LIMK signaling pathway.
Phosphorylated cofilin-2 can lead to F-actin accumulation, which may subsequently contribute to
cardiac hypertrophy through disrupting autophagy. In addition, it promotes the activation of ERK1/2
and p38, which contributes to the inhibition of autophagy and the reactivation of hypertrophy-related
genes, which subsequently cause cardiac hypertrophy.
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2.3. Formin

Formin is a type of multidomain protein consisting of 7 subfamilies and 15 members
in human genes. Formins are characterized by the presence of two conserved domains:
formin homology 1 (FH1) and FH2. FH1 binds to the profilin–actin complex via poly-
proline sequences and brings the G-actin to FH2, which promotes actin nucleation and
polymerization [11,65].

2.3.1. mDia1

mDia1 (mammalian homologue of Drosophila diaphanous 1) is an important member
of the formin family. The intramolecular interaction between the N-terminal FH3 and
C-terminal diaphanous autoregulatory domain (DAD) can induce mDia1 autoinhibition.
Activation occurs when its N-terminal GTPase-binding domain (GBD) interacts with active
Rho or Rac (Figure 4) [24,66].
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Figure 4. Domain structure and activation of mDia1. The interaction between FH3 and DAD causes
mDia1 to remain in a closed and inactive conformation. GTP-loaded Rho can activate mDia1 through
binding to the N-terminal GBD, which causes mDia1 to adopt an open and active form. The illustrated
molecules are not drawn to scale.

Self-oligomerization of the mDia1 FH2 domain is essential for activation of serum
response factor (SRF), which may function in the induction of cardiac responses to pressure
overload [67,68]. Myocardial hypertrophy induced by the transverse aortic constriction
(TAC) was attenuated in mDia1 knockout mice. The mDia1KO mice exhibited more severe
dilation, fibrosis and higher mortality [68]. The molecular mechanism through which
mDia1 regulates cardiac hypertrophy remains unclear and requires elucidation through
further research.

2.3.2. FHOD3

FHOD3 (formin homology 2 domain-containing 3), a member of the formin family,
is highly expressed in skeletal muscle and myocardium [69]. It is located in the thin actin
filaments of the sarcomere and has been verified to be critical for sarcomere assembly,
heart growth, development and functional maintenance [70,71]. The activation of FHOD3
requires the C-terminal phosphorylation induced by ROCK [72].

The expression and phosphorylation of FHOD3 is increased in cardiomyocytes puri-
fied from Angiotensin II-induced rat cardiac hypertrophy models, while the activation of
FHOD3 inhibited by Y27632 attenuates Angiotensin II-induced cardiomyocyte hypertro-
phy [73]. Overexpression of the phosphomimetic mutant FHOD3-DDD results in cardiomy-
ocyte hypertrophy in cultured neonate rat cardiomyocytes [73]. Additionally, FHOD3
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depletion in the neonatal mice heart induces disruption of the sarcomere structure and
leads to lethality [74] while it does not cause any detectable changes in the sarcomere
structure in the adult heart [74]. Furthermore, it was shown that the Fhod3 variant increases
the risk of the clinically apparent hypertrophic cardiomyopathy (HCM) [75].

2.4. CapZ

CapZ, a type of capping protein, anchors F-actin to the Z disc and regulates actin
turnover, which contributes to sarcomere structural changes [76,77]. PIP2, a downstream
effector of RAC1, can promote the dissociation of CapZ from F-actin by weakening their
binding affinity [78–80].

Overexpression of CapZ in transgenic mice can lead to fatal cardiac hypertrophy [77].
It has been shown that hypertrophic agonists, phenylephrine or endothelin can reduce the
binding affinity between CapZ and F-actin via PIP2-dependent pathways in NRVMs [81].
This may result in sarcomere remodeling, which induces cardiac hypertrophy. The cyclic
mechanical strain activates downstream focal adhesion kinase (FAK) via the mechan-
otransduction of integrin, which then activates phosphatidylinositol 4-phosphate 5-kinase
(PIP5K) through the RhoA/ROCK pathway. PIP5K phosphorylates phosphatidylinositol
4-phosphate (PI4P) in order to produce PIP2, which reduces the affinity of CapZ and
F-actin binding, which contributes to the dysregulation of F-actin assembly and cardiac
hypertrophy (Figure 5) [80,82–84].
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Figure 5. CapZ regulates cardiac hypertrophy. Mechanotransduction leads to the activation of
RhoA/Rho-kinase pathway through integrins, which reduce the binding affinity of CapZ and F-actin.
It subsequently causes cardiac hypertrophy.

2.5. Gelsolin

Gelsolin is responsible for F-actin severing, nucleating, bunding or capping [29]. The
activation of gelsolin is regulated by PIP2 and Ca2+ [85,86]. In myocardial hypertrophy,
the protein level of gelsolin is abnormally upregulated [87]. It has been shown that the
phosphorylation of GATA4 is significantly suppressed by siRNA-directed GSN silenc-
ing, which inhibits cardiomyocyte hypertrophy [87]. In addition, decreased gelsolin can
effectively inhibit the reactivation fetal gene (NPPA and NPPB) [88,89] and myocardial
hypertrophy induced by palmitate or phenylephrine [90]. Cardiomyocyte hypertrophy
induced by gelsolin overexpression can be blocked with p38 inhibitors [87]. Myocardial
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hypertrophy caused by left anterior descending coronary artery ligation is ameliorated
in gelsolin knockout mice (GSN−/−) [88]. In addition, caspase cleavage of the gelsolin
fragment plays an important role in cardiac hypertrophy [90].

2.6. Human Heart LIM Protein

Human heart LIM protein (hhLIM), an important member of the LIM family, promotes
NPPA expression by cooperating with cardiac transcription factor Nkx2.5 [91]. hhLIM is a
type of F-actin bundling protein, and its overexpression contributes to cardiac hypertro-
phy [28,92]. Its interaction with the transcription factor may lead to cardiac hypertrophy, but
the molecular mechanism of its mediating cardiac hypertrophy remains elusive. In addition,
several LIM family proteins such as muscle LIM protein (MLP) and LIM domain-binding 3
have also been reported to play important roles in cardiac hypertrophy [93,94].

2.7. Myosin

Myosin, a type of motor proteins, can move along actin filaments and produce con-
tractile force [38]. The expression of MYH7 is upregulated in pathological myocardial
hypertrophy [5,6], while it has no change in physiological hypertrophy [95]. Gene variants
of cardiac myosin including MYH7 and MYH6 are closely linked with HCM and dilated car-
diomyopathy (DCM) [96,97]. Furthermore, a meta-analysis of 7675 HCM patients showed
that HCM patients with MYH7 mutations had an earlier age of onset, resulting in a more
severe phenotype [98]. MYH7 p.Val320Met contributes to the increased risk of sudden
cardiac death of hypertrophic cardiomyopathy [99]. It is worth noting that small molecule
drugs, such as mavacamten and aficamten, targeting myosin have been employed in clinical
trials for treatment of HCM [97,100,101]. However, the molecular mechanism by which the
gene mutation of myosin mediates the cardiac hypertrophy remains unknown.

2.8. Dystrophin

Dystrophin can bind to F-actin through its N-terminal actin-binding domain 1 (ABD1)
and ABD2, which is strengthened by its C-terminal region [22,102]. Duchenne muscular
dystrophy (DMD), closely linked with the altered expression or null mutation of dystrophin
in cardiac and skeletal muscles, are frequently complicated by cardiac hypertrophy and
dilated cardiomyopathy [103,104]. In addition, the transition of compensated cardiac
hypertrophy to heart failure is accompanied by expression decrease in the dystrophin [105].
The rescued dystrophin can prevent and attenuate cardiac hypertrophy in a DMD mouse
model induced by a truncation mutation of dystrophin [106]. Preserving dystrophin can
attenuate hypertensive eccentric cardiac hypertrophy [107]. This suggests that dystrophin
may be an effective therapeutic target.

2.9. Other ABPs

Other ABPs have been reported to associate with cardiovascular diseases. For exam-
ple, the protein level of FHOD1 is significantly increased in DCM [108]. Knockdown of
leiomodin 2, a capping protein, results in shorter filaments, which subsequently leads to
DCM and mortality in infancy [109]. Cyclase-associated protein 2, a protein that regulates
thin filament length by sequestering G-actin and severing F-actin [12], is associated with
cardiomyopathy [110]. Tropomodulin plays an important role in DCM [111]. In addition,
gene mutations of structural components of sarcomeres such as titin, troponin C, troponin
I and troponin T, most commonly involve DCM [97,112]. Determination of the function
and molecular mechanism of ABPs in the development of cardiac hypertrophy requires
further research.

3. Concluding Remarks

Cardiac hypertrophy is a common prepathology of heart failure, which is caused
by multiple pathological stimuli [7]. It is characterized by enlarged cardiac myocytes,
increased fibrosis, reactivation of fetal genes and sarcomere remodeling [4] as a result of
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actin dynamics regulated by ABPs. Therefore, ABPs in cardiomyocytes may be a prospec-
tive therapeutic target for cardiac hypertrophy and heart failure. We briefly summarize
the reported ABPs associated with myocardial hypertrophy in Table 2 for reference in
the design of drugs for cardiomyopathy treatment. In addition, it is worth studying the
molecular mechanism through which other ABPs (Table 1) mediate cardiac hypertrophy,
which provides more choices of the therapeutic targets for cardiomyopathy.

Table 2. Inductive cues for cardiac hypertrophy.

ABPs Function
Protein Synthesis/Phosphorylation

Refs.
Over Expression Knock Down/Out

Profilin-1 Polymerization
ANP, BNP and

α-SMA↑;
p-eNOS↓.

ANP, BNP and
p-ERK1/2↓;
p-eNOS↑.

[17,44,51,52]

Cofilin-2 Severing / / [11]

mDia1 Nucleation /
SRF, MRTF,

pERK1/2 and
pFAK↓

[68,113]

FHOD3 Nucleation / ANP, BNP and
MYH7↑. [69,74]

CapZ Capping / / [77]

Gelsolin Severing,
Capping / ANP and BNP↓. [85,89,114]

hhLIM Bundling / BNP and α-SMA↓. [28,92]
↑ Increased, ↓ decreased, / no reports.
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