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Abstract: Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however,
for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after
a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA dam-
age response (DDR) displayed dose proportionality, many other molecular and cellular responses
did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and
large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the
G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA
double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration
in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner
without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation
of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, gly-
colysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species
(ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently
activated after HD. However, how and to what extent the observed dose-dependent differences in
molecular and cellular responses may impact cancer development remain unclear, as the induction of
chromosomal damage was found to be dose-proportional (10–200 mGy).

Keywords: ionizing radiation; low dose; linear no-threshold; signal transduction; cell signaling; DNA
damage response; phosphoproteomics; mitochondria; reactive oxygen species; antioxidant response

1. Introduction

Epidemiological studies provide strong evidence for the increased risk of developing
solid cancers or leukemia from high doses (HD) of ionizing radiation (IR) [1]. Cancer risk
after exposure to low doses (LD) of IR (<0.1 Gy) is assumed to be linear with the dosage,
without a threshold, but definite evidence is lacking [2]. This outstanding issue is of
societal importance because of growing concern over increased cancer risk for people from
occupational and medical exposure to LD [3–6]. A notable example of adverse health effects
is the very high proportion (>90%) of therapy-related (including radiotherapy) adverse
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health effects in survivors of pediatric cancers, including a broad spectrum of second
primary tumors by the age of 45 years [7,8]. The uncertainty and controversy regarding LD
health risks are primarily due to an insufficient mechanistic understanding of the molecular
effects of LD exposure on cells, tissues, and organisms [9,10]. Stem and early progenitor cells
are considered cells of origin for radiation-induced carcinogenesis, owing to their replicative
potential and long lifespan in the organism [11]. Increasing evidence suggests that stem cells
display distinct responses to low versus high-dose IR, including activation thresholds for
proliferation and differentiation [12], the dose-dependent integration of extrachromosomal
DNA after LD [13], low-dose-specific hyper-radiosensitivity [14], persistent oxidative stress
and decreased self-renewal [15] and the selective stimulation of proliferation based on their
p53 mutation status [16]. The survival/persistence of normal tissue stem cells with residual
DNA damage may increase the risk of second primary tumors.

IR exposure in cells induces various types of DNA damage (lesions) either directly
through energy deposition in the DNA or indirectly through reactive oxygen species (ROS)
generated by the radiolysis of water molecules in cells [17]. Although DNA damage in-
duction is linear with dose [18], ROS induction is non-linear and is enhanced specifically
after LD exposure [12,15,16,18–21]. The crucial role of DNA damage in radiation carcino-
genesis has been well established [22]. DNA double-strand breaks (DSBs) and clustered
damage, comprising any induced lesion type in proximity to other induced lesions, are
considered the most relevant forms of DNA damage for IR-induced cancers [23]. Upon
DNA damage infliction, cells activate the DNA damage response (DDR), an extensive
network of intracellular responses [24,25]. The DDR is initiated upon DNA damage de-
tection by sensor proteins, which subsequently activate signaling cascades that guide
downstream cellular processes, including transcription and replication, DNA repair, cell
cycle arrest, differentiation and apoptosis. Protein phosphorylation plays a crucial role in
sculpting DNA-damage-induced signaling cascades with protein kinases and phosphatases
(de)phosphorylating a plethora of substrates. ATM, ATR and DNA-PKcs kinases (phos-
phoinositide 3-kinase (PI3K)-related kinases family members) play a pivotal role in DDR
activation in mammals [26].

Dose-dependent differences in phosphorylation signaling are likely to critically mod-
ulate the magnitude and complexity of cellular responses after LD and HD. Phospho-
proteome responses have been established for various DSB-inducing agents, such as
HD IR [27–29], the topoisomerase inhibitor etoposide [30] and the radiomimetic chem-
ical NCS [31]. In response to these treatments, activation of the ATM kinase is a major
event leading to altered phosphorylation states in numerous substrates [27,32]. Further-
more, sustained ATM activity is required to maintain many ATM-dependent phospho-
rylations [31], implicating the high activity of counteracting phosphatases. Additionally,
studies [28,31] have reported a substantial number of ATM-independent phosphoryla-
tion events, highlighting the involvement of several other kinases, such as ATR, DNA-
PKcs and CSNK1A1/CSNK2A1 in DNA damage signaling. Bioinformatic analyses of
HD-activated phosphoproteomes identified various affected cellular processes, including
transcription and RNA processing, chromatin remodeling, DNA repair, cell cycle check-
points and apoptosis [28,29,31]. These studies, however, represented either a snapshot of
the phosphoproteomic changes at a single time point or were restricted to (S/T)Q motif-
containing phosphosites or phosphosites in nuclear proteins. At the transcriptional level,
ATM-activated Tp53 coordinates the regulation of several genes in the Tp53 signaling
pathway [33–38]. It is, however, unclear to what extent low-dose irradiation affects global
phosphorylation signaling cascades and de novo transcription, as these have scarcely
been investigated [39,40].

In this study, we examined the IR dose–response relationship by performing an
integrated in-depth systems analysis with a high temporal resolution to decipher molecular
mechanisms underlying the cellular responses to low (0.1 Gy) (LD, 2–4 DSBs per cell)
and high (1 Gy) (HD, 20–40 DSBs per cell) doses of X-rays [41] in mouse embryonic stem
cells (mESCs). We explored the impact of IR dosage on the dynamic properties (duration,
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amplitude and kinetics) of phosphorylation signals and investigated how these signaling
events were affected when DSB repair was impaired by employing DSB repair-deficient
(DRD) cell lines.

2. Materials and Methods
2.1. Cell Culture, Protein Labelling and Irradiation

The following mouse embryonic stem cell lines (mESC) (Cat# ATCC® SCRC-1010™;
LGC Standards GmbH, Wesel, Germany) were used: IB10 (E14.IB10) wild-type (wt), IB10
Lig4−/− and IB10 Xrcc5−/− [42,43]. Cell lines were cultured, passaged and triple-SILAC
labelled according to our previously published protocol [44] with minor modifications, as
follows. Cells were grown on top of a monolayer of lethally irradiated mouse embryonic
fibroblasts for four passages and were subsequently passaged without feeders for a total
of seven passages to complete SILAC labelling. The medium was washed from the cells
with PBS (Cat# 14190086, Life Technologies, Carlsbad, CA, USA). Single-cell suspensions
were produced using Trypsin-EDTA (0.05%) (Cat#25300-054, Life Technologies, Carlsbad,
CA, USA). Cell lines were frequently verified to be mycoplasma-free. DNA damage was
inflicted by exposing cells to 0.1 Gy of X-rays (dose-rate 0.1 Gy/min) for LD and to 1 Gy
(dose-rate 1 Gy/min) for HD using the YXlon X-ray generator (YXLON International X-Ray
GmbH—Hamburg, Germany, 200 KV). The culture dishes were placed on top of the inner
chamber at the designated location during each irradiation event for both low- and high-
dose exposures to prevent variations in the source–sample distance. We altered only the
amount of current delivered to the X-ray generator to achieve either a low or a high dose
while keeping all other parameters constant, including the source–sample distance and the
time of exposure to IR.

2.2. Phosphoproteomics and Mass Spectrometry Measurements

Samples were prepared according to our previously published protocol [45]. Briefly,
proteins in cell lysates were digested into peptides using trypsin/lys-c mix (Cat# V5072,
Promega, Leiden, The Netherlands) in 500 µL of 10% trifluoroethanol (TFE; Cat# 05841-50
mL, Sigma, Amsterdam, The Netherlands) buffer. Subsequently, the digested peptides
were diluted 3.2-fold to reach a final volume of 1.6 mL with final concentrations of 50%
acetonitrile (can) and 6% trifluoroacetic acid (TFA) buffer with potassium salts (0.3 M
KCl and 0.005 M KH2PO4), were enriched for phosphopeptides using TiO2 beads (Cat#
5010-21315, GL Sciences, Eindhoven, The Netherlands), were washed six times with 60%
ACN and 1% TFA, were subsequently eluted using a 25% ammonia solution in 40% ACN
and were lyophilized and stored at −80 ◦C until MS measurement. Phosphopeptides were
analyzed in a Q-Exactive or Q-Exactive HF instrument (Thermo Fisher Scientific, Bremen,
Germany) using a 4.5 h gradient in a data-dependent Top10 MS acquisition method using
one full scan (300–1750 m/z, MS resolution 120,000) and a set target of 3 × 106 ions. The ions
were fragmented with higher-energy collisional dissociation (HCD) and were analyzed by
data-dependent MS/MS scans with the following parameters: a target of 2 × 105 ions, a
maximum ion fill time of 108 ms, an isolation window of 1.3 m/z, a normalized collision
energy (NCE) of 28% and an MS/MS resolution of 60,000). Dynamic exclusion for 20 s was
enabled to prevent the repeated sequencing of peptides.

2.3. MS Bioinformatics and Data Analyses

MS bioinformatics and data pre-processing were performed as described previously [45].
Principle component analysis (PCA) was performed in the Perseus environment by median
averaging the phosphosites and by imputing missing values from the normal distribution
(width = 0.5 and downshift = 1.5). Imputation was performed only for PCA, and for all
other analyses, imputation was not performed. To identify responsive phosphosites, we
separated the LD and HD data and used a combination of two criteria, with the first being
having a significant response (Analysis of Variance (ANOVA; FDR < 0.05)) and the second
crossing a 1.5-fold change cut-off. For the analyses presented in Figures related to wt
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cells, LD (ANOVA; FDR < 0.05, df = 8, F = 28,268) and HD (ANOVA; FDR < 0.05, df = 8,
F = 28,206) responsive sites were identified by combining significant ANOVA sites with
those that passed a 1.5-fold change in 3/6 replicates. For the analyses presented in Figures
containing data from DRD cell lines, LD (ANOVA; FDR < 0.01, df = 21, F = 35,291) and HD
(ANOVA; FDR < 0.01, df = 21, F = 35,231) responsive sites were identified by combining
significant ANOVA sites with those that passed a 1.5-fold change in 4/6 (wt cells) or 4/4
(DRD cells) replicates. For all statistical tests, unless otherwise indicated, a permutation-
based FDR was calculated and filtered to retain those with an FDR below 0.05. Cluster
analysis (hierarchical clustering) was performed using z-scored data without changing the
pre-set parameters of Perseus.

2.4. Cloud-Enabled High-Performance Computing (cHPC)

Cumulative phosphoproteome analysis (CPA) was performed in a cHPC cluster (Surf-
Sara) as described previously [45]. Briefly, all the datasets [46–48] were downloaded onto
the cloud server and were searched using MaxQuant in a Windows 10 virtual machine
with 64 cores and 150 GB of RAM. Searches were performed by grouping SILAC samples
and label-free samples as separate groups with either SILAC labels turned ON or OFF,
respectively. Match between runs (MBR) was performed by carefully labelling raw files
of bRP-proteome fractions, SCXPhos fractions and single-shot experiments with distinct
fraction numbers to prevent matching between these experiments.

2.5. BrU-Seq Sample Preparation

Bru-seq experiments were carried out as published previously [49] (Paulsen et al., 2103).
Briefly, bromouridine (BrU) was added to the culture media at a final concentration of
2 mM, and the dishes were returned to a CO2 incubator at 37 ◦C for 30 min to label the
nascent RNA. Labeling was performed in the last 30 min of the corresponding incubation
times for each experiment. Cells were trypsinized, and collected pellets were frozen in
liquid nitrogen and kept frozen at −80 ◦C until use. From then on, the BrU-seq protocol
was applied. Cell pellets were then lysed in Trizol, total RNA was isolated and BrU-RNA
was immunoprecipitated using anti-BrdU antibodies (Cat#555627, BD Pharmingen, San
Diego, CA, USA). We prepared strand-specific DNA libraries (Cat# RS-122-2001, TruSeq
kit; Illumina, San Diego, CA, USA). Samples were then deep sequenced using Hiseq 2500
sequencers (Illumina, San Diego, CA, USA).

2.6. BrU-Seq Bioinformatics and Data Analysis

RNA-seq data containing strand-specific single-ended 52 bp sequencing reads were
aligned to mouse ribosomal DNA complete repeating units (GenBank BK000964.1) us-
ing Bowtie (v0.12.8; parameters: n3, k1 and m1), and matching results were discarded.
Unaligned reads were then mapped to the mouse genome (mm9) using TopHat (v1.4.1; pa-
rameters: min-isoform-fraction 0, max-multi-hits 1, no-closure-search, no-coverage-search,
bowtie-n and initial-read-mismatches 3). We calculated Reads Per Kilobase per Megabase
(RPKM) of the library size using the methods described in [50]. Briefly, a meta-transcript
was created by merging all isoform exons with all mapping reads counted, and it was
normalized (size of both the meta-transcript and the library). DESeq (v1.26) in R statistical
software (v3.3.1) was used to determine fold-change by comparing controls and irradiated
samples per time point. The data were filtered to contain only NTs that passed an FDR
of 0.1, a mean RPKM ≥ 0.5 and a gene length > 300 bp. Furthermore, we removed 14
genes that passed this data filtering criterion but that had quantification values only in one
experiment, thus lacking dynamic data from further data processing steps.

2.7. Pathway, Motif and Enrichment Analyses

The identification of enriched pathways from IR-responsive NTs was achieved by
the “Expression Analysis” module of Ingenuity Pathway Analysis (IPA, Qiagen) software.
To identify key transcription factors upstream of the transcriptional events, we used the
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“upstream analysis” module of IPA. We used a z-score of 2 (activation) and −2 (inhibition)
as threshold values to call significant activation or inhibition, respectively. Significant
entities (pathways and transcription factors) represent those with a Benjamini–Hochberg
FDR correction value below 2 (−log 10).

We used IceLogo [51] to identify significantly (p-value < 0.05) overrepresented motifs.
Amino acid sequences of the total phosphosites from either individual samples or the entire
phosphoproteome dataset were used as background depending on the analyses performed.

For phosphoproteomes, protein-level gene ontology (GO) enrichments were per-
formed using Reactome pathways (FDR < 0.05), and phosphosite-level pathway enrich-
ments were performed using IPA. For nascent transcriptomes, ChIP enrichment analysis
(ChEA; ver 2016) was performed using the Enrichr web tool [52], and GO analysis was
performed using Reactome pathways (FDR < 0.05).

2.8. High-Throughput (HM) Microscopy Experiments

For mitotic index HM experiments, cells were trypsinized and collected by centrifuga-
tion (800 rpm for 8 min) in 15 mL tubes. Pellets were subsequently broken by tapping. An
amount of 5 mL of cold hypotonic solution (0.4% sodium citrated (Na3C6H5O7) and 0.4%
KCl) was added slowly while vortexing at 800 rpm, and the samples were incubated for
10 min at RT. Subsequently, samples were pelleted by centrifugation (800 rpm for 8 min),
the supernatant was discarded, pellets were broken by tapping and cells were fixed by
adding 5 mL of fixative (methanol: acetic acid at a ratio of 3:1) drop by drop (1, 2, 3, 4, 5, 6,
7, 8, 9 and 10 drops and then 0.5 mL at a time) while vortexing. Cells were then centrifuged
(800 rpm for 8 min), the supernatant was discarded, and pellets were broken by tapping
and were fixed two more times. Pellets were subsequently prepared for slide dropping
with 10–20 drops of fixative to achieve a suitable cell density and were dropped on slides
(3–4 drops per slide). Cells were then stained with DAPI for 10 min and were mounted
with Aqua-Polymount. Metafer software (MetaSystems, Newton, MA, USA) was used to
analyze both mitotic cells. LD and HD data were separated, and wt cells were compared
with Lig4−/−, Xrcc5−/− and PPP1R7 S12A−/− clone A20. Significant differences were
determined using a 2-way ANOVA and a post hoc Dunnett’s statistical hypothesis testing
with a p-value cut-off set at <0.05 and a 95% confidence interval (CI).

For micronuclei HM experiments, cells were treated with Cytochalasin B (3 µg/mL)
for 16 h to obtain bi-nucleated cells. Cells were then treated with cold hypotonic solution
(5.6 g/L KCl in water) and were fixed using the fixative (methanol: acetic acid at a ratio
of 4:1). All slides were stained with DAPI (1 µg/mL in PBS) for 10 min, rinsed in water,
dehydrated, and embedded with City Fluor. Bi-nucleated cells were analyzed for the
presence of micronuclei and scored up to 2000 binucleated cells per slide.

2.9. High Content-Analysis (HCA)

For high content-analysis (HCA), 60,000 cells were seeded per well in mESC medium
in 96-well plates in six replicates per condition. Thirty minutes before radiation or mock-
treatment, 5-Ethynyl deoxyUridine (EdU 0.5 µM) and nocodazole (100 ng/mL) were added
to the medium to label S phase cells to arrest cells in the G2-M phase. After post-treatment
incubation, the medium was decanted, and cells were fixed with 4% formaldehyde for
15 min. Cells were then permeabilized (0.5% Triton x−100 in blocking buffer (10% Roti
immunoblock (Cat#T144.1; Carl Roth GmbH, Karlsruhe, Germany) in PBS) for 15 min,
were blocked with blocking buffer for 15 min and were stored in PBS at 4 ◦C until staining
was performed. Immunostaining was performed by incubation with either rabbit anti-
53bp1 (Cat# NB100–304, Novus biologicals, Littleton, CO, USA) or rabbit anti-pS15-p53
(Cat#9284S, Cell Signaling Technology, Danvers, MA, USA)—both at a 1:1000 dilution—for
2–3 h at RT together with mouse anti-cyclin B1 (1:100 dilution; Thermo Fisher scientific,
Waltham, MA, USA), two washes with blocking buffer and incubation with secondary
anti-mouse Alexa Fluor 488 (A-11034) and 594 (Cat# A-11032 Thermo Fisher scientific,
Waltham, MA, USA). EdU staining was performed using the Click-it EdU imaging kit (Cat#
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C10340, Thermo Fisher scientific, Waltham, MA, USA) according to the manufacturer’s
protocol. Nuclei were stained with DAPI, and cells were stored in PBS at 4 ◦C until being
analyzed by Cellomics (Thermo Fisher scientific, Waltham, MA, USA).

2.10. High-Throughput Cellular Bioenergetics (HCB)

High-throughput cellular bioenergetics (HCB) experiments were performed as pub-
lished previously [53] with minor modifications for mESCs. Briefly, 100,000 cells were
seeded per well (pre-coated with 0.1% gelatine) in XF medium (100 mL of RPMI-1640
medium with L-glutamine, without glucose and sodium bicarbonate; Sigma, Amsterdam,
The Netherlands) supplemented with 5.5 mL FBS, 0.25 mL β-mercaptoethanol (Cat# Gibco
31350010, Thermo Fisher scientific, Waltham, MA, USA) and 11 µL leukemia inhibitory
factor (LIF) (Cat# ESG1107, Millipore, Burlington, MA, USA). In all experiments, cells were
plated in 180 µL XF medium, were centrifuged to obtain a monolayer and were incubated
in a CO2-free incubator at 37 ◦C for 1.5 h before measurements. The following chemicals
were added to the drug ports of the cartridge to perform four different conditions per
well: 20 µL of 100 mM D (+)Glucose (100 g/L = 0.55 M; (Cat# G8644-100 mL, Sigma,
Amsterdam, The Netherlands)), 22 µL of 10 µM Oligomycin A 1 mg (Cat# 11342, Cayman
Chemical, Ann Arbor, MI, USA)) and 25 µL of 30 µM carbonyl cyanide 4-(trifluoromethoxy)
phenylhydrazone (FCCP, (Cat# C2920-10 MG, Sigma, Amsterdam, The Netherlands)) to
ports A, B and C, respectively. In port D, 28 µL of 10 µM Rotenone 1 g (Cat# R8875-1
G, Sigma, Amsterdam, The Netherlands) and 28 µL of 10 µM Antimycin A 25 mg (Cat#
A8674-25 MG, Sigma, Amsterdam, The Netherlands) were added. The chemicals were
injected automatically through the drug ports at different time points, and bioenergetics
measurements were performed for different time points. Extracellular acidification rates
(ECAR) were measured with a metabolic flux analyzer (96 XP; Seahorse Bioscience, North
Billerica, MA, USA). Data were visualized, inspected and quality controlled using wave
software (v2.6.0) and were exported to Prism (GraphPad, v7.02) for further downstream
analyses. Significance was determined by performing a one-sample t-test to compare the
medians of ECAR/OCR measurements to a hypothetical value of 100 with a significance
level (alpha) set at 0.05.

2.11. Proliferation Assays

Long-term proliferation experiments were performed by repeatedly plating 5 million
cells per 10 cm dish. After plating, cells were irradiated and allowed to grow for 24 h. Cells
were counted using a Coulter counter, and the population doubling time was determined.

For determining subtle differences in proliferation rates, IB10 wt, Polq−/−, Lig4−/−

and Xrcc5−/− cells were seeded in an equal ratio (1:1:1:1), and long-term proliferation
experiments were performed as described above. Restriction fragment length polymor-
phism (RFLP) assays were carried out as described previously [42]. Briefly, cell pellets were
collected at every passage of proliferation experiments and were kept frozen at −80 ◦C
until use. DNA was isolated from the mixed population of Polq−/−, Lig4−/− and Xrcc5−/−

cells, and PCR analysis was performed. Cell lines were identified based on the loss of a
unique restriction site in the knockout clones (Figure S4D). Proportions of Polq−/−, Lig4−/−

and Xrcc5−/− cells in the mixed cell population over time were calculated using Image
Studio Lite Ver 5.2 (LI-COR Biosciences, Lincoln, NE, USA) (Figure S4C).

2.12. Gene Editing Using CRISPR-Cas9

For CRISPR/Cas9-mediated phosphosite mutations of PPP1R7, two oligos of sgRNAs
were cloned into pX458 plasmids by annealing, phosphorylation, and ligation reactions.
The plasmids containing sgRNAs were subsequently transformed into Dh5alpha, and the
plasmids were isolated using a miniprep kit and were verified by sequencing. Briefly,
8 million cells were transfected in suspension after trypsinization for 30 min at 37 ◦C
and were subsequently seeded onto gelatine-coated dishes. Cell transfections were per-
formed by mixing 700 µL Opti-MEM medium, 42 µL Lipofectamine 3000 (3:1 lipofectamine:
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DNA ratio; Cat# 15282465, Invitrogen, Waltham, MA, USA), 28 µL p3000-reagent and
14 µg DNA (8 µg ssODN, 3 µg plasmid containing sgRNA and 3 µg Rad51 cDNA (MGC
mouse Rad51 cDNA CloneId:4951015) containing plasmid (glycerol stock: Cat# MMM1013-
202767140, Dharmacon, Lafayette, CO, USA)). Sequences of ssODN and sgRNA are shown
in Figure S3J. After transfection, cells were sorted by flow cytometry (top 10–15% of the
parent GFP expressing cells) to select cells that contained pX458 plasmid; GFP positive cells
were seeded at 4000 cells per 10 cm dish to pick colonies to grow in 96-well plates. Each
clone was subsequently sequenced to determine the mutation.

3. Results
3.1. High-Temporal-Resolution Map of the Dose-Dependent Phosphoproteome after IR

To determine the temporal dynamics of global phosphoproteome changes after LD
and HD, as a part of our systems analysis (Figures S1 and S2), we irradiated SILAC-labeled
wild-type (wt) mESCs and collected cell lysates at nine different time points. We profiled the
phosphoproteomes using a high-throughput phosphoproteomics (HighPhos) method [45]
in six biological replicates per condition (Figure S1D) and quantified a total of 28,298 distinct
phosphosites (25,989 Class I phosphosites) (Figure 1A).
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Figure 1. IR dose-dependent phosphoproteome dynamics: (A) Statistics of phosphosites quantified in
IB10 mouse ES cells. Phosphosites quantified and those that responded to DNA damage are depicted
in the top and bottom bars, respectively. Light bar indicates total phosphosites and the dark bar
indicates class I phosphosites (>0.75 phosphosite localization probability). (B) Principal component
analysis (PCA) map of log2 SILAC ratios of total responsive phosphosites after LD (orange dots)
and HD (blue dots) exposure over unirradiated controls. Four groups are readily visible. (C) Venn
diagram of 9205 phosphosites that responded to LD (orange circle) and HD (blue circle). (D) Temporal
dynamics showing the timing of phosphoproteome changes in LD- and HD-exposed mESCs. (E) Bar
charts showing quantifications of ATM phosphosite pS1987 in response to LD and HD. Dots and
bars represent quantifications and median values of up to six replicates, respectively, and error bars
represent a 95% confidence interval (CI). (F) Density plot showing the distribution of the magnitude
of global phosphoproteome changes in LD- and HD-exposed cells.

Principal component analysis (PCA) of HighPhos datasets segregated the dataset into
four groups: early (5 s and 30 s), intermediate (5 m, 30 m, 4 h, and 8 h), transient (1 h and 2 h)
and late (24 h) responsive groups. The transient and intermediate groups further showed
dose-dependent segregation (Figure 1B). In total, 9205 phosphosites (in 2395 proteins)
were IR-responsive, of which 5153 (~56%) contained two or more phosphorylated amino
acid residues. A total of 1714 (on 938 proteins) and 2487 (on 1196 proteins) phosphosites
responded specifically to LD and HD, respectively (Figure 1C), and 5004 phosphosites (on
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1604 proteins) responded to both LD and HD, revealing high similarity to the extent of
phosphoproteome responses to LD and HD. The pathway analysis of phosphoproteins
that contained LD-specific, HD-specific or shared phosphosites uncovered numerous terms
related to the cell cycle, DNA damage response (DDR) and apoptosis without any dose-
specific terms (Supplementary Table S1).

The experimental setup with six biological replicate exposures allowed us to quantify
very early global phosphoproteome changes after LD and HD. Although about half of
the phosphoproteome changes occurred within 30 s after LD exposure, it took more than
30 min to reach this proportion after HD exposure. However, irrespective of the applied
dose, about 80% of the phosphoproteome changes occurred within the first two hours after
IR (Figure 1D). The phosphorylation states of regulatory phosphosites of DDR kinases,
including ERK1/2, mTOR and p38MAPK, were altered almost instantaneously (5 and
30 s) after both LD and HD (Figure S2D). Although several DNA-damage-sensing proteins,
including ATM, have been reported to be activated within seconds after irradiation [54,55],
the enhanced auto-phosphorylation of S1987 of ATM was not observed at those early
time points either after LD or HD (Figure 1E). Moreover, differences in phosphorylation
amplitude between LD and HD were not manifest for most of the phosphorylation changes
over the entire post-radiation time period (Figure 1F). A dose of 0.1 Gy was sufficient
for most phosphorylation events to reach their maximal magnitude, indicating that dose-
dependent phosphorylation events after IR-exposure are relatively rare. Additionally, the
temporal dynamics of the global phosphoproteome response to LD and HD appeared to be
highly similar, as shown by unsupervised hierarchical clustering of the 9205 IR-responsive
phosphosites (Figure S2E,F).

We screened the datasets for clusters that showed dose-dependency in their dynamic
profiles and uncovered two clusters (A and B) that displayed amplitude differences be-
tween LD and HD (Figures 2A and S2E,F). Median phosphorylation amplitudes of cluster
A (117 phosphosites on 71 proteins) that included ATM pS1987 (Figure 1E) were sig-
nificantly higher for HD than those of LD, although the phosphorylation kinetics were
similar (Figure 2B). The pathway analysis showed that proteins in cluster A were en-
riched for DDR terms (Figure S2G) with an enrichment for the (S/T)Q motif among
phosphosites (Figure 2C). Consistently, we observed dose-dependent enhanced phospho-
rylation of several ATM substrates, including 53BP1 (pS571 + pS579) (Figure 2D), BRCA1
(pS1422) (Figure S2H) and MDC1 (pS592, pS733 and pS919) (Figures 2E,F and S2I) as
well as of replication-related proteins MCM3 (pS732, a regulatory site, and pS738) and
MCM6 (pS704) (Figure S2J). Other previously described ATM-dependent phosphosites
in this cluster include MDC1(pS168), SMC1A(pS360), ARID1A(pS1184), DCK (pS74) and
HMGA1(pS44) [27,31]. Cluster A encompasses non-(S/T) Q phosphosites such as MDC1
(pS168 + pS176) and CHEK2 (pS264 and pS265), which represent potential substrates of
ATM-activated downstream kinases [31] (Figure S2K). Moreover, we found indications
for replication-stress-related signaling involving ATR. Activated ATR promotes CHEK1-
mediated checkpoint signaling and FANCI-FANCD2-mediated signaling upon stringent
and moderate levels of replication fork slowing, respectively [56–58]. Although CHEK1
S317 showed limited phosphorylation after both LD and HD with kinetics and an amplitude
different from those of cluster A phosphosites (Figure S2L), FANCI (pS554 + pS555 and
pS555 + pT558) phosphorylation was enhanced transiently (1 h) after LD, and it persisted
(0.5–24 h) after HD exposure (Figure S2M).
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Figure 2. Dynamics of DDR signaling cascades: (A) Box and whisker plots of log2 SILAC ratios of 
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pendent amplitude differences. Orange and blue plots indicate LD and HD data points (median 
value of six replicates for each phosphosite), respectively. Whiskers represent the 5–95 percentile. 
(B) Sequence motif (IceLogo) of cluster A. The phosphorylated amino acid is located at position 0. 
(C) Bar chart of relative median phosphorylation of 117 cluster A phosphosites after LD (orange) 
and HD (blue). (D–F) Dynamics of 53 BP1 (pS571 + pS579) and MDC1 (pS733 and pS919), respec-
tively. (G) Cluster B sequence motif. (H) Dynamics of PLK1 T210 dephosphorylation in response to 
LD and HD. (I) Bar chart of relative median phosphorylation of 859 cluster B phosphosites after LD 
(orange) and HD (blue). 
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Figure 2. Dynamics of DDR signaling cascades: (A) Box and whisker plots of log2 SILAC ratios
of averaged phosphosites of two different row clusters (hierarchical clustering) that show IR-dose
dependent amplitude differences. Orange and blue plots indicate LD and HD data points (median
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value of six replicates for each phosphosite), respectively. Whiskers represent the 5–95 percentile.
(B) Sequence motif (IceLogo) of cluster A. The phosphorylated amino acid is located at position 0.
(C) Bar chart of relative median phosphorylation of 117 cluster A phosphosites after LD (orange) and
HD (blue). (D–F) Dynamics of 53BP1 (pS571 + pS579) and MDC1 (pS733 and pS919), respectively.
(G) Cluster B sequence motif. (H) Dynamics of PLK1 T210 dephosphorylation in response to LD and
HD. (I) Bar chart of relative median phosphorylation of 859 cluster B phosphosites after LD (orange)
and HD (blue).

Cluster B (859 phosphosites on 401 proteins) displayed dose-dependent dephosphory-
lation amplitudes at 1 h after LD and 1–2 h after HD (Figure 2A). Proteins in this cluster
were enriched for cell cycle terms (Figure S2N), with phosphosites being overrepresented
for the (S/T) P motif (Figure 2G) as well as for threonine residues, representing the preferred
targets of mitotic kinases and phosphatases, respectively [59,60]. Mitotic kinases (such as
CDK, NEK, PLK, MAPK and Aurora) and phosphatases (such as Cdc14, PP1 and PP2A)
temporally order cell cycle phosphorylation in a coordinated manner, thereby controlling
mitotic entry and exit, respectively [61,62]. We observed dose-dependent dephosphoryla-
tion dynamics in two sites in polo-like kinase1 (PLK1), including the activation site (pT210)
(Figures 2H and S2O) and a site (pS712) in the cell division cycle-associated protein 2
(CDCA2; Repo-Man)—a regulator of mitotic phosphatase PP1 (Figure S2P). Additionally,
several phosphosites of three “core” mitotic Aurora kinase co-factors were dephosphory-
lated in a dose-dependent manner: BORA (pS370 + pS372), INCENP (pS273, pS284 and
pS762 + pT771) and TPX2 (pT113, pS121 + pS125, pT369 and pS737) (Figure S2Q,S). Several
phosphosites of substrates of CDK (e.g., LMNA pS390 + pS392) and MAPK (e.g., MYBBP1A
pT1277 + pS1280) were also part of cluster B (Figure S2T,U). These results provide evidence
for transient dephosphorylation-dependent inactivation of the mitotic signaling cascades,
including the CDK–MAPK and Aurora–PLK1 pathways [63]. The global kinetic plot of
cluster B revealed similar dephosphorylation kinetics after LD and HD (Figure 2I).

3.2. DSB Repair, Signaling Dynamics and G2/M Checkpoint Activation after LD and HD

To investigate how IR-induced signaling dynamics were affected by the prolonged
presence of DNA damage, particularly DSBs, we quantified the phosphoproteomes of two
DNA damage repair-deficient (DRD) cell lines that were defective in non-homologous
end joining, i.e., Lig4−/− and Xrcc5−/− (Ku80) after LD and HD (Figure S1E). Analyses
of IR-induced 53BP1 foci in S- and non-S-phase cells confirmed the impairment of DSB
repair in these cells (Figures 3A and S3A,D). Temporal dynamics of the phosphoproteomes
of wt and DRD cells revealed, in total, 35,358 quantified phosphosites across 306 bio-
logically independent experiments. These included over 1300 (S/T)Q phosphosites, of
which 321 were exclusively quantified in DRD cells. Although PCA analysis segregated
the phosphoproteomes of DRD cells after HD (Figure 3B,C) like wt cells (Figure 1B), the
transient and intermediate groups did not segregate after LD, indicating altered signaling
dynamics. We identified by stringent statistical testing 3906 phosphosites that significantly
responded to LD or HD, and we performed hierarchical cluster analysis. Compared with
wt cells, clusters A and B in DRD cells displayed sustained (de)phosphorylation kinetics
with a delayed signal peak after LD and HD (Figure 3D,E), whereas the amplitudes of
clusters A and B only marginally increased (cluster A) or decreased (cluster B) in DRD
cells (Figures 3D,E and 4A,B). Thus, it appears that the impaired repair of DSBs adjusts
the proportionality of cellular responses governed by clusters A and B mainly by altering
the kinetics rather than the amplitude of phosphorylation. Nevertheless, it is obvious—
particularly after HD—that phospho-signaling in wt and DRD cells continues at times when
no excess 53BP1 foci are observed, and DSB repair appears to be completed (Figure 3A,E).
Furthermore, we observed that some phosphosites, such as those in ATM (pS1987) and
MDC1 (pS733), showed no distinct kinetic differences between irradiated DRD and wt
cells after both LD and HD, whereas the phosphorylation amplitude of other phosphosites
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(such as MDC1 pS919) was elevated in DRD cells (Figure S3E). Moreover, replication stress-
related ATR-FANCI signaling was activated in both wt and DRD cells after HD exposure,
whereas ATR-CHEK1 signaling appeared to be activated in DRD cells and to a lesser extent
in wt cells (Figure S3F).

In LD-exposed DRD cells, the dephosphorylation of cluster B proteins was reduced
in amplitude at 1 h after radiation compared with wt cells (Figure 4A). HD-exposed DRD
cells displayed early dephosphorylation of cluster B proteins at similar levels as wt cells
but showed delayed recovery of dephosphorylation, most notably at four hours (Figure 4B).
Since protein (de)phosphorylation is crucial for cell cycle control, we profiled the G2/M-
checkpoint dynamics following LD and HD (Figure S1H). In wt cells, the mitotic index
was reduced by 40% and 90% 1 h after LD and HD with complete recovery within 2 h
and 4 h, respectively (Figure 4C). Installment of the G2/M arrest occurred with similar
dynamics in DRD cells as in wt cells, but its recovery was delayed. After LD, the mitotic
index returned to the level of un-irradiated cells by 4 h in both DRD cell lines. After HD,
the G2/M checkpoint recovery in Xrcc5−/− cells was complete at 6 h, whereas Lig4−/−

cells had not completely recovered at 8 h post-irradiation. The observed difference in the
rate of G2/M checkpoint recovery is in line with the prolonged cluster A signaling after
HD in Lig4−/− compared with Xrcc5−/− cells (Figure 3E).

These results indicate that impaired DSB repair alters the dynamic properties of
DDR signaling cascades and that G2/M checkpoint recovery is independent of DSB
repair completion.
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Figure 3. Dynamics of DDR signaling cascades in DSB repair-deficient cells: (A) Dynamics of 53BP1
foci decay in wt, Lig4−/− and Xrcc5−/− S-phase cells. Dots and error bars represent the median
values of six replicates and 95% CI values, respectively. (B,C) PCA maps of log2 SILAC ratios
for Lig4−/− and Xrcc5−/− cells. (D,E) Bar chart of relative median phosphorylation of cluster A
phosphosites after LD and HD in wt and DRD cells.
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Figure 4. G2/M checkpoint dynamics: (A,B) Bar chart of relative median phosphorylation of
859 cluster B phosphosites after LD and HD in wt and DRD cells. (C) Relative mitotic index (in
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in response to LD (left panel) and HD (right panel). Statistics: two-way ANOVA with a post
hoc Dunnett’s test at 95% CI between wt and Lig4−/− or Xrcc5−/−. (* p-value < 0.05, ** < 0.01
and **** < 0.0001).

3.3. Multi-Site Dephosphorylation of Cell Cycle Proteins Activates the G2/M Checkpoint in mESC

Mitotic entry is irreversible due to a balance between inhibitory and activating cel-
lular mechanisms that function as a bistable switch controlling the pivotal mitotic entry
regulator CDK1-cyclin B [64] and the crucial mitotic exit regulator phosphatase PP2A:
B55 [65]. Bistable switches are an emergent cell signaling feature conferred by ultrasensi-
tivity, i.e., a dramatic cellular response like mitosis upon small changes such as multi-site
phosphorylations [66]. We probed for the existence of multi-site (de)phosphorylation and
observed a higher proportion of double/multiple sites (Figure S3G) among dephosphory-
lated proteins in cluster B (64%, enriched for cell cycle proteins, Figure S2N) following IR
when compared with cluster A (38%, enriched for DDR proteins, Figure S2G). Conversely,
and in support of this, motif analysis on the 3906 IR-responsive phosphosites identified
from the wild-type (wt) and two mutant mESCs defective in non-homologous end joining
(NHEJ), i.e., Lig4−/− and Xrcc5−/− (Ku80), after stringent statistical testing (see below),
uncovered double/multi-site phosphorylation enriched specifically for a proline-directed
motif, (S/T)P (Figure S3H,I), representing a substrate motif of cell cycle kinases [67]. The
proportion of single and multi-site phosphorylation events between LD and HD irradiation
was not significantly different.

3.4. Phospho-Signaling via PPP1R7-S12 Is Involved in G2/M Checkpoint Activation

Phosphatase PP1, one of the seven members of the phosphoprotein phosphatase
(PPP) family, has been proposed to initiate the mitotic exit regulator PP2A: B55 [68,69].
PPP1R7 (SDS22) and ENSA are critical regulators of PP1 and PP2A: B55, respectively, and
both are essential for the proper completion of mitosis. PPP1R7 targets PP1 to the mitotic
kinetochore [70], whereas phosphorylated ENSA is a specific inhibitor of PP2A: B55 during
mitotic entry [71]. Both PPP1R7 and ENSA are present in cluster A and displayed dose-
dependent enhanced phosphorylation in their sole SQ motif (i.e., PPP1R7 pS12 and ENSA
pS2) (Figure 5A). We hypothesized that the S12 phosphorylation of PPP1R7 might be critical
for the rapid activation and/or recovery of a G2/M checkpoint arrest upon DNA damage
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infliction. Using CRISPR-Cas9 gene editing, we derived two homozygous PPP1R7 mutant
clones, in which the S12 of PPP1R7 was altered into non-phosphorylatable alanine (PPP1R7-
A12) (Figure S3J). Unexpectedly—even in the absence of exogenous DNA damage—the
mitotic index of these mutant clones was significantly enhanced (1.83%) compared with that
of wt (0.82%) and NHEJ-deficient DRD (Lig4−/− 0.52%; Xrcc5−/− 1.02%) cells (Figure 5B).
After irradiation, the activation of a G2/M checkpoint and its recovery were significantly
delayed in the PPP1R7-A12 mutants in a dose-dependent manner (Figure 5C). Together,
these results suggest that the loss of PPP1R7-S12 phosphorylation diminishes mitotic
exit control in undamaged cells and delays the activation of the G2/M checkpoint and
checkpoint recovery following IR-induced DNA damage.

Cells 2022, 11, 3794 15 of 28 
 

 

 
Figure 5. Phospho-S12 PPP1R7 signaling dynamics, mitotic exit, and checkpoint activation in 
mESCs: (A) Dynamics of PPP1R7 pS12 and ENSA pS2 in response to LD and HD. (B) Mitotic index 
(in % of metaphase cells among total population in the absence of exogenous DNA damage) of five 
different cell lines: wt, Lig4-/-, Xrcc5-/-, Ppp1r7 S12A-/- (clone A4) and Ppp1r7 S12A-/- (clone A20) 
cells. Statistics: one-way ANOVA test between wt and other cell lines. (**** p-value < 0.001; n.s. = not 
significant). (C) A kinetic plot of the relative mitotic index of wt (in grey; data are taken from Figure 
4C) and clone A20 cells in response to LD (in orange) and HD (in blue). Dots and error bars represent 
median and 95% CI values, respectively. Statistics: two-way ANOVA with a post hoc Dunnett’s test 
at 95% CI between wt and clone A20. (* p-value < 0.05, ** < 0.01 and **** < 0.0001). 

3.5. Proliferation Responses after LD and HD 
The installment of a G2/M arrest after IR exposure implicates a reduction in the pro-

liferation rate. Following seven repeated exposures, each separated by 48 h, we observed 
only a subtle reduction in proliferation capacity after LD exposures in DRD cells (Figure 
S4A), whereas a prominent reduction in proliferation capacity was observed after HD ex-
posure, especially in DRD cells (Figure S4B). To measure subtle changes in cell prolifera-
tion, we designed a sensitive competition assay in which wt, Lig4-/- and Xrcc5-/- cells, as 
well as Polq-/- cells (deficient in DNA polymerase theta mediated end joining), were 
mixed in equal ratios (1:1:1:1). Cell population composition changes were determined by 
restriction fragment length polymorphism analyses. A reduction in the proportion of 
Lig4-/- and Xrcc5-/- cells became apparent following LD exposure (Figure S4C,D), con-
sistent with their delayed G2/M checkpoint recovery. The proliferation of Polq-/- cells was 
only marginally affected by LD, consistent with their slightly enhanced sensitivity to high 
IR doses [42]. Inherent to the method, the competition assay does not allow the detection 
of subtle changes in the proliferation rate of wt cells after LD. 

3.6. Micronuclei Induction after LD Exposure 

Figure 5. Phospho-S12 PPP1R7 signaling dynamics, mitotic exit, and checkpoint activation in mESCs:
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% of metaphase cells among total population in the absence of exogenous DNA damage) of five
different cell lines: wt, Lig4−/−, Xrcc5−/−, Ppp1r7 S12A−/− (clone A4) and Ppp1r7 S12A−/− (clone
A20) cells. Statistics: one-way ANOVA test between wt and other cell lines. (**** p-value < 0.001;
n.s. = not significant). (C) A kinetic plot of the relative mitotic index of wt (in grey; data are taken
from Figure 4C) and clone A20 cells in response to LD (in orange) and HD (in blue). Dots and error
bars represent median and 95% CI values, respectively. Statistics: two-way ANOVA with a post hoc
Dunnett’s test at 95% CI between wt and clone A20. (* p-value < 0.05, ** < 0.01 and **** < 0.0001).

3.5. Proliferation Responses after LD and HD

The installment of a G2/M arrest after IR exposure implicates a reduction in the prolif-
eration rate. Following seven repeated exposures, each separated by 48 h, we observed only
a subtle reduction in proliferation capacity after LD exposures in DRD cells (Figure S4A),
whereas a prominent reduction in proliferation capacity was observed after HD exposure,
especially in DRD cells (Figure S4B). To measure subtle changes in cell proliferation, we
designed a sensitive competition assay in which wt, Lig4−/− and Xrcc5−/− cells, as well as
Polq−/− cells (deficient in DNA polymerase theta mediated end joining), were mixed in
equal ratios (1:1:1:1). Cell population composition changes were determined by restriction
fragment length polymorphism analyses. A reduction in the proportion of Lig4−/− and
Xrcc5−/− cells became apparent following LD exposure (Figure S4C,D), consistent with
their delayed G2/M checkpoint recovery. The proliferation of Polq−/− cells was only
marginally affected by LD, consistent with their slightly enhanced sensitivity to high IR
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doses [42]. Inherent to the method, the competition assay does not allow the detection of
subtle changes in the proliferation rate of wt cells after LD.

3.6. Micronuclei Induction after LD Exposure

The activation of the G2/M checkpoint provides cells with a time window to complete
DSB repair before progressing into mitosis, preventing genomic instability. The mitotic
entrance of cells with unrepaired DSBs after G2/M checkpoint recovery results in the
formation of micronuclei. Consistently, micronuclei formation in wt cells increased linearly
with IR dose (0.01–0.2 Gy) without a distinct threshold in this dose range (Figure 6A).
Micronuclei frequencies substantially increased if DSB repair by NHEJ was abrogated
(Figure 6B), indicating that extension of the G2/M checkpoint in DRD cells was insufficient
for alternative DSB repair pathways to prevent the progression of (late G2) cells with
unrepaired breaks into the M phase.
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together with the persistent reduction in phosphorylation amplitudes of the negative reg-
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mTORC1-controlled phosphatidylinositol 3-kinase (PI3K) and MAPK/ERK pathways that 
regulate proliferation and differentiation [73]. Likewise, the decrease in phosphorylation 
amplitudes of mTOR substrate ribosomal protein S6 (pS235 and pS236) (Figure S6) and 
ERK1/2 substrate ribosomal S6 kinase RPS6KA/p90RSK (pS352; activation site) (Figure 
S5E) in DRD cells may promote differentiation and the loss of pluripotency, as described 
for mESCs [74]. Collectively, these results suggest that the irradiation of DSB repair-defi-
cient mESCs resulted in the sustained activation of mTOR and MAPK/ERK signaling 
pathways with no temporal and quantitative differences between low- and high-dose IR.  

Figure 6. Micronuclei frequency in DSB repair-proficient and -deficient mESCs. (A) Induction of
micronuclei (in % of micronuclei among bi-nucleated cells) as a measure of genetic damage in repair-
proficient cells in response to increasing doses of IR. Dots and error bars represent median and 95% CI
values, respectively. (B) MN frequency in wt, Lig4−/− and Xrcc5−/− cells in response to IR (0.2 Gy).

3.7. Impaired DSB Repair Dynamically Rewires Crucial Signaling Pathways after IR

Unsupervised hierarchical clustering unveiled two additional clusters (C and D)
marked by phosphorylation amplitude differences between DRD and wt cells (Figure S5A).
Cluster C (1096 phosphosites on 580 proteins) showed an equal increase in phosphorylation
amplitude in LD- and HD-irradiated DRD cells and was enriched for apoptosis, cell cycle,
RNA metabolism, proliferation and MAPK/ERK signaling pathway terms (Figure S5B).
The MAPK/ERK pathway integrates external signals from mitogens, thereby regulating
proliferation. ERK1/2 kinase is known to activate the mTORC1 pathway [72], and accord-
ingly, cluster C contained the mTOR kinase (autophosphorylated at S2481; activation site)
and various bonafide and putative substrates of mTOR (Figure S6) as well as of ERK1/2
substrates (Figure S5C), the latter of which responded with temporal dynamics identical
to mTOR and its substrates (Figure S6). Cluster D (1204 phosphosites in 573 proteins)
displayed decreased phosphorylation amplitudes in irradiated DRD cells compared with
wt cells and was overrepresented for apoptosis, cell cycle, RNA metabolism and mTOR
signaling terms (Figure S5D). The activation of mTOR in irradiated DRD cells goes together
with the persistent reduction in phosphorylation amplitudes of the negative regulator
of mTOR, with GRB10 (pS429) (Figure S5E) precluding the inhibition of the mTORC1-
controlled phosphatidylinositol 3-kinase (PI3K) and MAPK/ERK pathways that regulate
proliferation and differentiation [73]. Likewise, the decrease in phosphorylation amplitudes
of mTOR substrate ribosomal protein S6 (pS235 and pS236) (Figure S6) and ERK1/2 sub-
strate ribosomal S6 kinase RPS6KA/p90RSK (pS352; activation site) (Figure S5E) in DRD
cells may promote differentiation and the loss of pluripotency, as described for mESCs [74].
Collectively, these results suggest that the irradiation of DSB repair-deficient mESCs re-
sulted in the sustained activation of mTOR and MAPK/ERK signaling pathways with no
temporal and quantitative differences between low- and high-dose IR.

In contrast to DRD cells, DSB repair-proficient cells displayed the dephosphoryla-
tion of mTOR kinase (T2474 + S2478) and its substrates (cluster C and D, Figure S6)
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after LD and HD, suggesting inactivation of the mTOR pathway, although the mTOR
negative regulator GRB10 only displayed enhanced phosphorylation amplitudes at 24 h
(cluster D, Figure S6). We note here that, at least in WT cells, most changes post-IR were
not expected to be related to changes in protein abundance levels, as we observed in
a separate study in which, at 0.5 h and 4 h, only a few proteins displayed IR-induced
changes at both the protein and phosphorylation levels [75]. Cluster C also disclosed
subtle temporal differences between LD and HD in the quantity of doubly phosphorylated
MYC/MYCN (T58 + S62) (Figures S6 and S5F), which represents a signal for its ubiquitin-
mediated degradation [76–78]. Early after HD irradiation (5 min), cells responded with the
dephosphorylation of cMYC/MYCN (T58 + S62), followed by a two-fold increase in ampli-
tude during the next 2 h. In contrast, the extent of the phosphorylation of MYC/MYCN
(T58 + S62) in LD-irradiated wt cells was unaltered during the first hour post-IR.

3.8. Temporal Dynamics of Gene Expression, and Metabolic Control Programs after LD and HD

To assess the transcriptional consequences of LD- and HD-induced phosphorylation
events, we performed an in-depth global analysis of nascent transcriptome dynamics in wt
mESCs using Bru-seq [49]. The results revealed that 384 genes responded to both LD and
HD, and 61 and 1817 genes responded specifically to LD and HD, respectively (FDR < 0.1;
Figure S7A). Temporal plots of global cumulative changes to the nascent transcriptome
revealed that over 80% of the LD-induced transcriptome changes occurred already within
the first 30 min, and it took two hours to reach the same proportion of HD-induced changes
(Figure S7B). Additionally, similar to the phosphoproteome, no differences in magnitude
were observed for the vast majority of the nascent transcriptome changes after LD and HD
(Figure S7C). Hierarchical clustering of the 2262 (~25%) IR-responsive nascent transcripts
(NTs) uncovered five clusters (Figure 7) with distinct dynamic transcriptional changes
following LD and HD (Figure S7D). An in-silico transcription regulator (TR) analysis
revealed that clusters 1, 2, 3, 4 and 5 showed enrichment for p53, KDM5B, SMAD3, MYC
and POU5F1(OCT3/OCT4)/NANOG, respectively (Figures 7 and S7E). The pathway
analysis of LD- and HD- responsive transcripts revealed dose-specific pathway activation.
LD exposure resulted in the preferential activation of EIF2 and NRF2 pathways and in
the inhibition of the AMPK pathway. Conversely, HD exposure specifically activated
the p53 (possibly through the enhanced expression of MDM2 inhibitor CDKN2A) and
senescent pathways and inhibited EIF2, sirtuin signaling, insulin receptor signaling and
the pluripotency pathways (Figure S7F,G).

Multiple p53 target genes (cluster 1), including those involved in cell cycle arrest
and DSB repair, exhibited a dose-dependent enhancement of transcription amplitudes,
i.e., they were enhanced after HD when compared with LD (Figure S7H,I), indicating
dose-dependent activation of the core DDR pathways. Transcripts in clusters 4 and 5
were activated and inhibited by LD and HD, respectively, and they comprised Mycn,
Nanog, Pou5f1 (Oct3/4) and several of their target genes (Figure S7J). Additionally, we
found that the transcripts of genes involved in glycolysis (Gapdh, Eno1, G6pdx, Pfkp and
Slc2a3) [79] (Figure S7K), several histones (Figure S7L) and proto-oncogenes (Junb and Pim3;
Figure S7M) were elevated after LD but reduced after HD. Given the differential expression
of these glycolytic genes, we examined glycolytic flux following LD and HD. Measuring
the lactate production by quantifying the relative extracellular acidification rates (ECARs)
at corresponding time points confirmed increased and reduced glycolysis after LD and HD,
respectively (Figure S7N). Increased levels of circulating lactate after LD might regulate and
maintain mESC pluripotency by increasing intracellular α-ketoglutarate [80]. Indeed, NTs
enriched for pluripotency genes (cluster 5) were activated after LD and were inhibited after
HD (Figure 7). Additionally, reactive oxygen species (ROS) possibly resulting from activated
glycolysis [81] may account for the NRF2-mediated oxidative stress response after LD
(Figure S7F), the distinct LD-specific kinetics of several antioxidant genes (Atf4, Sqstm1, Eef2,
Srxn1, Hmox1, Pycr2, Cdk8, Gpx4, Prdx4 and Prdx6) and the transcriptional up-regulation of
the major base excision repair-related apurinic/apyrimidinic (AP)-endodeoxyribonuclease
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1 (Apex1; Figure S7O) [82]. Additionally, several mitochondrial genes (Ucp2, Uqcr11,
Mrpl12, Tomm5, Fkbp4, Mrpl53 and Tomm40; Figure S7P) and metabolic genes (Fasn and
Ndufs7; Figure S7Q) displayed LD-specific enhanced expression between 0.5 h and 4 h
after exposure to IR. High doses of IR are also known to activate the canonical Wnt
pathway [83], a critical regulator of stem cells [84]. Genes involved in the Wnt-β-catenin
signaling pathway and Wnt target genes involved in protein synthesis, including all four
ubiquitin-encoding genes (Uba52, Ubb, Ubc and Rps27a) that regulate ubiquitination and
proteasome activities in response to oxidative stress [85], were up-regulated after LD
and down-regulated after HD (Figure S7R). Collectively, these results provide evidence
for distinct transcriptional, phospho(proteomic) and metabolic responses after LD and
HD that regulate anabolic metabolism, oxidative stress response, mitochondrial function,
pluripotency and proliferation (LD), as well as cell cycle checkpoint activation and DSB
repair (HD).
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Figure 7. IR dose-dependent nascent transcriptome dynamics. Heatmap of hierarchically clustered
z-scored log2 ratios of IR-responsive nascent transcripts (NTs). The left and right panels represent
NT dynamics from 0.5 h until 8 h after LD and HD, respectively. Clusters are labeled on the left side,
and the number of genes represented by each cluster is indicated on the right side inside color-coded
bars. Overlap of genes between LD and HD per cluster is indicated in a Venn diagram plot, where
orange and blue circles represent LD- and HD-responsive genes, respectively. The top transcription
regulator enriched for each cluster using Enrichr is indicated next to the Venn diagram.
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4. Discussion

Uncertainty on increased cancer risk from exposure to LD ionizing radiation calculated
from a linear no-threshold model [6] is mainly due to insufficient mechanistic understand-
ing of the effects of LD, especially in stem cells that are generally regarded as cells-of-origin
for radiation-induced carcinogenesis [15]. To unravel the molecular mechanisms underly-
ing the cellular response to acute low (LD; 0.1 Gy) and high (HD; 1 Gy) doses of X-rays,
we performed in-depth phosphoproteome and nascent transcriptome analyses of mouse
embryonic stem cells with a high temporal resolution and assessed the ensuing dynamic
changes in cellular responses.

4.1. Phosphoproteome and Transcriptome Responses after LD and HD

The global phosphoproteome analysis of LD and HD-exposed mESCs revealed a con-
siderable similarity to the extent of protein phosphorylation. Of the total 9205 IR-responsive
phosphosites, 5004 responded to both LD and HD, and 1714 and 2487 responded specifi-
cally to LD and HD, respectively. The pathway analysis of phosphoproteins that contained
LD-specific, HD-specific, or shared phosphosites did not reveal any dose-specific pathways,
suggesting that differences primarily exist in phospho-signaling rather than in target pro-
teins. However, the pathway analysis of phosphosites should be interpreted cautiously,
as this analysis was based on knowledge of biological functions of transcripts and pro-
teins rather than phosphosites themselves. Intriguingly, the vast majority of responsive
phosphosites showed equal amplitude changes after LD and HD, indicating that IR doses
of 100 mGy are sufficient to trigger maximal phosphorylation (Figure S2F). A subset of
phosphosites responded instantaneously after LD and HD radiation, i.e., within seconds
(Figure S2D). The observed early responsive phosphosites lacked activated ATM and were
not in proteins known to be involved in DNA damage and cell cycle checkpoint signaling,
suggesting that instantaneously induced DSBs are unlikely to be the molecular trigger.
The temporal dynamics analysis indicated that LD contributed considerably more to early
phosphoproteome responses than HD (41% and 13%, respectively). This finding might
be compatible with the enhanced induction of ROS after low-dose exposure [15,19,21],
illustrated by the LD-specific activation of glycolysis (promoting ROS) and the LD-induced
enhanced expression of the redox-sensitive NRF2 pathway, mitochondrial genes and the
ROS-regulated major BER AP endonuclease APEX1. Additionally, LD exposure uniquely
modulated mitochondrial metabolic proteins and the phosphorylation status of kinases,
kinase-substrates and phosphatases predominantly involved in reactive oxygen species
(ROS) production [75].

4.2. DDR and Mitotic Signaling after LD and HD

A minority of phosphosites (clusters A and B) displayed amplitude differences be-
tween LD and HD. Phosphosites in cluster A exhibited increased phosphorylation am-
plitudes resembling the amplitude changes in activated ATM pS1987 after LD and HD
and displayed similar temporal dynamics marked by a time threshold of 5–30 m. This
dynamic response might be linked to an increased load of delayed DSBs emerging from
radiation-induced labile sites at clustered damage 30–60 min after irradiation [17]. We
cannot rule out kinases other than ATM/ATR to phosphorylate cluster A phosphosites.
DNA-PKcs appeared to be dispensable, as the dynamics of cluster-A phosphosites are
virtually unaltered in irradiated Xrcc5−/− mESCs that lack activated DNA-PKcs [86]. In
mammalian cells, the phosphorylation of ATM and ATM-dependent downstream targets
(TP53, CHEK1 and CHEK2) is linear over a dose range from 10 mGy to 2 Gy [87,88], respec-
tively. This dose dependency is further substantiated in this study by the dose-dependent
phosphorylation of DSB repair factors 53BP1, BRCA1 and MDC1 at multiple sites, closely
resembling the dynamics of the autophosphorylation of ATM. The integration of data from
this study and the literature suggests dose-dependent and linear activation of the DDR,
congruent with the known linear induction of DSB by IR doses [18]. The induction of DDR
correlates with a linear dose–response of genetic damage (micronuclei) in the dose range
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of 10–200 mGy without a threshold, as previously found for human fibroblasts [89] and
reticulocytes of irradiated mice [90]. This result suggests that IR induces DNA breaks that
are unrepaired and/or irreparable, leading to chromosomal fragmentation in proportion to
the dose.

Replication stress induced by DNA inter-strand crosslinks has been shown to result in
activation and sustained signaling by ATR, the phosphorylation of FANCI and CHEK1 and
a reduction in the firing of dormant origins [91]. HD exposure may also induce replication
stress, as we observed robust phosphorylation of FANCI (pS554, pS555 and pT558) and
activation of ATR/CHEK1, particularly in DRD cells. Furthermore, HD induced a sharp
increase in the phosphorylation of S168 in MDC1, which is essential for its interaction with
TOPB1 [92], thereby facilitating ATR activation and CHEK1 phosphorylation at stalled repli-
cation forks [26]. Radiation-induced DSB-clustered lesions (approx. 30% after X-rays, [93])
are poorly repaired and thus have an increased probability of encountering replication
forks, thereby generating replication stress [94]. Replication stress after HD is in line with
the observed proliferation inhibition and enhanced transcription of translesion synthesis
polymerases Rev1 and Polk, which are required for restarting replication in damaged DNA.
These data suggest either an LD threshold for the induction of replication stress and ATR
activation or that the effect of LD is too weak to observe a response.

Proteins in cluster B are enriched for cell cycle terms with preferred targets of mitotic
kinases and mitotic phosphatases that control proper cell division [61,62]. Temporal dy-
namics of cluster B phosphosites mimic those of cluster A (enriched for DDR pathways),
albeit in the opposite direction. This is strengthened by similar observations in DRD cells.
We uncovered the dose-dependent phosphorylation of cluster A proteins PPP1R7 and
ENSA, regulators of mitotic phosphatases PP1 and PP2, respectively. These results suggest
that PP1 and PP2 are involved in the activation of the G2/M checkpoint, possibly by the
multi-site dephosphorylation of mitotic proteins to diminish ultrasensitivity. Consistently,
disrupting phospho-signaling via PPP1R7 (S12 to A12 mutation) dramatically altered the
mitotic index and the installment and release of the G2/M checkpoint. Altogether, these
data suggest that the dose-dependent transient activation of DDR and the inactivation of
mitotic signaling are functionally linked.

4.3. P53 and Distinct Gene Expression Programs after LD and HD

Some of the radiation-induced phosphorylations are expected to (de)activate tran-
scription regulators and alter the composition of the produced mRNA species. Nascent
transcript (NT) analysis uncovered distinct transcriptional changes following LD and HD ra-
diation. Notably, HD-responsive transcripts were enriched for p53, whereas LD-responsive
transcripts were enriched for MYC and POU5F1(OCT3/OCT4)/NANOG transcription
regulators. The dose-specificity of nascent transcriptomes might arise from several factors.
Firstly, the activation and stability of p53 by phosphorylation are largely dependent on the
level of activated ATM, which was substantially higher after HD than LD. Secondly, LD led
to enhanced MYC transcription during a 2 h period after irradiation, whereas HD rapidly
turned down MYC transcription likely because of high levels of p53 stabilization. The inhi-
bition of MYC and POU5F1/NANOG target gene transcription after HD might be achieved
by p53 binding to a distal MYC super-enhancer region [35] and the NANOG promoter [95],
respectively. Moreover, within minutes after exposure, HD-mediated phosphorylation
rendered MYC/MYCN into a degradable species, and we observed these modifications
with a 2 h delay after LD. Increased levels of ROS most likely underlie enhanced MYC
transcription and stabilization after LD exposure, as exquisitely ROS-sensitive MAPK
kinases [96] drive MYC phosphorylation [19,97].

HD generated a strong p53-dependent transcriptional response (multiple p53 target
genes), peaking at 2 h after exposure. There is convincing evidence that p53 expression
dynamics can affect cell fate [98,99]; notably, elevated levels of p53 inhibit the transcription
of NRF2 and its target genes [100,101] to facilitate apoptosis. These studies support the
observation that the NRF2-mediated oxidative stress response is specifically activated



Cells 2022, 11, 3794 19 of 25

by LD-induced ROS and low non-inhibitory levels of p53. A comparable finding was
reported for hematopoietic stem cells [15]. Moreover, the concurrency of the inhibition of
glycolytic flux with decreased transcriptional activities of MYC and proliferation inhibition
is consistent with a recent study showing that MYC controls pluripotent stem cell fate
decisions by regulating metabolic flux [102]. After LD, the transcription of MYC and
POU5F1/NANOG, which drives cell proliferation and the maintenance of pluripotency,
respectively, appeared to continue up to three hours post-IR and may account for the swift
recovery of mESCs from the G2/M checkpoint after LD and for the lack of proliferation
inhibition. The latter is consistent with the existence of a proliferation inhibition threshold,
as reported for LD-irradiated neural stem cells in mice [12].

4.4. mTOR/ERK Signaling after LD and HD

In wt cells, the mTOR kinase and substrates were dephosphorylated with similar
dynamics (amplitude, kinetics) after LD and HD, possibly to counteract the inhibition
of autophagy or the induction of senescence [103,104]. Conversely, ERK1/2 was dose-
dependently activated in both LD- and HD-irradiated wt cells. Oxidative stress triggers
the ERK1/2-dependent phosphorylation of MYC and regulates MYC stability and degra-
dation [76,77]. The phosphorylation of MYC (pS62) drives MYC-dependent transcription
to activate the glutathione-directed survival pathway [105]. ERK1/2 is a chief regulator
of Wnt/β-catenin, a pathway known to confer radioresistance to cells [83,106]. ERK1/2
primes phosphorylation of the Wnt inhibitor glycogen-synthase kinase 3 (GSK3-S9), re-
sulting in its inactivation and upregulation of beta-catenin [107]. We observed modest
activation of GSK3 (pS9) after LD and HD during 2 h post-irradiation, consistent with the
activation of the Wnt/β-catenin pathway. These data suggest that LD differs from HD due
to the prolonged transcription of Wnt targets linked to oxidative stress. We hypothesize that
the activation of the canonical Wnt pathway contributes to maintaining the self-renewal of
mESCs exposed to LD ionizing radiation.

4.5. Mitochondrial Function Alterations after LD and HD

Radiation-induced mitochondrial damage results in an altered redox balance and
mitochondrial dysfunction [108–112]. In mESCs, LD exposure uniquely up-regulated the
transcription of genes involved in antioxidant response, glycolysis, fatty acid metabolism
and mitochondrial function (this study), as well as in alterations in mitochondrial proteins
and enhanced oxygen consumption rates [75]. These LD-specific responses might arise from
mitochondrial dysfunction that promotes perpetual ROS production [15]. Increased ROS
production may impair redox balance within cells, triggering the activation of the NRF2
protein [113,114] to promote an antioxidant defense response. We speculate that the absence
of mitochondrial dysfunction-related responses after HD may be due to enhanced ATM-p53
signaling after HD along with the saturation of ROS production above 100 mGy [19,21,108],
which suppresses antioxidant and mitochondrial responses.

4.6. Persistent DSB and Phospho-Signaling

Impairment of DSB repair appears to influence phosphoproteome responses after LD
and HD by altering the temporal dynamics or/and amplitude of phospho-signaling. In LD-
and HD-irradiated NHEJ-deficient cells, DDR- and mitosis-related phosphosites (clusters
A and B) revealed no enhanced amplitude when compared with wt cells, indicating that
the initial frequency of DSBs determines the signaling amplitude. However, the impaired
repair of DSBs led to prolonged DDR and mitotic phospho-signaling after LD and HD. It is
also evident that phospho-signaling after LD extended beyond time points when 53BP1
foci levels returned to control levels and when DSB repair appeared to be completed. In
contrast, phosphosites of the mTOR and MAPK/ERK signaling pathways (Clusters C
and D) responded in DRD cells with distinctly increased phosphorylation amplitudes and
sustained signaling with no temporal and quantitative differences between LD and HD. The
fact that it was observed solely in irradiated NHEJ-deficient cell lines suggests a role for low
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levels of (unrepaired) DSBs. Although the cause for this enhanced signaling remains elusive,
it is conceivable that IR-induced ROS [19] might activate the redox-sensitive mTORC1 and
ERK1/2/MAPK kinases in DRD cells and drive the phosphorylation of their targets to
equal levels after LD and HD.

5. Conclusions

In this study, we performed a systems analysis (Figure S1A–J) with a high temporal
resolution after exposure to low (0.1 Gy) and high (1 Gy) doses of X-rays in mouse em-
bryonic stem cells (mESCs). In total, we generated over 306 global phosphoproteomes
and 30 nascent transcriptomes and assessed dynamic changes in 35,358 phosphosites (in
4994 proteins) and >9000 nascent transcripts at various time points during the 24 h period
after DNA damage infliction (Figure S2A–C). Bioinformatics and statistical analyses uncov-
ered 10,181 high-confidence phosphosites (in 2559 proteins) and 2276 genes responsive to IR.
To connect these molecular findings with downstream phenotypic changes, we performed
kinetic profiling for G2/M checkpoint activation, metabolic flux, and cell proliferation.
Our results demonstrate that divergent cellular responses to radiation arise from complex,
multi-faceted, dose-(in)dependent, linear and non-linear molecular alterations.

We show that the dose-proportional induction of DNA DSBs, chromosomal dam-
age and the activation of the DDR following IR exposure is congruent with the linear
no-threshold model for cancer risk estimation. However, a dose–response relationship was
not detected for all molecular responses studied, especially for most IR-induced phospho-
rylation changes over a post-radiation period of 24 h. Moreover, the integration of gene
expression, proteome abundance and metabolic control programs uncovered prominent
LD-mediated activation of glycolysis, mitochondrial function and activation of redox-
sensitive pathways, suggesting a prominent role for ROS in cellular responses after LD,
whereas, after HD, the most outstanding cellular response, i.e., DDR, was triggered by DSB
induction. Although increased ROS production may promote tumorigenesis [115,116], it is,
however, unclear to what extent these differences in molecular and cellular responses after
LD and HD may impact the risk for cancer development notably due to the finding of the
dose-proportional (10–200 mGy) induction of cancer-relevant chromosomal damage.
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