Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases
Abstract
:1. Introduction
2. Function and Mechanism of lncRNAs
3. Role of lncRNAs at the Cellular Level
3.1. Role of lncRNAs in Macrophage Polarization
3.2. Regulatory Effects of lncRNAs on Dendritic Cells
3.3. Role of lncRNAs in T Cell-Mediated Inflammation
3.4. Role of lncRNAs in Endothelial Cell Inflammation
3.5. Role of lncRNAs in Epithelial Cell Inflammation
4. Role of lncRNAs in Inflammatory Diseases
4.1. Role of lncRNAs in AKI
4.2. Role of lncRNAs in Hepatic Inflammatory Diseases
4.3. Role of lncRNAs in Inflammatory Lung Injury
4.4. Role of lncRNAs in OA
4.5. Role of lncRNAs in Mastitis
4.6. Role of lncRNAs in Central Nervous System Inflammation
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, X.; Tang, Y.; Hua, S. Immunological approaches towards cancer and inflammation: A Cross Talk. Front. Immunol. 2018, 9, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, L.; Chung, H.; Basu, U. Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat. Rev. Mol. Cell Biol. 2020, 21, 123–136. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Zhang, R.; Li, D.; Gao, M.Q. LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells. Int. J. Biol. Sci. 2020, 16, 251–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.C.; Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011, 43, 904–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wang, H.; Zhang, Y.; Zhang, J.; Qi, S.; Zhang, Y.; Gao, M.Q. Overexpression of lncRNA H19 changes basic characteristics and affects immune response of bovine mammary epithelial cells. PeerJ 2019, 7, e6715. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.L.; Conos, S.A.; Unal, B.; Tergaonkar, V. Noncoding RNAs: Master regulators of inflammatory signaling. Trends Mol. Med. 2018, 24, 66–84. [Google Scholar] [CrossRef]
- Zhu-Ge, D.; Yang, Y.P.; Jiang, Z.J. Knockdown CRNDE alleviates LPS-induced inflammation injury via FOXM1 in WI-38 cells. Biomed. Pharmacother. 2018, 103, 1678–1687. [Google Scholar] [CrossRef]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef] [Green Version]
- Guttman, M.; Amit, I.; Garber, M.; French, C.; Lin, M.F.; Feldser, D.; Huarte, M.; Zuk, O.; Carey, B.W.; Cassady, J.P.; et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009, 458, 223–227. [Google Scholar] [CrossRef]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef]
- Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell 2009, 136, 629–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowling, S.; Morris, K.V. Non-coding RNA and antisense RNA. Nature’s trash or treasure? Biochimie 2011, 93, 1922–1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilusz, J.E.; Sunwoo, H.; Spector, D.L. Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 2009, 23, 1494–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, L.; Wang, J.; LuoReng, Z.; Wang, X.; Wei, D.; Yang, J.; Hu, Q.; Ma, Y. Progress in expression pattern and molecular regulation mechanism of lncRNA in bovine mastitis. Animals 2022, 12, 1059. [Google Scholar] [CrossRef]
- Romero-Barrios, N.; Legascue, M.F.; Benhamed, M.; Ariel, F.; Crespi, M. Splicing regulation by long noncoding RNAs. Nucleic Acids Res. 2018, 46, 2169–2184. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Yuan, L.; Tan, X.; Huang, D.D.; Wang, X.J.; Zheng, Z.; Mao, X.; Li, X.; Yang, L.; Huang, K.; et al. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nat. Commun. 2017, 8, 2049. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Guo, Z.H. Downregulation of lncRNA NEAT1 ameliorates LPS-induced inflammatory responses by promoting macrophage M2 polarization via miR-125a-5p/TRAF6/TAK1 axis. Inflammation 2020, 43, 1548–1560. [Google Scholar] [CrossRef]
- Zhang, P.; Cao, L.; Zhou, R.; Yang, X.; Wu, M. The lncRNA NEAT1 promotes activation of inflammasomes in macrophages. Nat. Commun. 2019, 10, 1495. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Sun, J.; Liang, C.; Gu, B.; Xu, Y.; Lu, H.; Gao, B.; Xu, H. lncRNA IGHCγ1 acts as a ceRNA to regulate macrophage inflammation via the miR-6891-3p/TLR4 axis in osteoarthritis. Mediat. Inflamm. 2020, 2020, 9743037. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Wang, P.; Wang, J.; Yang, J.; Lu, H.; Jin, C.; Cheng, M.; Xu, D. Long non-coding RNA HIX003209 promotes inflammation by sponging miR-6089 via TLR4/NF-κB Signaling Pathway in Rheumatoid Arthritis. Front. Immunol. 2019, 10, 2218. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.T.; Lin, H.S.; Shen, C.; Ma, Y.N.; Wang, F.; Zhao, H.L.; Yu, J.; Zhang, J.W. PU.1-regulated long noncoding RNA lnc-MC controls human monocyte/macrophage differentiation through interaction with microRNA 199a-5p. Mol. Cell. Biol. 2015, 35, 3212–3224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhang, X.; Chen, K.; Cheng, Y.; Liu, S.; Xia, M.; Chen, Y.; Zhu, H.; Li, Z.; Cao, X. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 2019, 50, 600–615.e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Zheng, Y.; Sun, Y.; Li, S.; Chen, L.; Jin, X.; Hou, X.; Liu, X.; Chen, Q.; Li, J.; et al. Knockdown of NEAT1 induces tolerogenic phenotype in dendritic cells by inhibiting activation of NLRP3 inflammasome. Theranostics 2019, 9, 3425–3442. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, H.L.; Zheng, Y.; Jin, X.Y.; Liu, M.Y.; Li, S.; Zhao, Q.; Liu, X.; Wang, Y.; Shi, M.; et al. The long noncoding RNA MALAT1 induces tolerogenic dendritic cells and regulatory T Cells via miR155/dendritic cell-specific intercellular adhesion molecule-3 grabbing nonintegrin/IL10 axis. Front. Immunol. 2018, 9, 1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Hu, L.Q.; Zhu, X.; Wang, Y.; Li, Q.; Ma, J.; Li, H. MALAT1 overexpression attenuates AS by inhibiting ox-LDL-stimulated dendritic cell maturation via miR-155-5p/NFIA axis. Cell Cycle 2020, 19, 2472–2485. [Google Scholar] [CrossRef]
- Wang, P.; Xue, Y.; Han, Y.; Lin, L.; Wu, C.; Xu, S.; Jiang, Z.; Xu, J.; Liu, Q.; Cao, X. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 2014, 344, 310–313. [Google Scholar] [CrossRef]
- Zhuang, L.; Tian, J.; Zhang, X.; Wang, H.; Huang, C. Lnc-DC regulates cellular turnover and the HBV-induced immune response by TLR9/STAT3 signaling in dendritic cells. Cell. Mol. Biol. Lett. 2018, 23, 43. [Google Scholar] [CrossRef]
- Ranzani, V.; Rossetti, G.; Panzeri, I.; Arrigoni, A.; Bonnal, R.J.; Curti, S.; Gruarin, P.; Provasi, E.; Sugliano, E.; Marconi, M.; et al. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat. Immunol. 2015, 16, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Bam, M.; Becker, W.; Nagarkatti, P.S.; Nagarkatti, M. Long Noncoding RNA AW112010 promotes the differentiation of inflammatory t cells by suppressing IL-10 expression through histone demethylation. J. Immunol. 2020, 205, 987–993. [Google Scholar] [CrossRef]
- Rankin, C.R.; Shao, L.; Elliott, J.; Rowe, L.; Patel, A.; Videlock, E.; Benhammou, J.N.; Sauk, J.S.; Ather, N.; Corson, M.; et al. The IBD-associated long noncoding RNA IFNG-AS1 regulates the balance between inflammatory and anti-inflammatory cytokine production after T-cell stimulation. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G34–G40. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, Y.; Li, C.; Xie, H.; Liu, Q.; Ming, S.; Wu, D.; Luo, F. LncRNA GAS5 suppresses CD4(+) T cell activation by upregulating E4BP4 via inhibiting miR-92a-3p in systemic lupus erythematosus. Immunol. Lett. 2020, 227, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Zhang, Z.; Li, Y.; Zhao, P.; Chen, Y. LncRNA H19/miR-let-7 axis participates in the regulation of ox-LDL-induced endothelial cell injury via targeting periostin. Int. Immunopharmacol. 2019, 72, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhang, G.; Liang, X.; Li, T. LncRNA OIP5-AS1 facilitates ox-LDL-induced endothelial cell injury through the miR-98-5p/HMGB1 axis. Mol. Cell. Biochem. 2021, 476, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Run, Q.; Li, C.Y.; Xiong, X.Y.; Wu, X.L. LncRNA MALAT1 promotes stat3-mediated endothelial inflammation by counteracting the function of miR-590. Cytogenet. Genome Res. 2021, 160, 565–578. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; et al. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res. 2018, 64, e12449. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Zheng, Z.Q.; Nie, J.G.; Liu, L.J.; Meng, X.Z.; Sun, H.; Xiao, F.M.; Kang, T. LncRNA SNHG12 alleviates hypertensive vascular endothelial injury through miR-25-3p/SIRT6 pathway. J. Leukoc. Biol. 2021, 110, 651–661. [Google Scholar] [CrossRef]
- Chi, K.; Geng, X.; Liu, C.; Zhang, Y.; Cui, J.; Cai, G.; Chen, X.; Wang, F.; Hong, Q. LncRNA-HOTAIR promotes endothelial cell pyroptosis by regulating the miR-22/NLRP3 axis in hyperuricaemia. J. Cell. Mol. Med. 2021, 25, 8504–8521. [Google Scholar] [CrossRef]
- Luo, R.; Li, L.; Hu, Y.X.; Xiao, F. LncRNA H19 inhibits high glucose-induced inflammatory responses of human retinal epithelial cells by targetingmiR-19b to increase SIRT1 expression. Kaohsiung J. Med. Sci. 2021, 37, 101–110. [Google Scholar] [CrossRef]
- Tong, P.; Peng, Q.H.; Gu, L.M.; Xie, W.W.; Li, W.J. LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis. Exp. Mol. Pathol. 2019, 107, 102–109. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, X.; Gao, L.; Xue, H.; Liu, L.; Wang, S.; Chen, S.; Huang, L. LncRNA loc105377478 promotes NPs-Nd2O3-induced inflammation in human bronchial epithelial cells through the ADIPOR1/NF-κB axis. Ecotoxicol. Environ. Saf. 2021, 208, 111609. [Google Scholar] [CrossRef]
- Ji, Q.; Pan, C.; Wang, J.; Yang, Z.; Li, C.; Yang, C.; Zhang, W.; Wang, W.; Dong, M.; Sun, Z.; et al. Long non-coding RNA Hsp4 alleviates lipopolysaccharide-induced apoptosis of lung epithelial cells via miRNA-466m-3p/DNAjb6 axis. Exp. Mol. Pathol. 2020, 117, 104547. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Hao, S.; Xie, L.; Xiang, G.; Hu, W.; Wu, Q.; Liu, Z.; Li, S. LncRNA NEAT1 contributes to the acquisition of a tumor like-phenotype induced by PM 2.5 in lung bronchial epithelial cells via HIF-1α activation. Environ. Sci. Pollut. Res. 2021, 28, 43382–43393. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wu, L.; Liu, S.; Hu, X.; Wang, Q.; Fang, L. Long non-coding RNA NEAT1 promotes lipopolysaccharide-induced injury in human tubule epithelial cells by regulating miR-93-5p/TXNIP axis. Med. Microbiol. Immunol. 2021, 210, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Deng, W.; Zhang, W. RETRACTED: Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomed. Pharmacother. 2018, 104, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.X. Study on the Mechanism of lncRNA MPNCR Affecting the Proliferation of Bovine Mammary Epithelial Cells. Master’s Thesis, Northwest Agriculture & Forestry University, Yangling, China, 2020. (In Chinese). [Google Scholar]
- Hume, D.A. The many alternative faces of macrophage activation. Front. Immunol. 2015, 6, 370. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Aggarwal, A. M2 macrophages and their role in rheumatic diseases. Rheumatol. Int. 2019, 39, 769–780. [Google Scholar] [CrossRef]
- Qiu, P.; Liu, Y.; Zhang, J. Review: The role and mechanisms of macrophage autophagy in sepsis. Inflammation 2019, 42, 6–19. [Google Scholar] [CrossRef]
- Heward, J.A.; Lindsay, M.A. Long non-coding RNAs in the regulation of the immune response. Trends Immunol. 2014, 35, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A.D. Transcriptional control of granulocyte and monocyte development. Oncogene 2007, 26, 6816–6828. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.S.; Gong, J.N.; Su, R.; Chen, M.T.; Song, L.; Shen, C.; Wang, F.; Ma, Y.N.; Zhao, H.L.; Yu, J.; et al. miR-199a-5p inhibits monocyte/macrophage differentiation by targeting the activin A type 1B receptor gene and finally reducing C/EBPα expression. J. Leukoc. Biol. 2014, 96, 1023–1035. [Google Scholar] [CrossRef]
- Puhr, S.; Lee, J.; Zvezdova, E.; Zhou, Y.J.; Liu, K. Dendritic cell development-history, advances, and open questions. Semin. Immunol. 2015, 27, 388–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.; Awasthi, A. Emerging roles of noncoding RNAs in T cell differentiation and functions in autoimmune diseases. Int. Rev. Immunol. 2019, 38, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Williams, K.J.; Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: Update and therapeutic implications. Circulation 2007, 116, 1832–1844. [Google Scholar] [CrossRef] [PubMed]
- Di, X.; Tang, X.; Di, X. Montelukast inhibits oxidized low-density lipoproteins (ox-LDL) induced vascular endothelial attachment: An implication for the treatment of atherosclerosis. Biochem. Biophys. Res. Commun. 2017, 486, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Ge, J.; Wang, Z.; Ren, J.; Xiong, H.; Gao, J.; Zhang, Y.; Zhang, Q. Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci. Rep. 2017, 7, 42498. [Google Scholar] [CrossRef]
- Chen, L.; Yang, W.; Guo, Y.; Chen, W.; Zheng, P.; Zeng, J.; Tong, W. Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS ONE 2017, 12, e0185406. [Google Scholar] [CrossRef]
- Bai, J.; Liu, J.; Fu, Z.; Feng, Y.; Wang, B.; Wu, W.; Zhang, R. Silencing lncRNA AK136714 reduces endothelial cell damage and inhibits atherosclerosis. Aging (Albany NY) 2021, 13, 14159–14169. [Google Scholar] [CrossRef]
- Brannan, C.I.; Dees, E.C.; Ingram, R.S.; Tilghman, S.M. The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 1990, 10, 28–36. [Google Scholar]
- Li, H.Y.; Leu, Y.L.; Wu, Y.C.; Wang, S.H. Melatonin inhibits in vitro smooth muscle cell inflammation and proliferation and atherosclerosis in apolipoprotein e-deficient mice. J. Agric. Food Chem. 2019, 67, 1889–1901. [Google Scholar] [CrossRef]
- Cheng, X.; Wan, Y.; Xu, Y.; Zhou, Q.; Wang, Y.; Zhu, X. Melatonin alleviates myosin light chain kinase expression and activity via the mitogen-activated protein kinase pathway during atherosclerosis in rabbits. Mol. Med. Rep. 2015, 11, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Ginger, M.R.; Shore, A.N.; Contreras, A.; Rijnkels, M.; Miller, J.; Gonzalez-Rimbau, M.F.; Rosen, J.M. A noncoding RNA is a potential marker of cell fate during mammary gland development. Proc. Natl. Acad. Sci. USA 2006, 103, 5781–5786. [Google Scholar] [CrossRef] [PubMed]
- Shore, A.N.; Kabotyanski, E.B.; Roarty, K.; Smith, M.A.; Zhang, Y.; Creighton, C.J.; Dinger, M.; ERosen, J.M. Pregnancy-induced noncoding RNA (PINC) associates with polycomb repressive complex 2 and regulates mammary epithelial differentiation. PLoS Genet. 2012, 8, e1002840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, G.; Kölling, M.; Wegmann, U.A.; Dettling, A.; Seeger, H.; Schmitt, R.; Soerensen-Zender, I.; Haller, H.; Dueck, A.; Engelhardt, S.; et al. Renal AAV2-Mediated Overexpression of long non-coding RNA H19 attenuates ischemic acute kidney injury through sponging of microRNA-30a-5p. J. Am. Soc. Nephrol. 2021, 32, 323–341. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ma, N.; Luo, H.; Chen, S.; Yu, F. Downregulated long non-coding RNA LINC01093 in liver fibrosis promotes hepatocyte apoptosis via increasing ubiquitination of SIRT1. J. Biochem. 2020, 167, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hu, X.; Li, R.; Liu, B.; Zheng, X.; Fang, Z.; Chen, L.; Chen, W.; Min, L.; Hu, S. LncRNA THRIL aggravates sepsis-induced acute lung injury by regulating miR-424/ROCK2 axis. Mol. Immunol. 2020, 126, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Wang, J.; Zhang, Z.; Yang, J. LncRNA SNHG7/miR-34a-5p/SYVN1 axis plays a vital role in proliferation, apoptosis and autophagy in osteoarthritis. Biol. Res. 2020, 53, 9. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhu, Y.; Hao, Z.; Xu, H.; Li, T.; Yang, J.; Chen, X.; Chen, Y.; Guo, A.; Hu, C. Genome-wide analysis of lncRNA in bovine mammary epithelial cell injuries induced by escherichia coli and staphylococcus aureus. Int. J. Mol. Sci. 2021, 22, 9719. [Google Scholar] [CrossRef] [PubMed]
- Mathy, N.W.; Burleigh, O.; Kochvar, A.; Whiteford, E.R.; Behrens, M.; Marta, P.; Tian, C.; Gong, A.Y.; Drescher, K.M.; Steyger, P.S. A novel long intergenic non-coding RNA, Nostrill, regulates iNOS gene transcription and neurotoxicity in microglia. J. Neuroinflamm. 2021, 18, 16. [Google Scholar] [CrossRef]
- Lu, S.; Dong, L.; Jing, X.; Gen-Yang, C.; Zhan-Zheng, Z. Abnormal lncRNA CCAT1/microRNA-155/SIRT1 axis promoted inflammatory response and apoptosis of tubular epithelial cells in LPS caused acute kidney injury. Mitochondrion 2020, 53, 76–90. [Google Scholar] [CrossRef]
- Wang, J.; Song, J.; Li, Y.; Shao, J.; Xie, Z.; Sun, K. Down-regulation of LncRNA CRNDE aggravates kidney injury via increasing MiR-181a-5p in sepsis. Int. Immunopharmacol. 2020, 79, 105933. [Google Scholar] [CrossRef]
- Xu, L.; Hu, G.; Xing, P.; Zhou, M.; Wang, D. Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis. Life Sci. 2020, 262, 118505. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Guo, F.; Zhu, T.; Li, J.; Gu, D.; Jiang, W.; Lu, Y.; Zhou, D. Mechanism of long non-coding RNA MALAT1 in lipopolysaccharide-induced acute kidney injury is mediated by the miR-146a/NF-κB signaling pathway. Int. J. Mol. Med. 2018, 41, 446–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Lan, X.; Li, X.; Wang, D.; Sun, Y.; Wang, Q.; Gao, H.; Yu, K. Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFα and JNK/NF-κB pathways in HK-2 cells. Int. Immunopharmacol. 2017, 47, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, M.; Zhai, Y.; Fu, Y. HOTAIR regulates lipopolysaccharide-induced inflammatory response in hepatocytes. J. Cell Physiol. 2020, 235, 4247–4255. [Google Scholar] [CrossRef]
- Shen, C.; Li, J. LncRNA XIST silencing protects against sepsis-induced acute liver injury via inhibition of BRD4 expression. Inflammation 2021, 44, 194–205. [Google Scholar] [CrossRef]
- Liu, Q.M.; Liu, L.L.; Li, X.D.; Tian, P.; Xu, H.; Li, Z.L.; Wang, L.K. Silencing lncRNA TUG1 Alleviates LPS-Induced Mouse Hepatocyte Inflammation by Targeting miR-140/TNF. Front. Cell Dev. Biol. 2020, 8, 616416. [Google Scholar] [CrossRef]
- Gu, X.X.; Xu, X.X.; Liao, H.H.; Wu, R.N.; Huang, W.M.; Cheng, L.X.; Lu, Y.W.; Mo, J. Dexmedetomidine hydrochloride inhibits hepatocyte apoptosis and inflammation by activating the lncRNA TUG1/miR-194/SIRT1 signaling pathway. J. Inflamm. 2021, 18, 20. [Google Scholar] [CrossRef]
- Wu, P.; Yu, X.; Peng, Y.; Wang, Q.L.; Deng, L.T.; Xing, W. Ginsenoside Rg3 alleviates septic liver injury by regulating the lncRNA TUG1/miR-200c-3p/SIRT1 axis. J. Inflamm. 2021, 18, 31. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, X.; Zhou, Q.; Huang, C.; Meng, X.; Xu, F.; Li, J. Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion. Toxicol. Appl. Pharmacol. 2015, 289, 163–176. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Gao, G.; Zhou, Z. Knockdown XIST alleviates LPS-induced WI-38 cell apoptosis and inflammation injury via targeting miR-370-3p/TLR4 in acute pneumonia. Cell Biochem. Funct. 2019, 37, 348–358. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, J.H.; Su, J.; Lin, W.J.; Zhao, J.Q.; Zhang, Z.H.; Wu, Q. LncRNA XIST knockdown alleviates LPS-induced acute lung injury by inactivation of XIST/miR-132-3p/MAPK14 pathway. Mol. Cell. Biochem. 2021, 476, 4217–4229. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Zhang, Y. Depression of lncRNA MINCR antagonizes LPS-evoked acute injury and inflammatory response via miR-146b-5p and the TRAF6-NF-κB signaling. Mol. Med. 2021, 27, 124. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, W.; Song, F.; Zhang, L.; Sun, X. Silencing of lncRNA MIAT alleviates LPS-induced pneumonia via regulating miR-147a/NKAP/NF-κB axis. Aging 2020, 13, 2506–2518. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, X.; Zhang, B. Depression of lncRNA NEAT1 antagonizes LPS-evoked acute injury and inflammatory response in alveolar epithelial cells via HMGB1-RAGE Signaling. Mediat. Inflamm. 2020, 2020, 8019467. [Google Scholar] [CrossRef] [PubMed]
- Qiu, N.; Xu, X.; He, Y. LncRNA TUG1 alleviates sepsis-induced acute lung injury by targeting miR-34b-5p/GAB1. BMC Pulm. Med. 2020, 20, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, P.; Jiang, P.; Lv, Y.; Dong, C.; Dai, X.; Tan, L.; Wang, Z. Upregulation of lncRNA HOTAIR contributes to IL-1β-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis. Gene 2016, 586, 248–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Wang, Z.; Shan, Y.; Pan, Y.; Ma, J.; Jia, L. Long non-coding RNA HOTAIR promotes osteoarthritis progression via miR-17-5p/FUT2/β-catenin axis. Cell Death Dis. 2018, 9, 711. [Google Scholar] [CrossRef] [Green Version]
- Zhi, L.; Zhao, J.; Zhao, H.; Qing, Z.; Liu, H.; Ma, J. Downregulation of lncRNA OIP5-AS1 induced by IL-1β aggravates osteoarthritis via regulating miR-29b-3p/PGRN. Cartilage 2021, 13, 1345S–1355S. [Google Scholar] [CrossRef]
- Liang, Z.; Ren, C. RETRACTED: Emodin attenuates apoptosis and inflammation induced by LPS through up-regulating lncRNA TUG1 in murine chondrogenic ATDC5 cells. Biomed. Pharmacother. 2018, 103, 897–902. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Q.; Zhu, J.; Tang, J.; Nie, M. LncRNA ARFRP1 knockdown inhibits LPS-induced the injury of chondrocytes by regulation of NF-κB pathway through modulating miR-15a-5p/TLR4 axis. Life Sci. 2020, 261, 118429. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, L.; Wang, Q.; Huang, Q.; Xu, S. LncRNA FOXD2-AS1 induces chondrocyte proliferation through sponging miR-27a-3p in osteoarthritis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1241–1247. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Pan, S.; Song, Y.; Li, Y.; Qu, J. Silence of lncRNA MIAT protects ATDC5 cells against lipopolysaccharides challenge via up-regulating miR-132. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2521–2527. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Li, X.; Qi, S.; Li, X.; Zhou, K.; Qing, S.; Zhang, Y. lncRNA H19 is involved in TGF-β1-induced epithelial to mesenchymal transition in bovine epithelial cells through PI3K/AKT Signaling Pathway. PeerJ 2017, 5, e3950. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, X.; Li, X.; Wang, Q.; Qing, S.; Zhang, Y.; Gao, M.Q. A novel long non-codingRNA regulates the immune response in MAC-T cells and contributes to bovine mastitis. FEBS J. 2019, 286, 1780–1795. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Pei, Y.; Wang, X.; Feng, J.; Zhang, Y.; Gao, M.Q. LncRNA XIST mediates bovine mammary epithelial cell inflammatory response via NF-κB/NLRP3 inflammasome pathway. Cell Prolif. 2019, 52, e12525. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cheng, Z.; Wang, L.; Jiao, B.; Yang, H.; Wang, X. MiR-21-3p centric regulatory network in dairy cow mammary epithelial cell proliferation. J. Agric. Food Chem. 2019, 67, 11137–11147. [Google Scholar] [CrossRef] [PubMed]
- Yang, B. Screening, Identification and Functional Studies of Long Non-Coding RNAs Differentially Expressed in Mammary Gland of Dairy Cows. Ph.D. Thesis, Northwest Agriculture & Forestry University, Yangling, China, 2019. (In Chinese). [Google Scholar]
- Meng, J.; Ding, T.; Chen, Y.; Long, T.; Xu, Q.; Lian, W.; Liu, W. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int. Immunopharmacol. 2021, 90, 107141. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Zhang, Y.; Wei, J.; Wu, R.; Cai, H. Overexpression of long noncoding RNA MALAT1 ameliorates traumatic brain injury induced brain edema by inhibiting AQP4 and the NF-κB/IL-6 pathway. J. Cell. Biochem. 2019, 120, 17584–17592. [Google Scholar] [CrossRef]
- Xia, D.; Sui, R.; Zhang, Z. Administration of resveratrol improved Parkinson’s disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/miR-129/SNCA signaling pathway. J. Cell. Biochem. 2019, 120, 4942–4951. [Google Scholar] [CrossRef]
- Liu, N.; Sun, H.; Li, X.; Cao, W.; Peng, A.; Dong, S.; Yu, Z. Downregulation of lncRNA KCNQ1OT1 relieves traumatic brain injury induced neurological deficits via promoting “M2” microglia polarization. Brain Res. Bull. 2021, 171, 91–102. [Google Scholar] [CrossRef]
- Sun, D.; Yu, Z.; Fang, X.; Liu, M.; Pu, Y.; Shao, Q.; Wang, D.; Zhao, X.; Huang, A.; Xiang, Z. LncRNA GAS5 inhibits microglial M2 polarization and exacerbates demyelination. EMBO Rep. 2017, 18, 1801–1816. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, L.; Geng, Y.; Liu, Y.; Zhang, N. Long noncoding RNA GAS5 promotes microglial inflammatory response in Parkinson’s disease by regulating NLRP3 pathway through sponging miR-223-3p. Int. Immunopharmacol. 2020, 85, 106614. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, F.; Wang, W.; Chen, G.; Zhang, Q.; Lv, R.; Zhao, Z.; Li, X.; Yu, Q.; Meves, J.M. IL-9-triggered lncRNA Gm13568 regulates Notch1 in astrocytes through interaction with CBP/P300: Contribute to the pathogenesis of experimental autoimmune encephalomyelitis. J. Neuroinflamm. 2021, 18, 108. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, G.; Li, D.; Wei, C.; Hao, J. DDIT4 and associated lncDDIT4 modulate Th17 differentiation through the DDIT4/TSC/mTOR pathway. J. Immunol. 2018, 200, 1618–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.Y.; Bao, H.L.; Dong, L.X.; Liu, Y.; Zhang, G.W.; An, F.M. Silenced lncRNA H19 and up-regulated microRNA-129 accelerates viability and restrains apoptosis of PC12 cells induced by Aβ(25-35) in a cellular model of Alzheimer’s disease. Cell Cycle 2021, 20, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, Q.; Lin, J. LncRNA H19 attenuates apoptosis in MPTP-induced Parkinson’s disease through regulating miR-585-3p/PIK3R3. Neurochem. Res. 2020, 45, 1700–1710. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, T.; Wang, T.; Wang, B. Suppression of lncRNA-ATB prevents amyloid-β-induced neurotoxicity in PC12 cells via regulating miR-200/ZNF217 axis. Biomed. Pharmacother. 2018, 108, 707–715. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Chen, Y.; He, X.; Qian, Y.; Xu, S.; Gao, C.; Mo, C.; Chen, S.; Xiao, Q. LncRNA HOXA-AS2 regulates microglial polarization via recruitment of PRC2 and epigenetic modification of PGC-1α expression. J. Neuroinflamm. 2021, 18, 197. [Google Scholar] [CrossRef]
- Segev, G.; Langston, C.; Takada, K.; Kass, P.H.; Cowgill, L.D. Validation of a clinical scoring system for outcome prediction in dogs with acute kidney injury managed by hemodialysis. J. Vet. Intern. Med. 2016, 30, 803–807. [Google Scholar] [CrossRef] [Green Version]
- Mirzapoiazova, T.; Kolosova, I.A.; Moreno, L.; Sammani, S.; Garcia, J.G.; Verin, A.D. Suppression of endotoxin-induced inflammation by taxol. Eur. Respir. J. 2007, 30, 429–435. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, D.; Li, Y.; Li, Y.; Li, Y. Paclitaxel alleviated liver injury of septic mice by alleviating inflammatory response via microRNA-27a/TAB3/NF-κB signaling pathway. Biomed. Pharmacother. 2018, 97, 1424–1433. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, Y.; Liu, Y.; Xiang, X.; Dong, Z. Paclitaxel ameliorates lipopolysaccharide-induced kidney injury by binding myeloid differentiation protein-2 to block Toll-like receptor 4-mediated nuclear factor-κB activation and cytokine production. J. Pharmacol. Exp. Ther. 2013, 345, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Li, X.; Wang, D.; Sun, Y.; Wang, Q.; Bu, Y.; Niu, F. Curcumin reduces LPS-induced septic acute kidney injury through suppression of lncRNA PVT1 in mice. Life Sci. 2020, 254, 117340. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Fan, X.; Li, N.; Du, C.; Yang, B.; Qin, W.; Fu, J.; Markowitz, G.J.; Wang, H.; Ma, J.; et al. CCL22 signaling contributes to sorafenib resistance in hepatitis B virus-associated hepatocellular carcinoma. Pharmacol. Res. 2020, 157, 104800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Shi, Z.; Zhang, M.; Dong, X.; Zheng, L.; Li, G.; Han, X.; Yao, Z.; Han, X.; Hong, W. Silencing lncRNA Lfar1 alleviates the classical activation and pyoptosis of macrophage in hepatic fibrosis. Cell Death Dis. 2020, 11, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Liu, S.; Wang, H.; Liu, L.; Zhang, S.; Ming, Y.; Zhao, Y.; Cheng, K. Silencing long noncoding RNA NEAT1 alleviates acute liver failure via the EZH2-mediated microRNA-139/PUMA axis. Aging 2021, 13, 12537–12551. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, D.X.; Zhang, W.; Liao, X.Q.; Guan, X.; Bo, H.; Sun, J.Y.; Huang, N.W.; He, J.; Zhang, Y.K.; et al. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-κB. PLoS ONE 2013, 8, e56407. [Google Scholar] [CrossRef] [Green Version]
- Nan, C.C.; Zhang, N.; Cheung, K.C.P.; Zhang, H.D.; Li, W.; Hong, C.Y.; Chen, H.S.; Liu, X.Y.; Li, N.; Cheng, L. Knockdown of lncRNA MALAT1 alleviates LPS-induced acute lung injury via inhibiting apoptosis through the miR-194-5p/FOXP2 axis. Front. Cell Dev Biol. 2020, 8, 586869. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Z.; He, H.; Huang, X.; Mo, Z.; Tan, J.; Guo, W.; Zhao, Z.; Wei, S. The lncRNA HOTAIR regulates autophagy and affects lipopolysaccharide-induced acute lung injury through the miR-17-5p/ATG2/ATG7/ATG16 axis. J. Cell. Mol. Med. 2021, 25, 8062–8073. [Google Scholar] [CrossRef]
- Luo, D.; Dai, W.; Feng, X.; Ding, C.; Shao, Q.; Xiao, R.; Zhao, N.; Peng, W.; Yang, Y.; Cui, Y.; et al. Suppression of lncRNA NLRP3 inhibits NLRP3-triggered inflammatory responses in early acute lung injury. Cell Death Dis. 2021, 12, 898. [Google Scholar] [CrossRef]
- Brown, C.J.; Hendrich, B.D.; Rupert, J.L.; Lafrenière, R.G.; Xing, Y.; Lawrence, J.; Willard, H.F. The human XIST gene: Analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 1992, 71, 527–542. [Google Scholar] [CrossRef]
- Brockdorff, N.; Ashworth, A.; Kay, G.F.; McCabe, V.M.; Norris, D.P.; Cooper, P.J.; Swift, S.; Rastan, S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 1992, 71, 515–526. [Google Scholar] [CrossRef]
- Sohrabifar, N.; Ghaderian, S.M.H.; Alipour Para, S.; Ghaedi, H.; Jafari, H. Variation in the expression level of MALAT1, MIAT and XIST lncRNAs in coronary artery disease patients with and without type 2 diabetes mellitus. Arch. Physiol. Biochem. 2022, 128, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.P.; Chen, X.; Ru, F.; He, Y.; Liu, P.H.; Gan, Y.; Zhang, B.; Li, Y.; Dai, G.Y.; Jiang, Z.X.; et al. Knockdown of lncRNA XIST inhibited apoptosis and inflammation in renal fibrosis via microRNA-19b-mediated downregulation of SOX6. Mol. Immunol. 2021, 139, 87–96. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Ding, N.; Zhao, Y.; Ye, Z.; Shen, L.; Yi, H.; Zhu, Y. Inhibition of lncRNA XIST improves myocardial i/r injury by targeting mir-133a through inhibition of autophagy and regulation of SOCS2. Mol. Ther. Nucleic Acids. 2019, 18, 764–773. [Google Scholar] [CrossRef] [Green Version]
- Glyn-Jones, S.; Palmer, A.J.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet 2015, 386, 376–387. [Google Scholar] [CrossRef]
- Li, D.; Sun, Y.; Wan, Y.; Wu, X.; Yang, W. LncRNA NEAT1 promotes proliferation of chondrocytes via down-regulation of miR-16-5p in osteoarthritis. J. Gene Med. 2020, 22, e3203. [Google Scholar] [CrossRef]
- Lü, G.; Li, L.; Wang, B.; Kuang, L. LINC00623/miR-101/HRAS axis modulates IL-1β-mediated ECM degradation, apoptosis and senescence of osteoarthritis chondrocytes. Aging 2020, 12, 3218–3237. [Google Scholar] [CrossRef]
- Daheshia, M.; Yao, J.Q. The interleukin 1beta pathway in the pathogenesis of osteoarthritis. J. Rheumatol. 2008, 35, 2306–2312. [Google Scholar] [CrossRef]
- Sharma, N.; Kang, T.Y.; Lee, S.J.; Kim, J.N.; Hur, C.H.; Ha, J.C.; Vohra, V.; Jeong, D.K. Status of bovine mastitis and associated risk factors in subtropical Jeju Island, South Korea. Trop. Anim. Health Prod. 2013, 45, 1829–1832. [Google Scholar] [CrossRef]
- Hughes, K.; Watson, C.J. The mammary microenvironment in mastitis in humans, dairy ruminants, rabbits and rodents: A one health focus. J. Mammary Gland Biol. Neoplasia 2018, 23, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, P.T.; Taban, Q.; Bhat, B.; Ahmad, S.M.; Dar, M.A.; Kashoo, Z.A.; Ganie, N.A.; Shah, R.A. Expression of lncRNAs in response to bacterial infections of goat mammary epithelial cells reveals insights into mammary gland diseases. Microb. Pathog. 2022, 162, 105367. [Google Scholar] [CrossRef]
- Wang, J.P.; Hu, Q.C.; Yang, J.; Luoreng, Z.M.; Wang, X.P.; Ma, Y.; Wei, D.W. Differential expression profiles of lncRNA following LPS-induced inflammation in bovine mammary epithelial cells. Front. Vet. Sci. 2021, 8, 758488. [Google Scholar] [CrossRef] [PubMed]
- Chitnis, T.; Weiner, H.L. CNS inflammation and neurodegeneration. J. Clin. Investig. 2017, 127, 3577–3587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corps, K.N.; Roth, T.L.; McGavern, D.B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015, 72, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Sevenich, L. Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front. Immunol. 2018, 9, 697. [Google Scholar] [CrossRef] [Green Version]
- Voet, S.; Prinz, M.; van Loo, G. Microglia in central nervous system inflammation and multiple sclerosis pathology. Trends Mol. Med. 2019, 25, 112–123. [Google Scholar] [CrossRef]
- Zhong, J.; Jiang, L.; Huang, Z.; Zhang, H.; Cheng, C.; Liu, H.; He, J.; Wu, J.; Darwazeh, R.; Wu, Y. The long non-coding RNA NEAT1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice. Brain Behav. Immun. 2017, 65, 183–194. [Google Scholar] [CrossRef]
- Zhang, F.; Gao, C.; Ma, X.F.; Peng, X.L.; Zhang, R.X.; Kong, D.X.; Simard, A.R.; Hao, J.W. Expression profile of long noncoding RNAs in peripheral blood mononuclear cells from multiple sclerosis patients. CNS Neurosci. Ther. 2016, 22, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Zhao, H.; Wang, X.; Sun, J.; Su, J. Analysis of long noncoding RNAs highlights region-specific altered expression patterns and diagnostic roles in Alzheimer’s disease. Brief Bioinform. 2019, 20, 598–608. [Google Scholar] [CrossRef]
- Lv, K.; Liu, Y.; Zheng, Y.; Dai, S.; Yin, P.; Miao, H. Long non-coding RNA MALAT1 regulates cell proliferation and apoptosis via miR-135b-5p/GPNMB axis in Parkinson’s disease cell model. Biol. Res. 2021, 54, 10. [Google Scholar] [CrossRef] [PubMed]
Cell Types | lncRNA | Target | Function | References |
---|---|---|---|---|
Macrophages | lncRNA Mirt2 lncRNA NEAT1 lncRNA NEAT1 lncRNA IGHCγ lncRNA HIX003209 lnc MC | — miR-125a-5p — miR-6891-3p miR-6989 miR-199a-5p | Regulate macrophage differentiation, polarization, proinflammatory cytokine release, and inflammatory injury | [16] [17] [18] [19] [20] [21] |
Dendritic cells | lncRNA Dpf3 lncRNA NEAT1 lncRNA MALAT1 lncRNA MALAT1 lnc-DC lnc-DC | HIF-1α miR-3076-3p miR-155 miR-155-5p STAT3 — | Regulate the migration, maturation, differentiation, and inflammatory injury of dendritic cells | [22] [23] [24] [25] [26] [27] |
T cells | linc-MAF-4 lncRNA AW112010 lncRNA IFNG-AS1 lncRNA GAS5 | — KDM5A — miR-92a-3p | Regulate T cell differentiation | [28] [29] [30] [31] |
Endothelial cells | lncRNA H19 lncRNA OIP5-AS1 lncRNA MALAT1 lncRNA MEG3 lncRNA SNHG12 lncRNA HOTAIR | miR-let-7 miR-98-5p miR-590 miR-223 miR-25-3p miR-22 | Attenuate endothelial cell injury | [32] [33] [34] [35] [36] [37] |
Epithelial cells | lncRNA H19 lncRNA MEG3 lncRNA 105377478 lncRNA Hsp4 lncRNA NEAT1 lncRNA NEAT1 lncRNA TUG1 lncRNA MPNCR | miR-19b miR-34a AdipoR1 miR-466m-3p miR-582-5p miR-93-5p miR-223 miR-31 | Attenuate epithelial cell injury | [38] [39] [40] [41] [42] [43] [44] [45] |
Inflammatory Disease | lncRNA | Target | Function | References |
---|---|---|---|---|
Acute kidney injury (AKI) | lncRNA CCAT1 lncRNA GRNDE lncRNA MALAT1 lncRNA MALAT1 lncRNA PVT1 | miR-155 miR-181a-5p miR-370-3p miR-146a — | Alleviate AKI | [70] [71] [72] [73] [74] |
Hepatic inflammation | lncRNA HOTAIR lncRNA XIST lncRNA TUG1 lncRNA TUG1 lncRNA TUG1 lncRNA MALAT1 | — BRD4 miR-140 miR-194 miR-200a-3p — | Alleviate hepatic inflammation | [75] [76] [77] [78] [79] [80] |
Acute lung injury (ALI) | lncRNA XIST lncRNA XIST lncRNA MINCR lncRNA MIAT lncRNA NEAT1 lncRNA TUG1 | miR-370-3p miR-132-3p miR-146b-5p miR-147a — miR-34b-5p | Alleviate ALI | [81] [82] [83] [84] [85] [86] |
Osteoarthritis (OA) | lncRNA HOTAIR lncRNA HOTAIR lncRNA OIP5-ASI lncRNA TUG1 lncRNA ARFRP1 lncRNA FOXD2-AS1 lncRNA MIAT | — miR-17-5p miR-29b-3p — miR-15a-5p miR-27a-3p miR-132 | Alleviate OA | [87] [88] [89] [90] [91] [92] [93] |
Mastitis | lncRNA H19 lncRNA TUB lncRNA XIST LRRC75A-AS1 NONBTAT017009.2 TCONS_00015196 TCONS_00087966 lncRNA MPNCR | — TUBA1C — LRRC75A miR-21-3p miR-221 miR-221 miR-31 | Alleviate mastitis | [5,94] [95] [96] [3] [97] [98] [98] [45] |
Central nervous system inflammation | lncRNA MEG3 lncRNA MALAT1 lncRNA MALAT1 lncRNA KCNQ1OT1 lncRNA GAS5 lncRNA GAS5 lncRNA Gm13568 lncRNA DDIT4 lncRNA H19 lncRNA H19 lncRNA ATB lncRNA HOXA-AS2 | miR-7a-5p — miR-129 miR-873-5p PCR2 miR-223-3p — DDIT4 miR-129 miR-585-3p miR-200 PCR2 | Alleviate central nervous system inflammation | [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] |
lncRNA | CNS Inflammation Type | Expression | Molecular Mechanism | References |
---|---|---|---|---|
lncRNA MEG3 | TBI | Upregulated | LncRNA MEG3 regulates microglia activation and inflammatory response by targeting the miR-7a-5p/NLRP3 axis. | [99] |
lncRNA MALAT1 | TBI | Downregulated | Overexpression of lncRNA MALAT1 reduces the expression of IL-6, NF-κB, and AQP4, thereby alleviating TBI-induced inflammatory injury. | [100] |
lncRNA KCNQ1OT1 | TBI | Upregulated | Knockdown of lncRNA KCNQ1OT1 can promote M2 polarization in microglia by targeting the miR-873-5p/TRAF6 axis, thereby alleviating the TBI-mediated inflammatory response (Figure 9). | [102] |
lncRNA GAS5 | MS | Upregulated | LncRNA GAS5 represses TRF4 transcription by binding to PCR2, thereby inhibiting microglia M2 polarization and, ultimately, exacerbating the progression of MS (Figure 9). | [103] |
lncRNA DDIT4 | MS | Upregulated | Overexpression of lncRNA DDIT4 alleviates the development of MS by inhibiting the DDIT4/mTOR axis. | [106] |
lncRNA Gm13568 | MS | Upregulated | Inhibition of lncRNA Gm13568 attenuates the activation of Notch signal pathway, thereby alleviating demyelination in EAE mice. | [105] |
lncRNA H19 | AD | Upregulated | LncRNA H19 inhibits AD cell apoptosis and oxidative stress by targeting the miR-129/HMGB1 axis. | [107] |
lncRNA ATB | AD | Upregulated | Inhibition of lncRNA ATB alleviates development of AD by targeting miR-200 to inhibit the expression of HMGB1. | [109] |
lncRNA H19 | PD | Downregulated | Overexpression of lncRNA H19 upregulates PIK3R3 expression by targeting miR-585-3p, thereby attenuating MTPT-induced neuronal apoptosis. | [108] |
lncRNA HOXA-AS2 | PD | Upregulated | Knockdown of lncRNA HOXA-AS2 can increase PGC-1α expression by binding to PCR2, thereby promoting microglia M2 polarization and ultimately alleviating the development of PD (Figure 9). | [110] |
lncRNA MALAT1 | PD | Upregulated | Resveratrol inhibits the expression of lncRNA MALAT1 in PD mice, and the low expression of lncRNA MALAT1 can reduce the expression of SNCA by targeting miR-129, thereby inhibiting neuronal apoptosis and alleviating PD. | [101] |
lncRNA GAS5 | PD | Upregulated | LncRNA GAS5 exacerbates PD development by targeting and regulating the miR-223-3p/NLRP3 axis (Figure 9). | [104] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, F.; Jiao, P.; Wang, J.; Li, Y.; Bao, B.; Luoreng, Z.; Wang, X. Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases. Cells 2022, 11, 3642. https://doi.org/10.3390/cells11223642
Feng F, Jiao P, Wang J, Li Y, Bao B, Luoreng Z, Wang X. Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases. Cells. 2022; 11(22):3642. https://doi.org/10.3390/cells11223642
Chicago/Turabian StyleFeng, Fen, Peng Jiao, Jinpeng Wang, Yanxia Li, Binwu Bao, Zhuoma Luoreng, and Xingping Wang. 2022. "Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases" Cells 11, no. 22: 3642. https://doi.org/10.3390/cells11223642
APA StyleFeng, F., Jiao, P., Wang, J., Li, Y., Bao, B., Luoreng, Z., & Wang, X. (2022). Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases. Cells, 11(22), 3642. https://doi.org/10.3390/cells11223642