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Abstract: LIM and SH3 protein 1 was originally identified as a structural cytoskeletal protein with
scaffolding function. However, recent data suggest additional roles in cell signaling and gene
expression, especially in tumor cells. These novel functions are primarily regulated by the site-specific
phosphorylation of LASP1. This review will focus on specific phosphorylation-dependent interaction
between LASP1 and cellular proteins that orchestrate primary tumor progression and metastasis.
More specifically, we will describe the role of LASP1 in chemokine receptor, and PI3K/AKT signaling.
We outline the nuclear role for LASP1 in terms of epigenetics and transcriptional regulation and
modulation of oncogenic mRNA translation. Finally, newly identified roles for the cytoskeletal
function of LASP1 next to its known canonical F-actin binding properties are included.

Keywords: LASP1; AKT; CXCR4; structure; cytoskeleton; phosphorylation; transcriptional regulation;
epigenetics; nucleus

1. Introduction
1.1. Structural Features of LASP1

The LIM and SH3 protein 1 (LASP1) was first identified in lymph nodes of breast
cancer patients in 1995 [1]. The gene is located on chromosome 17q11-21.3 and encodes
a protein of 261 amino acids (aa). The protein expression level of LASP1 was found to
be upregulated in several tumor types (reviewed in [2]), except melanoma [3]. Structural
analysis of LASP1 revealed a protein composed of a N-terminal LIM-domain with two
zinc finger motifs, followed by two central actin-binding nebulin repeats [4,5], flanked
by a linker region and a C-terminal SH3 domain, known to bind to several proline-rich
segment proteins (Figure 1). The first nebulin repeat includes a nuclear export signal (NES;
aa 71-77) [6]. A recent molecular evolutionary analysis of vertebrate and invertebrate
lasp family proteins revealed that all proteins harbor the same ancestral gene and that the
LIM domain, nebulin repeats and SH3 domain are highly conserved between both groups,
although the invertebrate lasp linker sequences vary [7].

A 3D structure prediction of LASP1 illustrates two key phosphorylation sites in the
linker region that face the two nebulin repeats which may have a regulatory function
(Figure 2). First, phosphorylation of LASP1 at serine 146 (5146) is regulated by cAMP-
and cGMP-dependent protein kinases (PKA and PKG) [8]. Tyrosine 171 (Y171), located
opposite of the nebulin repeat, is phosphorylated by various cytosolic tyrosine kinases such
as c-Src [9], ABL [10] and LYN [11] (Figures 1 and 2). Interestingly, phosphorylation at one
site hinders phosphorylation at the other site [11].
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Figure 1. Graphic illustration of LASP1 domain structure. LASP1 consists of a LIM (LIN-11, Isl-1,
and MEC-3) domain (red), two F-actin binding nebulin repeats (R1 and R2) (blue), a linker site with
two key regulatory phosphorylation sites (5146 and Y171) (purple), and a SH3 (Src Homology 3)
domain (green). The first nebulin repeat includes a nuclear export signal (NES) between residues
71-77 (yellow). Known domain-specific protein—protein interactions are provided.
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Figure 2. LASP1 3D structure. Three-dimensional structure prediction of LASP1 highlighting sites at
serine 146 and tyrosine 171. The structure was designed using Alphafold https:/ /alphafold.ebi.ac.
uk/entry/Q14847; accessed on 4 October 2022.

The functions of LASP1 are based on two pillars; (1) scaffolding binding and
(2) phosphorylation. Protein phosphorylation is one of the most common post-translational
modifications and may convert the site around phosphorylation from hydrophobic (apolar)
to hydrophilic (polar) which triggers conformational changes leading to either attraction or
releases of proteins simply due to the introduction of the negative charge by the phosphate
group [12]. Throughout this review, we provide insight on the regulatory function of the
phosphorylation status of the LASP1 and specific domain interactions (if known). A sum-
mary of LASP1 and its phosphorylation status on cell signaling events in triple-negative
breast cancer (TNBC; negative for estrogen, progesterone and HER?2 receptor) is provided
(Figure 3).
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Figure 3. Phosphorylation-dependent regulation of LASP1 in TNBC. Function of LASP1 in TNBC
cells is primarily regulated by its phosphorylation status at two specific sites, serine 146 (pS146) and
tyrosine 171 (pY171). Unphosphorylated LASP1 primarily binds to F-actin and is complexed with
other proteins such as zona occludens protein 2 (ZO2). Activation of protein kinase A (PKA) by
either growth receptor signaling or Gas pathways lead to phosphorylation of LASP1 at S146. pS146-
LASP1 then preferentially binds to the C-terminal tail of chemokine receptor CXCR4 (implicated in
breast cancer metastasis). Concurrently, pS146-LASP1 anchors AKT1 to the cell membrane serving
as a scaffold and a facilitator of signaling between PTEN and mTORC2. Some pS146-LASP1 also
dissociates from F-actin and is transported to the nucleus in a ZO2-dependent mechanism. Within
the nucleus, pS146-LASP1 associates with proteins such as Snaill which increases the stability of
this transcriptional factor and promotes epithelial-to-mesenchymal transition through repression of
epithelial markers such as E-cadherin. Once CXCR4 is activated, a fraction of LASP1 is preferentially
phosphorylated at Y171 by phosphotyrosine kinases (PTK), inhibiting its interaction with the CXCR4
C-terminal tail. Concomitantly, G-protein «; is released, inhibiting PKA and potential for 5146
function. pY171-LASP1 facilitates other aspects of the metastatic cascade through interactions with
other proteins such as the RNA-induced-silencing-complex via binding to argonaute protein (Ago2).
Pathway was created using BioRender software: https:/ /biorender.com; accessed on 12 October 2022.

1.2. LASP1 Expression

LASP1 is detected in all non-muscle tissues with highest protein levels in the gas-
trointestinal tract (https://www.proteinatlas.org/ENSG00000002834-LASP1; accessed on
30 September 2022) and is localized in actin-rich subcellular regions such as focal adhe-
sions and lamellipodia. Expression is regulated by several nuclear factors. Preliminary
database analysis identified a p53 response element in the LASP1 gene promoter and this
was later confirmed in hepatocellular carcinoma (HCC) where LASP1 is upregulated by
p53 repression [13]. However, this finding does not translate for all cancer types as p53
is often deleted or mutated in cancer [14]. There is evidence for LASP1 upregulation in
tumors under hypoxia [15] as a hypoxia response element has been identified in the LASP1
promoter region and was shown to stimulate LASP1 expression in pancreatic cancer cells
in vitro and in mouse tumor xenografts [16]. On the contrary, in trophoblasts, the hypoxia
effect is indirect by inducing miRNA-218 to downregulate LASP1 protein levels [17].


https://biorender.com
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In recent years, there is a plethora of misinformation concerning the regulation of
LASP1 by miRNAs with several papers being retracted. We therefore avoid the discussion
of LASP1regulation by miRNAs in this review [18]. An earlier review by the authors
summarizes some of the miRNAs that lead to upregulation of LASP1 in specific tumor

types [2].

2. LASP1 and Cellular Signaling
2.1. Chemokine Receptor Signaling

Chemokine signaling is essential for coordinated cell migration in health and disease.
Typically, chemokines signal through heptahelical, G protein-coupled receptors [19]. LASP1
interacts with the LKIL motif (aa 327-330) at the intracellular C-terminus of the chemokine
receptors CXCR2 and CXCR4 which are overexpressed in breast cancer [20]. Direct binding
to CXCR4 requires LASP1 phosphorylation at S146 by PKA. This presumably stabilizes
CXCR4 receptor and blocks degradation by sterically hindering phosphorylation at multi-
ple PKC or GRK serine phosphorylation sites around the LKIL motif that are important
for receptor internalization and deactivation [21]. Chemokine receptor stimulation by
CXCL12 releases the PKA-inhibitory heterotrimeric Guai-protein complex and activates
c-Src family of tyrosine kinases. As an effect, LASP1 becomes phosphorylated at Y171 while
5146 phosphorylation decreases (gets dephosphorylated) that is concomitant with lack of
association of LASP1 with chemokine receptor CXCR4 [11].

Breast cancer cells show high levels of LASP1 phosphorylated at 5146 by PKA, while
in chronic myeloid leukemia (CML) cells a dominant phosphorylation of LASP1 at Y171 by
the constitutively active BCR-ABL tyrosine kinase was observed [11]. The CXCR4 receptor
is downregulated, and no binding or stabilization is expected. When BCR-ABL tyrosine
kinase is inhibited, the levels of pY171-LASP1 plummeted, concomitant with an increase in
pS146-LASP1 levels, and an upregulation and stabilization of the CXCR4 receptor in these
cells [11]. pY171-LASP1 also binds to Crk-like protein (CRKL) [22] in CML cells and may
regulate BCR-ABL signaling.

2.2. PI3BK/AKT/mTOR

The PI3BK/AKT/mTOR pathway is an intracellular signaling pathway that plays a
pivotal role in the cell cycle control and survival. It is altered in several primary tumors, with
AKT being overexpressed and hyperactivated by phosphorylation. PI3K binds to the PH
domain of AKT and induces conformational changes and the subsequent phosphorylation
of AKT. Activated AKT moves from the cytoplasm to the cell membrane and directly or
indirectly activates its downstream molecular proteins such as mTOR [23].

Lately, a direct (or indirect) interaction between the catalytic, proline-rich C-terminal
binding region of AKT1 and the LASP1-SH3 domain was observed, with a higher affinity of
AKT1 for pS146-LASP1 and an impaired binding to pY171-LASP1 in comparison to the un-
phosphorylated protein [11]. The LASP1-SH3 domain modulates a negatively charged cleft
(Figure 4) that interacts with the N-terminal proline-rich sequence, flanked by positively
charged residues in AKT1 [11]. So far, 11 proline-rich proteins have been identified to bind
to the LASP1-SH3 domain (Figure 1, and reviewed in [2,24]). Immunofluorescent analysis
showed LASP1-AKT1 co-localization at the cell membrane while pS146-LASP1/AKT1
co-localized at the perinuclear area—particularly in endosomes (probably Rabl1a-positive
pool) [11]. The authors hypothesize a scaffolding model with AKT1 bound to LASP1
at the cell membrane, in close contact to PIP3 and mTORC2 complex facilitating AKT1
phosphorylation. In addition, LASP1-dependent regulation of the tumor suppressor PTEN,
opposing the activity of PI3K, was reported [25]
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Figure 4. LASP1-SH3 domain. Coulombic surface presentation of the LASP1-SH3 domain illustrating a
negatively charged cleft and subsequent proline motif binding by conserved aromatic amino acids. The
structure (PDB3i35) was designed using PyMol Molecular Graphic System Version 2.5.4 open source
software (Schrodinger, LLC, New York, NY, USA): https://pymol.org; accessed on 12 October 2022.

Recently, pharmacological network analysis revealed that several ingredients of a tradi-
tional Chinese medicine (TCM) against atherosclerosis decreases PI3K/AKT signaling [26].
Molecular docking simulation exhibited strong binding of several of these TCM bioactive
ingredients towards the LASP1-SH3 domain, suggesting a blocking of AKT binding to this
domain, and hence a reduced AKT1 phosphorylation and activation [26].

The LASP1-AKT interaction was mainly studied in the context of breast cancer [11,27].
Phosphorylation of LASP1 by uncontrolled activation of PKA /cAMP signaling in tumor
cells [28] reduces LASP1 affinity to F-actin [8]. Concurrently, pS146-LASP1 can serve as a
scaffold in AKT signaling. Phosphorylation of both proteins allows for their translocation
into the nucleus. When PTK-mediated signaling pathways are activated in these cells,
pY171-LASP1 predominates which reduces LASP1’s affinity for AKT1 and facilitates other
functions. Furthermore, overexpression of LASP1 enhanced AKT1-5473 phosphorylation in
combination with a decreased E-cadherin expression and epithelial-mesenchymal transition
(EMT) while, in return, LASP1-depletion resulted in reduced pS473-AKT1 phosphorylation.
This is not only observed for breast cancer but, so far, also in glioma, lung, prostate, and
colorectal cancer [29-32].

Recently, LASP1 interaction with HER2 in ovarian cancer cells was demonstrated,
however, no detailed domain binding analysis was performed but the authors claimed a
LASP1 phosphorylation-independent association [33]. Our own sequence analysis identi-
fied several putative proline-rich domain motifs pointing to a SH3 domain interaction. The
functional consequences of the LASP1-HER2 and downstream PI3K/AKT signaling will
need further investigation.

2.3. B-Catenin

The cadherin—catenin adhesion complex is the central component of the cell—cell
adherens junctions (AJ]) that transmit mechanical stress from cell to cell [34]. Binding of the
Cadherin-11/Catenin complex to the LASP1-LIM motif was visualized and confirmed in AJ
of synoviocytes. Patients with rheumatoid arthritis showed increased LASP1 levels while
LASP1 deficiency altered the cell-to cell contacts and was associated with a less destructive
phenotype [35]. Due to LASP1’s interaction with 3-Catenin, LASP1’s role in this signaling
pathway will need to be elucidated.
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3. LASP1 and Gene Regulation
3.1. Nuclear Import

Nuclear localization of LASP1 was first described in breast cancer and was correlated
with tumor progression, metastasis, and a reduced overall survival of the patients [14].
Nuclear presence and poor outcome was also observed in hepatocellular carcinoma [36],
chordoma [37] as well as in prostate [38], colorectal [39], lung [32], and bladder cancers [40].
Despite a nuclear export signal, LASP1 is reliant on a nuclear shuttle partner—the tight
junction protein zona occludens 2 (ZO2) and potentially AKT1. Phosphorylation of LASP1
at 5146 releases the protein from the cytoskeleton (shown for actin and zyxin) and allows
the re-localization of the LASP1-ZO2 complex from the outer cell membrane into the
nucleus [7]. In contrast to solid tumors, CML cells show low levels of ZO2 and therefore
no nuclear LASP1 localization was detected. LASP1 nuclear import is also regulated by
another cytoskeletal protein, Talin. Talin binds to the SH3 domain and substitutes for ZO2
and thereby inhibits nuclear LASP1 transportation as shown in endometrial cells [41].

3.2. Matrix Metalloprotease Regulation

Matrix metalloproteases (MMPs) are calcium-dependent zinc-containing endopepti-
dases that are capable of degrading extracellular matrix proteins (ECM) such as collagen,
elastin, and fibronectin. These proteins are necessary for tissue remodeling, cell prolifera-
tion, migration (adhesion), local invasion and therefore cancer metastasis [42].

In this respect, LASP1 plays a pivotal role on expression and secretion of MMPs. In
human macrophages, LASP1 is localized in the ring structure of podosomes. Knockdown
of LASP1 decreased matrix degradation capacity in these cells [43]. In TNBC, silencing of
LASP1 reduced gene expression levels of MMP9 and 1 [44]. This was further supported
by reports showing a reduced MMP1, 3 and 9 expression in MDA-MB-231 breast cancer
cells after stable LASP1 knockdown. Mechanistically, an effect of LASP1 on the prevalent
MMP transcription factor AP-1 was suggested and was verified by luciferase reporter
assays [45]. An analysis of LASP1 regulated genes in LASP1-depleted breast cancer and
hepatocellular carcinoma, revealed a disproportionality high regulation of AP-1 controlled
protein expression, and supported the regulation of AP-1 by LASP1 [45,46]. Reduced
MMP1 levels after LASP1 depletion were also observed in LNCaP prostate cancer and
T24 bladder cancer cell lines [45] suggesting a general role of LASP1 in favoring distant
metastasis by enhanced transcription and secretion of MMPs through invadopodia.

3.3. Snaill Stability

Snaill is a labile transcription factor and plays a pivotal role in EMT. Blockade of
the ubiquitination and degradation of Snaill lowers the gene expression of adherens junc-
tion proteins such as E-cadherin; increases N-cadherin and fibronectin expression and
these events promote cell invasiveness [36,44,47]. A proteomics study initially revealed a
LASP1-5naill interaction and was validated with a proximity ligation assay [44]. This inter-
action was further studied in the context of CXCR4 activation in TNBC [25]. After CXCR4
activation, LASP1 is preferentially phosphorylated at Y171 However, LASP1/Snaill inter-
action experiments with phosphomimetic LASP1 pulldown assays revealed that LASP1
phosphorylation status did not notably regulate LASP1-Snaill association in vitro [25].
Additionally, activation of CXCR4 increased the levels of Snaill via PI3K-dependent phos-
phorylation/activation of AKT and concomitant phosphorylation/inactivation of GSK-33,
a protein known to target Snaill for ubiquitination/degradation. Moreover, A20 and LSD1
levels increased following CXCR4 stimulation, and further assist in Snaill stability [25].
Based on ChIP analysis, LASP1 binds to the E-cadherin promoter in a CXCL12-dependent
manner, indicating a functional role for LASP1 in Snaill stability by scaffolding Snaill to
the promoter sites of E-cadherin [25].

The question remains whether LASP1 can directly regulate transcription by interac-
tions with DNA. Proving of a direct DNA binding via the two LASP1 zinc finger motifs
by ChIP assay failed (unpublished results of the authors). Although known for zinc fin-
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gers in general, the two zinc finger motifs in the LASP1-LIM domain are not involved in
homodimerization [48] and no direct interaction with DNA has been observed [45].

3.4. Epigenetic Modulation

Epigenetics represents another critical avenue of transcriptional dysregulation in
cancer cells. An example is aberrant DNA methylation. UHRF1 (E3 ubiquitin-protein
ligase) is thought to recruit the DNA methyltransferase DNMT1 to the replication fork [44].
Using proteomics, pulldown, and co-immunoprecipitation approaches, binding of the
LASP1-LIM domain to UHRF], in association with DNMT1 and histone methyltransferase
G9a was shown and may regulate chromatin structure and gene expression at late G1 and
G2/M phase [44]. This represents another potential transcriptional regulation mechanism
by LASP1.

3.5. RNA-Induced Silencing Complex

As described above, the activation of chemokine receptors in breast cancer shifts the
pS146-LASP1 landscape to one that is predominated by pY171 on LASP1. In TNBC, the
change in the phosphorylation status of LASP1 in response to CXCR4 activation then
allows LASP1 to interact with another protein: Argonaute-2 (Ago2). Pulldown experiments
revealed Ago2 binding to LASP1 through its LIM and SH3 domains (preferentially after
LASP1-Y171 phosphorylation) [46]. Non-phosphorylated LASP1 and pS146-LASP1 show
weak to no association with endogenous Ago2 [49].

Argonaute proteins are part of the RNA-induced-silencing-complex (RISC), which
plays a central role shaping the transcriptome through RNA interference [50]. After bind-
ing to mRNA, Ago2 cuts the complementary strand via an endonuclease activity into
single-stranded siRNA /miRNA [51]. In this respect, pY171-LASP1 interaction with Ago2
promoted expression of Let-7a miRNA proteins such as CCR7, eI[F4G2 and cyclin D1, which
are involved in tumor progression, lymph node metastases, therapy resistance and distal
metastases to the visceral organs [49]. The exact mechanism by which LASP1 affects Ago2
activity (such as prevention of target binding, hindering binding to mRNA, or blocking
enzymatic activity) are currently under investigation. This data suggests that activation
of one type of chemokine receptor, i.e., CXCR4 by CXCL12 leads to expression of another
chemokine receptor CCR7 through the scaffolding activity of LASP1. Both CXCL12-CXCR4
and CCL21-CCR7 receptor axes are highly involved in the metastatic cascade.

3.6. Eukaryotic Initiation Factor 4F Complex

The eukaryotic initiation factor 4F complex is a complex consisting of the scaffold
elF4G, cap binding protein el[F4E, mRNA helicase elF4A, and modulation protein elF4B [48].
This complex is involved in the rate limiting step of protein translation which prepares the
mRNA for ribosome recruitment. Using purified proteins and a proximity ligation assay;,
LASP1 was shown to directly interact with both, e[F4A and elF4B in a CXCL12-dependent
manner [52]. When LASP1 was stably knocked down, the downstream targets of eIF4F such
as CCND1, BIRC5, and MDM2 were reduced in TNBC cells [52]. This work could suggest
that LASP1 can further modulate the gene expression at the level of protein synthesis.
Domain or phosphomimetic binding was not determined in the study and these aspects of
LASP1 binding will need to be further explored.

4. New Insights on the Cytoskeletal Function of LASP1
4.1. Cytoskeletal Binding

LASP1 is predominantly involved in the reorganization of cytoskeleton during cell
motility and localized at the plasma membrane and in actin-rich subcellular protrusive
structures such as lamellopodia, filopodia, pseudopodia, and invadopodia [43,53]. Binding
to F-actin occurs via the SH3 domain and the first nebulin repeat [54] while no binding to
G-actin was observed [8]. Phosphorylation of LASP1 at S146 in human LASP1 [8] and T156
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in mouse Lasp1 [48] by PKA and PKG causes reduced F-actin-binding and a more cytosolic
localization of the protein.

4.2. Bone Development

In mice, Laspl1 is expressed in the growth plate, specifically in resting and hypertrophic
chondrocytes [55]. However, Laspl-deficient mice had slightly lower body weight but
developed normally without defects in skeletal development [56]. Recent research has
focused on the protein in osteosarcoma. Biopsies revealed strong LASP1 expression in
chordoma and show low expression in less malignant chondrosarcoma [37] supporting
the known function of the protein on cell proliferation and migration as seen in other
tumor types.

4.3. Neuronal Expression

Newfound roles for LASP1 are continually being discovered secondary to its abil-
ity to regulate the F-actin cytoskeleton. For example, the LIM domain and the nebulin
repeats work cooperatively to target LASP1 to the sites of active actin polymerization in
protruding lamellipodia of developing axons [57] and to stabilize the actin filaments in
dendritic spines [58]. LASP1 is concentrated in synaptic sites of hippocampal neurons,
suggesting a functional role in synaptic transmission [59]. This finding is supported by the
proteomic identification of LASP1 in postsynaptic preparations of rat brains [60]. In all,
these discoveries support the hypothesis that LASP1 is necessary for both the development
and maintenance of neuronal circuitry.

4.4. Kidney Function

LASP1 may also be necessary for proper kidney function. Podocytes are specialized
epithelial cells that wrap around the glomerular capillaries and are part of the filtration
unit of the kidney. In podocytes, LASP1 is crucial for the slit membrane integrity and
glomerular filtration. Activation of the renin-angiotensin-aldosterone system by Ang
II, significantly increased pS146-LASP1 phosphorylation by PKA and resulted in a re-
localization of the protein from along intracellular actin stress fibers to the lamellipodia
at the outer cell membrane thereby anchoring slit membrane components like CD2AP
to the actin cytoskeleton through an interaction with the SH3 domain [61]. Nephrocyte-
specific knockdown of Lasp in Drosophila melanogaster showed reduced number of slit
membranes and mislocalization of F-actin [61]. This is in agreement with a second study
by Artelt et al., showing that a podocyte-specific knockdown of Palladin, a LASP1 binding
partner along actin stress fibers [62], leads to a decreased pLaspl phosphorylation and
morphological deviations like an enlarged sub-podocyte space [63].

5. Conclusions

In this review, we summarized the newest data on LASP1 signaling, especially the
phosphorylation-dependent binding interactions and gene expression regulation. After
the initial identification of LASP1 in the lymph nodes of breast cancer patients in 1995,
investigations over the last 20 years suggested a critical role of the protein in cancer biology,
mainly in tumor progression and the metastatic cascade including currently defined roles
in chemokine receptor regulation, AKT signaling, Snaill stability, and modulation of
gene expression levels (Figure 5). The function is further expanded to normal cellular
physiology, especially the LASP1 binding to F-actin, and the currently investigated roles in
kidney function, axon signaling, and bone development. This confirms that LASP1 is not
only a critical F-actin cytoskeleton regulator, but also a complex, multifaceted signaling
adaptor protein.
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Figure 5. LASP1, a Hub for Cancer Progression. LASP1 is a multifaceted protein in cancer progression
and metastasis through several direct and indirect protein interactions. LASP1 binds to F-actin and
is localized to actin rich protrusive structures such as invadopodia and lamellipodia, necessary for
invasion and metastasis. Cancer cell viability and proliferation are promoted through activation of
the PI3K/AKT signaling pathway, presumably through the LASP1 scaffolding function at the cell
membrane. LASP1 plays a role in chemokine signaling by modeling CXCR4 stability, a receptor also
overexpressed in several cancer entities. Nuclear LASP1 presence promotes metastasis by stabilizing
Snaill and enhancing epithelial-mesenchymal transition (EMT) and by remodeling chromatin to
alter the transcriptome. Expression of mRNA is regulated by the interaction of LASP1 with Ago2,
a protein of the RNA-induced silencing complex (RISC) and with eukaryotic initiation factor 4F
complex (eIF4F) which induces translation of mRNA into oncoproteins. Created with BioRender
software: https://biorender.com, accessed on 18 November 2022.

The precise mechanisms of the latter roles will need to be studied further. The nuclear
role of LASP1 is still rudimentary and far beyond just stabilizing DNMT1 and Snaill. There
is also evidence for a role in AP-1 transcriptional regulation [45]. In some aspects, LASP1
and “LASP1-regulated proteins” might just share similar shARNAs.

In hematopoietic cells, LASP1 is not localized to the nucleus assuming an additional
cytosolic role of the protein in CML tumor cell persistence and proliferation [64]. An eIF4F
and RISC-mediated gene regulation, modulated by LASP1 interference with the endonucle-
ase activity of Ago2 and the helicase activity of elF4A, possibly via phosphorylation-specific
binding of LASP1 to these proteins, is conceivable. In all, LASP1 is more than just a simple
F-actin binding protein.
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