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Abstract: The impact of aging on vascular function is heterogeneous depending on the vascular
territories. Calcium regulation plays a key role in vascular function and has been implicated in
aging-related hypercontractility of corpus cavernosum. We aimed to evaluate stromal interaction
molecule (STIM)/Orai system involvement in aging-related vascular alterations in the human macro
and microvasculature. Aortae specimens and mesenteric arteries (MA), obtained from 45 organ
donors, were functionally evaluated in organ chambers and wire myographs. Subjects were divided
into groups either younger or older than 65-years old. The expressions of STIM-1, Orai1, and Orai3
were determined by immunofluorescence in the aorta and MA, and by Western blot in the aorta
homogenates. The inhibition of STIM/Orai with YM-58483 (20 µM) reversed adrenergic hypercontrac-
tility in MA from older subjects but did not modify aging-related hypercontractility in the aortic strips.
Aging was related to an increased expression of Orai1 in human aorta, while Orai1 and STIM-1 were
upregulated in MA. STIM-1 and Orai1 protein expressions were inversely correlated to endothelial
function in MA. Circulating levels of Orai1 were correlated with the inflammatory factor TNF-α and
with the endothelial dysfunction marker asymmetric dimethylarginine. Aging is associated with an
increased expression of the STIM/Orai system in human vessels with functional relevance only in the
microvascular territory, suggesting its role in aging-related microvascular dysfunction.

Keywords: aging; vascular function; Orai channel; STIM-1; human mesenteric arteries

1. Introduction

Aging is the main risk factor for cardiovascular disease (CVD), even in the absence of
traditional risk factors, while CVD is considered to be the principal contributor to morbidity
and mortality in older populations [1]. Interestingly, the aging process is associated with
both structural and functional alterations at the vascular level, leading not only to an
increase in cardiovascular events in older subjects, but also to functional decline, cognitive
deterioration, and frailty [2]. Endothelial dysfunction is one of the phenotypic charac-
teristics of cardiovascular alterations related to aging [3]. In fact, different evidence has
clearly demonstrated the presence of endothelial dysfunction, manifested by impaired
endothelium-dependent vasodilation, associated with the aging process in the macro and
microvasculature of animal models and humans [4–6]. Although the underlying mech-
anisms of vascular dysfunction related to the aging process are not completely known,
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oxidative stress and inflammation stand out as two main candidates leading to vascular
impairment in aging [7]. However, aging is also related to another vascular alteration that
may play a role in enhanced CVD risk such as increased agonist-induced vasoconstric-
tion [8,9]. It is of importance to note that the impact of aging on vascular function is rather
heterogeneous depending on the vascular territory evaluated [9–11].

Changes in cellular Ca2+ levels play a crucial role in vascular function and blood
pressure regulation [12]. Importantly, vascular calcium homeostasis is disturbed in different
pathological situations [13] and in aging [14,15]. Different systems control the cell’s capacity
to manage the calcium level, where the store-operated calcium entry (SOCE) through
stromal interaction molecule (STIM)-gated Orai channels plays a key role [16]. In addition
to their role in Ca2+ signaling, STIM and Orai have been shown to participate in the
regulation of metabolism and mitochondrial function, and their activities seems to be
susceptible to redox modifications [17]. The STIM/Orai system is essential for cellular
homeostasis and its disruption is linked to various diseases associated with aging such as
CVD [17]. In line with this, it has been suggested that STIM/Orai channels participate in
the pathophysiology of vascular disease, independent of their contribution to SOCE [18,19].
Moreover, augmented activation of the STIM/Orai system has been suggested to play a
role in increased basal tonus and vascular reactivity in hypertensive rats [20,21].

Aging is known to lead to vascular dysfunction, in part mediated by altered Ca2+

homeostasis and signaling in smooth muscle cells, as well as endothelial cells [12]. However,
the scarce evidence that exists does not allow for obtaining a consistent idea about the
influence of aging on the STIM/Orai system in the vasculature. In line with this, SOCE-
induced contractions have been observed to increase in mesenteric arteries of old rats,
while they were reduced in the aorta of the same animals. This was accompanied by a
decreased expression of Orai1 in the aortic tissue with aging, and an increased expression
of Orai1 and decreased STIM-1 expression in the mesenteric arteries from old rats [22].
Furthermore, we recently described an enhanced contribution of STIM/Orai signaling to
aging-related hypercontractility in human corpus cavernosum and penile arteries and in
the corpus cavernosum of old rats, accompanied by augmented immunodetection of the
Orai3 channel in these tissues [23]. This evidence points to a heterogeneous role of the
STIM/Orai system in vascular aging among specific vascular territories. However, the
impact of physiological aging on the STIM/Orai system in other human vascular territories
has not been previously established. Therefore, the main objective of the current study was
to evaluate the role of the STIM/Orai system in vascular alterations associated with aging
in human macrovasculature (aortic strips) and microvasculature (small mesenteric arteries)
obtained from younger and older organ donors.

2. Materials and Methods
2.1. Human Tissues

Human aorta and epiplon, in addition to blood samples, were obtained from
45 deceased organ donors at the moment of organ transplantation. Written informed
consent was provided by donors’ relatives, including specific research informed consent
for the tissue procurement. Ethical approval of the study protocol and informed consent
were obtained from the Ethics Committees of the Hospital Universitario de Getafe (Ethics
Approval procedure A06/15, 30 April 2015); the Hospital Universitario Doce de Octubre
(Ethics Approval procedure 16/045, 25 February 2016); and the Hospital Universitario
Ramón y Cajal, Madrid, Spain (Ethics Approval procedure 16/045, 3 March 2016). The
tissues were collected in sterilized M-400 solution (composition per 100 mL: 4.19 g of man-
nitol; 0.205 g of KH2PO4; 0.97 g of K2HPO4•3H2O; 0.112 g of KCl; and 0.084 g of NaHCO3;
pH 7.4) and were maintained at 4–6 ◦C. For the experimental assessments, the specimens
were transported under the same conditions to the Getafe and Ramón y Cajal University
Hospitals. Time elapsed from extraction until processing and functional evaluation ranged
between 16 and 24 h, a time during which the vascular specimens were maintained as
being viable [9,23]. The clinical characteristics of the participants are depicted in Table 1.
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Table 1. Characteristics of the study subjects.

<65-Years Old (n = 30) >65-Years Old (n = 15) p-Value

Age (years) 43.0 ± 10.8 73.7 ± 5.9 <0.001
Female (%) 7 (23.3) 7 (46.6) 0.172

Diabetes Mellitus (%) 1 (3.3) 4 (26.7) 0.042
Hypertension (%) 3 (10.0) 9 (60.0) 0.001
Dyslipidemia (%) 3 (10.0) 5 (33.3) 0.099

Cardiovascular Disease (%) 3 (10.0) 4 (26.7) 0.212

Age is expressed as mean ± standard deviation, while discrete variables are expressed as number and percentage
(in parentheses).

Exclusion criteria were applied at the stage of tissue collection. Subjects presenting any
infectious disease were excluded from the study. All of the tissues were evaluated when they
were delivered in time to the laboratories under adequate storage conditions. Functional
and molecular evaluations were performed on the same subject when a sufficient amount
of vascular tissue was obtained. Tissues derived from organ donors were divided into two
groups: younger than 65-years old (<65 group) and older than 65-years old (>65 group).

2.2. Functional Evaluation of Human Mesenteric Arteries (MA)

Human mesenteric small arteries (internal diameter (mean ± SEM): <65-years old:
347.1 ± 25.5 µm, n = 16; and >65-years old: 398.9 ± 79.6 µm, n = 9, p > 0.05) were carefully
dissected from the epiplon specimens. Arterial ring segments about 2 mm long were
mounted on a small vessel myograph (Danish MyoTechnology, Aarhus, Denmark) for
isometric tension recordings, as previously described [9,24,25]. Vascular segments were
equilibrated in a Krebs–Henseleit solution (KHS) for 30 min. The composition of the
KHS solution comprised (mM) NaCl 119, KCl 4.6, CaCl2 1.5, MgCl2 1.2, NaHCO3 24.9,
glucose 11, KH2PO4 1.2, and EDTA 0.027. Arterial segments were maintained at 37 ◦C
and continuously bubbled with a mixture of 95% O2 and 5% CO2 in order to obtain a
pH of 7.4. The arteries were then set to the 90% of the determined internal circumference
under a transmural pressure of 100 mmHg (L100), at which point the force development
was close to maximal. Consequently, vessel preparations were exposed to 125 mM K+

(KKHS, equimolar substitution of NaCl for KCl in KHS) in order to assess their viability
and the contractile response was analyzed. Vessel preparations were washed with KHS
and, after a stabilization period, contractile responses in MA were evaluated by cumulative
additions of norepinephrine (NE, 1 nM to 10 µM) to the chambers. Concentrations were
added in semi-logarithmic increases at 3 min intervals or when the contraction to the
previous concentration was stabilized. YM-58483 (Tocris, Bristol, UK) (20 µM) or the
vehicle (DMSO) were added 30 min before the concentration–response curves started.
The concentration of YM-58483 was selected based on previous experience [23,26]. The
relaxation response was evaluated in arterial segments precontracted with the thromboxane
analogue, U46619 (Sigma-Aldrich, St Louis, MO, USA) (0.1–0.3 µM), through cumulative
additions of YM-58483 (0.1–30 µM) to the chambers.

For evaluation of the endothelial function in MA specimens, arterial segments were
precontracted with U46619 (0.1–0.3 µM) and exposed to cumulative increasing concentra-
tions of bradykinin (Sigma-Aldrich) (BK, 10 nM to 3 µM). Vascular segments failing to relax
more than 10% to the highest BK concentration were discarded. The pEC50 values for each
subject were calculated as the negative log of the BK concentration required in order to
obtain 50% relaxation and were considered as the indicator of endothelial function.

2.3. Functional Evaluation of Human Aorta

Aortic segments derived from the organ donors were cut into transversal strips of
about 7 mm in length and 2 mm in width, and were immersed in 8 mL organ chambers that
contained KHS at 37 ◦C and were continuously bubbled with a mixture of 95% O2 and 5%
CO2, in order to maintain a pH of 7.4 [9]. After an equilibration period of 90 min at 1.5 g of
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tension, the aortic strips were exposed to a high K+ concentration (KKHS) and the contractile
response was measured. Contractile responses to accumulative additions of NE (1 nM to
100 µM) were evaluated in the same way as described for MA. STIM/Orai inhibitor YM-
58483 (20 µM), or the vehicle (DMSO) were added 30 min before the concentration–response
curves started. The relaxation response was evaluated in the aortic strips precontracted
with NE (1–10 µM) through cumulative additions of YM-58483 (0.1–30 µM) to the chambers.

2.4. Immunofluorescence Assay

Freshly isolated MA and aortae specimens were immersed in increasing percentages
of saccharose (10–30% w/v), embedded in an optimal cutting temperature compound (OCT;
Sakura Finetek, Tokyo, Japan), and kept at −80 ◦C until the immunofluorescence assays
were carried out, as described previously [23]. Then, 6 µm sections were obtained from
the OCT blocks by cutting in a cryostat. After removing the OCT, fixing the tissues, and
removing the autofluorescence with acetone and methanol, the sections were incubated
with rabbit antibodies against STIM-1, Orai1, and Orai3 (1:200 dilution; Novus Biologicals,
Littleton, CO, USA) overnight at 4 ◦C. After washout in phosphate buffered saline plus 0.3%
Triton X-100, the sections were incubated with a secondary Alexa Fluor 488-conjugated
goat anti-rabbit antibody (dilution 1:250; Life Technologies, Alcobendas, Spain) and with
diamidino-2-phenylindole (DAPI; Life Technologies) to counterstain the nuclei for 1 h at
room temperature. The sections were mounted and viewed using fluorescence microscopy
(Olympus BX51, Olympus Corporation, Tokyo, Japan). Controls without primary antibod-
ies showed no unspecific reactivity. Five random images from each specimen were captured,
and the fluorescence intensity was quantified and normalized with the nuclei number by
using Image J 1.48i software (McBiophotonics Image J, NIH, Bethesda, MD, USA). An aver-
age value for each specimen was obtained. The group corresponding to each specimen was
blinded for the investigator capturing and quantifying the immunofluorescence images.

2.5. Western Blot Analysis

Western blot analyses were carried out as previously described [23,26]. Aortic tissue
samples derived from organ donors were flash frozen in liquid nitrogen and kept at
−80 ◦C until the proteins were extracted. For obtaining the total protein extracts, aortic
tissue was homogenized in a T-PER lysis buffer (Pierce Biotechnology, Inc., Rockford, IL,
USA) according to the manufacturer’s instructions, and 1× of Protease Inhibitor Cocktail
(Roche Diagnostics, Indianapolis, IN, USA) was added. A total of 15 µg of protein extracts
were separated by SDS-PAGE on a 10% polyacrylamide gel. The proteins were transferred
to PVDF membranes and blocked for 5 min with an EveryBlot blocking buffer (Bio-Rad,
Hercules, CA, USA). The membranes were incubated overnight at 4 ◦C with a specific
rabbit antibody against STIM-1 (Novus, Littleton, CO, USA, cat.# NBP1-52849, dilution
1:1000), mouse antibody against Orai1 (ThermoFisher Scientific, Waltham, MA, USA, cat.#
MA5-15776, dilution 1:500), rabbit antibody against Orai3 (ThermoFisher Scientific, cat.#
PA5-22273, dilution 1:500), and a mouse antibody against β-actin (Novus, cat.# NB600-501,
dilution 1:5000), which was used as the loading control. Consequently, the membranes
were incubated with goat anti-mouse (1:5000 dilution; Novus, cat.# NBP2-30347H) or
goat anti-rabbit horseradish peroxidase-conjugated secondary antibody (1:10,000 dilution;
Novus, cat.# NB7160) for 1 h at room temperature. The blots were visualized by the ECL
detection system (ThermoFisher Scientific). The results were quantified by densitometry,
using QuantityOne/Chemi-Doc 6.0 Software (Bio-Rad, Barcelona, Spain).

3. Results
3.1. Orai Channel Inhibition Reverses Age-Related Adrenergic Hypercontractility of Mesenteric
Arteries but Has No Functional Effect on the Aorta from Older Human Subjects

Despite not detecting significant differences in contractile responses to a high concen-
tration of K+ in human mesenteric arteries (MA) and in human aorta associated to age
(mean ± SEM in MA: <65-years old: 7.97 ± 1.07 mN, n = 16 vs. >65-years old: 7.30 ± 3.02 mN,
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n = 9, p > 0.05; in aorta: <65-years old: 1.38 ± 0.30 g, n = 6 vs. >65-years old 1.12 ± 0.33 g,
n = 6, p > 0.05), the addition of cumulative concentrations of NE to the organ bath evoked a
concentration-dependent contraction that was significantly increased in MA (Figure 1A)
and aortic strips (Figure 1B) derived from older subjects (>65-years old) when compared
with those obtained from younger subjects (<65-years old). Acute treatment of MA for
30 min with the Orai channel inhibitor YM-58483 (20 µM) inhibited adrenergic-induced
contractions in both of the of age evaluated groups (younger and older subjects), although
the magnitude of inhibition was more marked in the older subject group (−32.83 ± 6.10%
(n = 16) vs. −68.21 ± 20.15% (n = 9), p < 0.05 in % Emax to NE for younger and older sub-
jects, respectively). Moreover, no differences were detected between the <65-year-old and
>65-year-old group after inhibition with YM-58483 (Figure 1A). However, although the
aortic strips presented an age-related adrenergic hypercontractility, Orai channel inhibition
with YM-58483 (20 µM) did not modify these responses in the aortic strips derived from
older subjects. In addition, YM-58483 had no significant effect on the contractions elicited
by NE in the aorta from younger subjects (Figure 1B). These results seem not to be condi-
tioned by the inclusion of both male and female subjects in the analysis as the results did
not change when only analyzing the responses in the MA and aortic strips from female
subjects older than 65-years old. In this sense, when considering only female subjects, Orai
inhibition caused a marked reduction of NE-induced contractions in the microvessels, but
did not cause significant effects in the aorta (Supplementary Figure S1A,B), in a similar
way to that observed when considering all of the subjects.
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Figure 1. Aging-related hypercontractility to adrenergic stimulation in the human mesenteric artery
is reversed by Orai channel inhibition. Effects of Orai channel inhibition with YM-58483 (20 µM) on
norepinephrine (NE)-induced contraction in human mesenteric arteries (MA (A)) and human aortic
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strips (AS (B)) obtained from organ donors <65-years and >65-years old. Data are expressed as
mean ± SEM of the percentage of contraction induced by 125 mM K+ before the addition of YM-58483
or the vehicle (0.2% DMSO). n indicates the number of subjects. *** p < 0.001 vs. <65-years old;
† p < 0.05, ††† p < 0.001 vs. respective responses without YM-58483 by two-factor ANOVA followed by
Bonferroni’s correction. (C) Complete concentration–response curves of YM-58483-induced relaxation
in human AS and MA precontracted with NE obtained from organ donors. Data are expressed as
mentioned above. *** p < 0.001 vs. MA. Representative tracings of these responses in MA and AS are
shown in (D,E), respectively.

As the prevalence of diabetes mellitus and hypertension was significantly increased
in the older subject group, we further analyzed the effect of the STIM/Orai inhibitor on
the contractile responses induced by NE in the >65-year-old group only considering those
subjects without diabetes (Supplementary Figure S1C). The same was done when analyzing
the responses in the older group only considering those subjects without hypertension
(Supplementary Figure S1D). Interestingly, YM-58483 significantly inhibited adrenergic
contractions in both of the groups of subjects evaluated (Emax for NE: >65 without diabetes:
152.70 ± 17.98%, n = 6 vs. 58.87 ± 11.27%, n = 6 for >65 without diabetes + YM-58483,
p < 0.05; >65-years old without hypertension: 133.80 ± 8.57%, n = 3 vs. 72.57 ± 17.62% for
>65 without hypertension + YM-58483, n = 3, p < 0.05), reinforcing the concept that the role
of the STIM/Orai system in the hypercontractility of aged MA is not dependent on the
increased presence of hypertension or diabetes with aging.

Furthermore, the accumulative addition of YM-58483 (0.1 µM–30 µM) to pre-contracted
vascular segments provoked a concentration-dependent vasodilation in the MA, but this re-
laxation was almost absent in the aortic strips (Figure 1C). This observation can also be seen
in representative tracings of YM-induced relaxations in the MA and aorta (Figure 1D,E).
The quantification of YM-induced relaxations showed significant differences between the
two types of vascular vessels (Figure 1C).

3.2. Orai1 Expression Is Increased in Aorta Derived from Aged Subjects

Western blot was performed to assess the expression of STIM-1, Orai1, and Orai3 in
the aorta homogenates (Figure 2A). As illustrated in Figure 2C, the quantitative expression
of Orai1 was significantly increased in the aortae from older subjects in comparison with
those from younger subjects. In contrast, no significant changes in STIM-1 (Figure 2B)
and Orai3 expression (Figure 2D) were detected in the older subjects vs. the younger
ones. Supportive information for these assays is provided in the Supplementary Materials,
including a comparison of the β-actin expression between the younger and older subjects
(Supplementary Figure S2A), raw data confirmation of Orai1 overexpression in the older
subjects (Supplementary Figure S2B), and a representative complete immunoblot for Orai
detection in the tissue homogenates from the aortic strips from the younger and older
subjects (Supplementary Figure S2C). The increase in Orai1 protein expression in the
aorta was further confirmed through immunofluorescence detection. Orai1 was clearly
up-regulated in the aortic sections derived from older subjects when compared with the
younger ones (Figure 2E,F). When the Orai1 expression was represented against each
subject’s age, a significant and a positive association was detected (r2 = 0.325, p < 0.0001)
(Figure 2G). Furthermore, age was significantly associated with adrenergic contraction,
determined as the maximum response (Emax) to NE (Figure 2H). In contrast, no association
was observed between Orai1 and adrenergic vasoconstriction (Emax to NE) in the donor’s
aorta (r2 = 0.060, p > 0.05) (Figure 2I).
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Figure 2. Aging is associated with an overexpression of the Orai1 channel in human aortic strips. A 
Representative immunoblots for the detection of STIM-1, Orai1, and Orai3 and corresponding β-
actin in aortic strip homogenates from subjects <65-years and >65-years old. Quantification of 
expression assays for STIM-1, Orai1, and Orai3 are displayed in panels B, C, and D, respectively. 
Data are expressed as mean ± SEM of band intensities normalized by respective β-actin band 
intensities. n indicates the number of subjects. ** p < 0.01 vs. <65-year-old group by unpaired t-test. 
(E,F) Representative immunofluorescence images for the detection of Orai1 (green fluorescence) in 
cryosections of aortic strips from a 36 year-old subject and a 73 year-old subject, respectively. Nuclei 

Figure 2. Aging is associated with an overexpression of the Orai1 channel in human aortic strips.
(A) Representative immunoblots for the detection of STIM-1, Orai1, and Orai3 and corresponding
β-actin in aortic strip homogenates from subjects <65-years and >65-years old. Quantification of
expression assays for STIM-1, Orai1, and Orai3 are displayed in panels (B–D), respectively. Data
are expressed as mean ± SEM of band intensities normalized by respective β-actin band inten-
sities. n indicates the number of subjects. ** p < 0.01 vs. <65-year-old group by unpaired t-test.
(E,F) Representative immunofluorescence images for the detection of Orai1 (green fluorescence) in
cryosections of aortic strips from a 36 year-old subject and a 73 year-old subject, respectively. Nuclei
are counterstained in blue. Magnifications: ×200. (G) Simple regression analysis of individual values
of the Orai1 expression in human aortic strip homogenates with respect to the age of the subject from
which the tissue was obtained. (H) The association between adrenergic contraction determined as
the maximum response (Emax) to norepinephrine (NE) expressed as the percentage of K+-induced
contraction with respect to the age from the same subject. (I) Association between aortic Orai1
quantification and Emax to NE. Every point represents the averaged Emax value of the strips from one
single subject. Coefficients of determination (r2) and p values are indicated for each association (in
bold italic when significant).
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3.3. Human Aging Is Associated with an Increased Expression of STIM-1 and Orai1 in MA

STIM-1 and Orai1 proteins were immunodetected in human mesenteric arteries
(Figure 3A,D). Weak Orai3 protein immunodetection was observed in MA from subjects
<65-years old and in sections derived from the older subjects (Figure 3E,F). The quantifica-
tion of the fluorescence signal in MA showed a significant increase in STIM-1 (Figure 3G)
and Orai1 (Figure 3H) expression in the vessels from older subjects when compared with
the arteries derived from the younger ones. In contrast, Orai3 immunodetection was not
significantly modified by age, as no significant differences were observed between younger
and older subjects (Figure 3I).
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Figure 3. STIM-1 and Orai1 are up-regulated in human aged mesenteric arteries. Upper panel shows
the representative immunofluorescence images for detection (green fluorescence) of STIM-1 (A,B); Orai1
(C,D) and Orai3 (E,F) in cryosections of mesenteric arteries from organ donors younger than 65-years
old (A,C,E) and older than 65-years old (B,D,F). Nuclei are counterstained in blue. Magnifications:
×100. Quantification of expression assays for STIM-1, Orai1, and Orai 3 are displayed in panels
(G–I), respectively. Data are expressed as mean ± SEM of STIM/Orai arbitrary units of fluorescence
intensities normalized by number of nuclei. n indicates the number of subjects from which the tissues
were obtained for the experiments. * p < 0.05, *** p < 0.001 vs. <65-year-old group by unpaired t-test.

In addition, a potential relationship between the STIM/Orai expression and endothe-
lial function in MA was evaluated. In this sense, when individual relative immunofluo-
rescence values of STIM-1, Orai1, and Orai3 proteins were plotted against endothelium-
dependent vasodilation, represented as pEC50 for the BK of each subject, a significant
negative correlation was obtained for the STIM-1 (r2 = 0.335, p < 0.05) and Orai1 expression
(r2 = 0.419, p < 0.05), but not for Orai3 (r2 = 0.109, p > 0.05) (Figure 4A,C).
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determined as –log molar of concentration required to obtain 50% relaxation (pEC50) for bradykinin
(BK) in isolated mesenteric arteries obtained from the same subject. Coefficients of determination
(r2) and p values (in bold italic when significant) are indicated for each association. n indicates the
number of subjects for the determinations.

3.4. Plasma Orai1 Concentrations Are Associated with Age-Related Circulating Markers of
Endothelial Dysfunction and Inflammation

To assess the possible association of Orai1 with markers of endothelial dysfunction
and inflammation, which are closely related to the aging process, the plasma concentrations
of Orai1, asymmetric dimethylarginine (ADMA), and tumor necrosis factor-α (TNF-α)
were determined in the samples derived for organ donors. Concentrations of Orai1 in
donors’ plasma were related to endothelial dysfunction, as suggested by the positive
and significant correlation of these concentrations with ADMA levels (Figure 5A). In a
similar way, circulating Orai1 was positively correlated with plasma concentrations of the
inflammatory factor TNF-α (Figure 5B).
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4. Discussion

The results of the present study show, for the first time, that Orai1 is a potential marker
of vascular functional alterations associated with human aging in the microvasculature.
This is supported by the fact that the inhibition of the STIM/Orai system reduced significant
aging-related hypercontractility in small mesenteric arteries. This functional relevance is
further associated with an increase in STIM-1 and Orai1 channel subtype expression in
small mesenteric arteries from older subjects, which were both negatively correlated with
impaired endothelium-dependent vasodilation. In addition, the plasmatic concentration of
Orai1 was positively associated with age-related markers of endothelial dysfunction and
inflammation. Interestingly, although Orai1 was upregulated in the aortic strips derived
from older organ donors, no functional relevance of this system was evidenced.

The impact of aging on vasculature plays a prominent role in the morbidity and
mortality of older subjects. In fact, aging is considered the principal cardiovascular risk
factor [27]. Endothelial dysfunction is considered one major age-related phenotype that
is responsible for CVD development [28]. Consistent evidence has reported impaired
endothelium-dependent relaxation in the macro and microvasculature of aged animal
models and of older adults [4–6,29]. Importantly, an altered vessel contraction function
is also present in aging [22]. In line with this, the detected adrenergic hypercontractility
in the mesenteric arteries and aorta derived from old organ donors is consistent with
previous reports in humans and aged rats [8–10,23]. The increase in contractions elicited
by norepinephrine was not accompanied by significant alterations in contractile responses
to a high concentration of potassium, which probably suggests that aging does not seem
to modify this specific type of contractile response. This is in agreement with previ-
ous observations [9] and allows for using K+-induced contractions to normalize agonist-
induced contractions.

Vasoconstriction is triggered by an increase in the intracellular-free calcium concen-
tration [30]. One of the most ubiquitous regulated means of Ca2+ influx into cells is the
store operated Ca2+ entry (SOCE) pathway mediated by STIM and Orai proteins [18].
Compelling evidence supports the idea that SOCE pathway dysregulation seems to play
an important role in the development of vascular alterations [31], including cellular re-
modeling [32] and increased vascular contractility [20]. Furthermore, one of the prominent
changes of aging is the effect on Ca2+ signaling [33]. In this sense, Rubio et al. reported
increased phenylephrine-induced contractions in mesenteric arteries, which was accompa-
nied with abnormal calcium handling in aged rats [34]. Importantly, very little is known
regarding how aging impacts STIM/Orai activity at a vascular level, as well as its key role in
aging-related vascular alterations. In line with this, an increased contribution of STIM/Orai
signaling to aging-related hypercontractility together with Orai3 upregulation in the corpus
cavernosum and penile resistance arteries derived from older subjects has recently been
reported. These observations were extended to the corpus cavernosum of aged rats [23].
Despite not evaluating the same vascular bed, similar results were observed in our study
regarding the enhanced contribution of STIM/Orai to hypercontractility associated with
aging in the human microvasculature. In fact, the antagonism of STIM/Orai significantly
and completely inhibited age-related hypercontractility in small mesenteric arteries, as
evidenced by the magnitude of the inhibitor effect exerted by YM-58483 in vessels derived
from subjects older than 65 when compared with vessels obtained from younger subjects
(Figure 1A). Moreover, the antagonism of the STIM/Orai system reveled that Orai channels
contributed to aging-related hypercontractility, regardless of the presence of diabetes and
hypertension conditions in the sample (Supplementary Figure S1C,D). Furthermore, and
supporting functional evidence, the addition of the YM-58483 produced concentration-
dependent relaxation in the precontracted MA but not in the aortic strips (Figure 1C). In
contrast, in the aortic strips, despite presenting an enhancement of norepinephrine-induced
contraction, YM-58483 had no effect on these responses, suggesting the absence of func-
tional relevance of STIM/Orai signaling in the contractility of this specific type of tissue
(Figure 1B). In addition, these results support that the impact of aging on calcium signaling
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is largely different in the mesenteric arteries and aorta, which is consistent with previous
evidence regarding aged rats [22], and supports the previously described heterogeneous
impact of aging on vascular function depending on vascular territory [9,10].

The role of the STIM/Orai signaling system in enhanced agonist-induced hypercon-
tractility related to age is further supported by the impact of aging on the expression
of STIM/Orai proteins in small mesenteric arteries (Figure 3). Interestingly, expression
levels of the Ca2+ sensor STIM-1 and calcium channel subtype Orai1 were increased in
this vascular territory, as revealed by the immunofluorescence assays. An increased Orai1
expression is consistent with previous evidence regarding the mesenteric arteries of aged
rats, but no increase in the STIM-1 expression was observed in contrast with our human
evidence [22]. The latter reflects that the impact of aging is different according to the species
evaluated and the importance of validating the findings obtained from animal models
in humans. STIM-1 and Orai1 are the elements of the STIM/Orai system most involved
in vascular physiology and pathophysiology. However, while some evidence points to
the involvement of Orai3 in cardiovascular pathophysiology, there is scarce evidence on
the relevance of Orai2 in vascular physiology/pathophysiology, and its role needs to be
determined [17]. Furthermore, we previously reported that Orai3 was overexpressed in
the human corpus cavernosum in physiologic aging [23], while both Orai1 and Orai3 were
upregulated in the cavernosal tissue from men with erectile dysfunction [26]. Based on this
previous evidence, we focused in the assessment of STIM-1, Orai1, and Orai3 expressions
in human micro and macrovasculature in the context of aging. Our results point to STIM-1
and Orai1 upregulation as the main alteration in the STIM/Orai system with aging in
mesenteric microvessels.

Importantly, STIM-1 and Orai1 relative fluorescences were significantly associated
with another major characteristic of vascular aging, impaired endothelium-dependent
vasodilation, which is considered the harbinger of cardiovascular disease development [28],
as supported by simple regression analyses in the human mesenteric arteries (Figure 4). This
suggests that there is an association between the aging-related increase in the STIM/Orai
vascular expression and the development of microvascular dysfunction. With respect to
the potential association of Orai inhibition with endothelial function, some considerations
should be taken. Fine mutual regulation of calcium activated potassium channels (KCa)
and calcium channels has been proposed. KCa are activated by Ca2+. This activation
promotes hyperpolarization of excitable cells, such as vascular smooth muscle cells, closing
voltage-gated calcium channels and thus reducing intracellular Ca2+. However, KCa also
activates non-voltage gated Ca2+ channels (such as Orai), mainly in non-excitable cells such
as endothelial cells [35]. Thus, the Orai–KCa interaction could represent both negative and
positive feedback loops. KCa participates in endothelium-derived hyperpolarizing factor
(EDHF)-mediated vasodilation [36], which accounts for endothelial vasodilation in small
size arteries such as human mesenteric microvessels [37,38]. Potentially, the reduction
of intracellular calcium by Orai inhibition could result in reduced KCa activation and
impaired EDHF-mediated vasodilation. This seems to not be an important mechanism in
our preparations as a lower expression of Orai1 in mesenteric arteries is related to better
endothelial vasodilation. However, further research directed to evaluate the influence
of STIM/Orai inhibition on endothelial function and, specifically on EDHF-mediated
vasodilation, is warranted.

Interestingly, although the STIM/Orai inhibitor had no effect on aging-related hyper-
contractility in aortic specimens, a significantly increased expression of Orai1 was detected
in aortic homogenates derived from older subjects. The latter was further confirmed by
immunofluorescence assays. Furthermore, although the Orai1 expression was positively
related to increased age, and despite observing a significant correlation between increased
contraction to adrenergic stimulation and age, Orai1 was not associated with the hypercon-
tractility observed in this specific vascular tissue (Figure 2). This points to the fact that the
parallel increases in the aortic Orai1 expression and NE-induced contractions with aging are
not functionally related. It is of importance to note that although the STIM/Orai calcium
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entry system does not seem to have functional relevance in age-related hypercontractility
in this macrovascular territory, we cannot discard a possible pathophysiological role of this
system. In fact, upregulation of the STIM/Orai system in vascular pathophysiology has
been mostly associated with an increase in vascular proliferation and remodeling [32,39],
which are features of macrovascular aging [40].

Taking into account that it is not easy to determine vascular function in a clinical
scenario, the exploration and search for novel biomarkers that reflect vascular performance
have attracted much interest. In line with this, we evaluated the association between
the plasmatic concentrations of Orai1 and two known biomarkers, ADMA and TNF-
α, involved in vascular aging [7]. In line with this, higher plasmatic concentrations of
ADMA, an endogenous inhibitor of the endothelial nitric oxide synthase, and of TNF-α, a
biomarker of inflammation that plays an important role in endothelial dysfunction and in
the development and progression of atherosclerosis [41], have been previously observed to
be related to impaired endothelial function in humans [9]. In the present study, we detected
a significant and positive association between Orai1 circulating levels with ADMA levels
or with TNF-α in organ donors (Figure 5). Taken together, these results suggest that Orai1
may represent a potential biomarker of vascular alterations with aging.

5. Conclusions

In this paper, we show for the first time that aging-induced hypercontractility is related
to functional enhancement of the STIM/Orai calcium entry system in the human microvas-
culature, as evidenced by a significant reduction in adrenergic-induced contractions in
the presence of the STIM/Orai inhibitor in small mesenteric arteries derived from aged
organ donors. In addition, STIM-1 and Orai1 protein expressions were upregulated in
small arteries and were negatively correlated with endothelial vasodilation. Furthermore,
Orai1 was positively associated with markers of inflammation and endothelial dysfunction
that are closely related to age. In contrast, despite detecting an increase in Orai1 expression
in aortic strips derived from aged subjects, no functional relevance for STIM/Orai was
observed in the contractility of this large vessel. These results suggest a specific role of the
STIM/Orai system in aging-related microvascular dysfunction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11223675/s1, Figure S1: Functional effects of STIM/Orai
inhibition on aging-related hypercontractility is not dependent on gender and is not related to
diabetes or hypertension; Figure S2: Supportive information on the overexpression of Orai1 in aortic
tissue from older subjects.
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