cells

Article

Exploring the Characteristics of Monkeypox-Related Genes

in Pan-Cancer

Yong Liao 1/

check for
updates

Citation: Liao, Y.; Liu, Z.; Ye, W.;
Huang, Z.; Wang, J. Exploring the
Characteristics of
Monkeypox-Related Genes in
Pan-Cancer. Cells 2022, 11, 3909.
https://doi.org/10.3390/
cells11233909

Academic Editors: Majid Momeny,
Vishnu Suresh Babu and Avisek

Majumder

Received: 9 November 2022
Accepted: 26 November 2022
Published: 2 December 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Zhiping Liu

[, Weile Ye >*, Zunnan Huang >* and Jiaojiao Wang 1-3-*

Center of Scientific Research, Maoming People’s Hospital, Maoming 525000, China

Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University,

Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and

Development of Natural Drugs of Guangdong Province, Guangdong Medical University,

Dongguan 523808, China

Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research,

College of Pharmacy, Jinan University, Guangzhou 510000, China

*  Correspondence: zn_huang@gdmu.edu.cn (Z.H.); jjwang89@163.com (J.W.); Tel.: +86-13925590670 (Z.H.);
+86-13450267392 (J.W.)

t  These authors contributed equally to this work.

Abstract: Monkeypox, an infectious virus that is a member of the Poxviridae family, has raised
great threats to humans. Compared to the known oncoviruses, the relationship between monkeypox
and cancer still remains obscure. Hence, in this study, we analyzed the multi-omics data from
the Cancer Genome Atlas (TCGA) database by using genomic and transcriptomic approaches to
comprehensively assess the monkeypox-related genes (MRGs) in tumor samples from 33 types of
cancers. Based on the results, the expression of MRGs was highly correlated with the immune
infiltration and could be further utilized to predict survival in cancer patients. Furthermore, it
was shown that tumorigenesis and patient survival were frequently associated with the genomic
alterations of MRGs. Moreover, pathway analysis showed that MRGs participated in the regulation
of apoptosis, cell cycle, Epithelial to Mesenchymal Transition (EMT), DNA damage, and hormone
androgen receptor (AR), as well as RAS/MAPK and RTK signaling pathways. Besides, we also
developed the prognostic features and consensus clustering clusters of MRGs in cancers. Lastly, by
mining the cancer drug sensitivity genomics database, we further identified a series of candidate
drugs that may target MRGs. Collectively, this study revealed genomic alterations and clinical
features of MRGs, which may provide new hints to explore the potential molecular mechanisms
between viruses and cancers as well as to provide new clinical guidance of cancer patients who also
face the threats during the monkeypox epidemic.

Keywords: monkeypox; cancers; immunity; genomics; methylation; prognosis

1. Introduction

According to the International Agency for Research on Cancer (IARC) of World Health
Organization (WHO), there were an estimated 19.3 million new cancer cases and nearly
10 million cancer deaths worldwide by 2020, and the global cancer burden was projected to
reach 28.4 million cases by 2040, a 47% increase from 2020; therefore, the development of
cancer control measures is critical for global cancer control [1].

Previous studies have shown that some kinds of viruses play specific roles in tumori-
genesis and progression [2]. For example, Herpes simplex virus type-1 (HSV-1) infection
promoted the growth of uveal melanoma cultures [3]. Besides, the Kaposi’s sarcoma-
associated herpesvirus (KSHYV) is identified as one of the causative agents of Kaposi’s
sarcoma, primary exudative lymphoma, and multicentric Castleman disease [4]. More-
over, Epstein—Barr virus (EBV) is found to be linked with Burkitt’s lymphoma, Hodgkin’s
lymphoma, post-transplant lymphoma, and nasopharyngeal carcinoma [5-7]. Given the
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association between the listed viruses and cancers, it is intriguing to explore whether
monkeypox and tumors are also related as the monkeypox outbreak has become a public
health emergency across multiple counties.

Monkeypox is caused by the monkeypox virus from the Poxviridae family. As
an emerging zoonotic pox virus, it is continuing to infect humans as well as wild and
domestic animals and remains one of the greatest threats to human and animal health [6,7].
Recently, about 3000 new cases of monkeypox infection have been reported in U.S. [8].
Furthermore, a gene expression profiling of monkeypox virus-infected cells showed that
the monkeypox infection may be involved in the tumor-related signaling pathways [9].
However, the studies in the field of tumor virology remains rocky, and it is still urgent to
explore the relationship between monkeypox and tumors [10].

Advances in clinical studies of viral therapies suggest that emerging viral-targeted
cancer strategies are worthy of being promising additions to conventional therapies. How-
ever, changes and interactions in solid tumors following viral therapy are complicated and
may be influenced by multiple factors [11]. The relevance of monkeypox to tumors has
not been studied to date, and the role of monkeypox in cancers remains largely unknown.
A few questions need to be answered first. Which signaling pathways may be affected by
monkeypox infection in tumors? What are the upstream regulators of these pathways? Is
monkeypox involved in the regulation of immune infiltration? What is the impact of mon-
keypox on the molecular mechanism of oncology drug actions? What is the possibility of
monkeypox as a bio-predictive marker of prognosis in tumors? Those unsolved questions
derived from this topic deserve further exploration.

In this study, we comprehensively evaluated the genomic and clinical characteris-
tics of monkeypox-related genes in th33 tumors and explored the relationship between
monkeypox-related genes and tumor immune infiltration, tumor-associated pathways,
and drug sensitivity. Monkeypox-related genes (MRGs) in tumors were also utilized for
consensus clustering grouping and the construction of prognostic predictive features. As
the first exploration of the relationship between monkeypox and pan-tumor, this study
provides a valuable resource for tumor virus research and tumor-targeted therapy.

2. Materials and Methods
2.1. Cell Lines and gqRT-PCR

HK-2, 786-O, ACHN, and Caki-1 cell lines were obtained from American Type Culture
Collection® (ATCC, Manassas, VA, USA) and subsequently cultured following ATCC
handling information [12].

Cells were seeded in a 6-well plate with a density of 5 x 10*. When the cells
were confluent, total RNA of cell cultures was collected using Trizol reagent (Invitrogen,
New York, NY, USA) and extracted according to the manufacturer’s instructions. The
c¢DNA was made using iScript cDNA synthesis kit (Bio Rad, Hercules, CA, USA). Real-time
PCR analysis was performed with Power SYBR Green PCR Master Mix (Thermo Fisher
Scientific, Waltham, MA, USA) with the respective gene-specific primers listed in Table 1
by a qPCR system (LightCycler® 480, Roche Life Science). B-actin was used as an internal
control. The relative difference was expressed as the fold-matched control values calcu-
lated with the efficiency-corrected 2-BACT method [13,14]. The primer list for quantitative
RT-PCR is provided in Table 1.

2.2. Tumor Types

Tumor-related data utilized in this study included mRNA Seq data (n = 10,471),
clinical data (n = 11,160), single nucleotide variant (SNV) data (n = 10,234), copy number
variant (CNV) data (n = 11,461), and methylation data (n = 10,063), all of which were
from The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/ (accessed on
12 May 2022)) [15]. Data collection relied on the GSCA database (http://bioinfo.life.
hust.edu.cn/GSCA (accessed on 12 May 2022)) [16]. Reverse phase protein array (RPPA)
data for pathway studies was obtained from The Cancer Proteome Atlas (TCPA) (https:
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/ /tcpaportal.org/tcpa/index.html (accessed on 13 May 2022)) [17]. Immunogenomic
analysis was performed by the ImmuCellAl algorithm on 24 immune cells [18]. The
correlation between gene expression and drug sensitivity was investigated using the
Genomics of Drug Sensitivity in Cancer (GDSC) database (www.cancerrxgene.org (accessed
on 13 May 2022)) [19]. MRGs (inclusion criteria were mRNA) were queried using the
GeneCards database (https:/ /www.genecards.org/ (accessed on 10 May 2022)) [20]. The
abbreviation of the cancer types is listed below (Table 2).

Table 1. Human primers.

Gene Primers

Forward: AAGTGGTCAAATGTCGATTTCCA

CD46
Reverse: TCGAGGTAAAAACCCTTATCGC
Forward: TTCCAGTCGGTACTGTTGTGG
CDb55
Reverse: CCCGGATTAGGGCATGATTTCT
Forward: AAAGTCCAACCCTATCATCAGGA
CYB5R3
Reverse: AAGCGTGCAGAATGTTTGTTC
Forward: GCACATTCCATGCCCAAGTAT
HSF1
Reverse: GGCCTCTCGTCTATGCTCC
Forward: AACAGAGAGGATTTCGTTTCCG
NFKB1
Reverse: TTTGACCTGAGGGTAAGACTTCT
Forward: CGTCAACTTCTGCGACGAAGA
TMISF2
Reverse: GGCAAAAATCAAACGCTGTGTA
Forward: AGAAACACCTGTCGTCCTGTG
TWF2
Reverse: CACCTCGTTAATGCGGATCTG
Forward: CATGTACGTTGCTATCCAGGC
3-actin

Reverse: CTCCTTAATGTCACGCACGAT

2.3. Comparison of GSVA Scores between Tumor and Normal Samples

A particular cancer sample population’s changes in MRGs activity (expressed as GSVA
scores) were evaluated by unsupervised method. Then, analysis of differential gene set
activity between tumor and normal samples was performed. GSVA scoring is mainly done
by transforming the expression matrix of genes between samples into the expression matrix
of gene sets between samples. Next, changes in gene set activity (denoted GSVA score) for
a specific cancer sample group were also estimated in an unsupervised manner. The GSVA
score of MRGs (MRGScore) represents the combined level of monkeypox-associated gene.
The GSVA score was calculated by the R package GSA [21].

2.4. GSVA Scores and Survival

In order to analyze survival of MRGs and tumor, the association between MRGScore
and survival was assessed. Clinical data used in this study were from 33 different tumor
samples, and uncensored data were not included. According to the median GSVA value,
tumor samples were divided into groups with high and low GSVA scores. Following that,
survival time and status of both groups were fitted using the R package survival. The
risk of survival for each gene was determined by Cox proportional-hazards models and
Log-rank tests.
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Table 2. The abbreviation of cancer type.

Cancer Type Abbreviation
acute myeloid leukemia LAML
adrenocortical carcinoma ACC
uroepithelial carcinoma of the bladder BLCA
invasive breast cancer BRCA
squamous cell carcinoma of the cervix and endocervical CESC
adenocarcinoma
cholangiocarcinoma CHOL
colonic adenocarcinoma COAD
esophageal cancer ESCA
glioblastoma multiforme GBM
head and neck squamous cell carcinoma HNSC
renal suspicious cell carcinoma KICH
renal clear cell carcinoma KIRC
renal papillary cell carcinoma KIRP
low grade glioma LGG
hepatocellular carcinoma LIHC
lung adenocarcinoma LUAD
lung squamous cell carcinoma LUSC
lymphoid neoplasm spreading large b-cell lymphoma DLBC
mesothelioma MESO
ovarian plasmacytoid cystic adenocarcinoma ov
pancreatic adenocarcinoma PAAD
pheochromocytoma and paraganglioma PCPG
prostate adenocarcinoma PRAD
rectal adenocarcinoma READ
sarcoma SARC
cutaneous melanoma SKCM
gastric adenocarcinoma STAD
testicular germ cell tumor TGCT
thymoma THYM
thyroid cancer THCA
uterine carcinosarcoma ucs
endometrial cancer of the uterine corpus UCEC
uveal melanoma UvM

2.5. GSVA Scores and Subtypes

Clinical data of tumor samples from 9 cancer types (HNSC, LUSC, COAD, STAD,
LUAD, GBM, BRCA, KIRC, and BLCA) were used. At least five samples must be included
in a subtype. The MRGScore was compared between groups with the Wilcoxon test
(number of subtype groups = 2) and the ANOVA test (number of subtype groups > 2).

2.6. Relationship between GSVA and Tumor Stage Staging

Using the results from 4 types of stage (pathologic, clinical, masaoka (for THYM only),
and IGCCCG stage (for TGCT only)) data of 9478 tumor samples from 27 cancer types
(ACC, BLCA, BRCA, CESC, CHOL, COAD, DLBC, ESCA, HNSC, KICH, KIRC, KIRP,
LIHC, LUAD, LUSC, MESO, OV, PAAD, READ, SKCM, STAD, TGCT, THCA, THYM,
UCEC, UCS, and UVM) were used. GSVA score and clinical staging data were combined by
sample barcoding. At least 5 samples from each carrier table subgroup were required. The
Wilcoxon test (n = 2) and the ANOVA test (n = 3) were applied to compare GSVA scores
between groups.

2.7. Correlation between GSVA Scores and Pathway Activity

RBN RPPA data were centered on the median and normalized by sample standard
deviation to get relative protein levels. Pathway activity scores were then calculated by
adding all positive regulatory protein levels and subtracting all negative regulatory protein
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levels [22]. In an unsupervised way, the GSVA score describes the gene set activity variation
of a specific cancer sample population. Moreover, the correlation between GSVA score and
pathway activity can be calculated. This suggests that pathway activity could be defined
by the pathway activity score.

2.8. Relationship between GSVA Score and Immunization

The immune infiltration and GSVA scoring modules estimated the association between
immune cell infiltration and gene set expression levels. Infiltration analyzed 24 immune
cell infiltrations. The association between immune cell infiltration and gene set expression
levels was expressed as a correlation coefficient and evaluated by Spearman’s correlation
analysis. p-values were adjusted by FDR.

2.9. The Relationship between SNV and Survival

SNV data and clinical survival data were collected from the TCGA database and
combined by sample barcodes. The gene set SNV indicates the integrated SNV status of
the input gene set for each sample. Only when at least one gene from the input gene set is
altered in a sample does this sample classify as a mutation set. The sample is categorized
as a WT group if there are no SNVs in any of the genes in the input gene set. Regarding the
mutant group, samples showing deleterious mutants were included in this study. Further
survival analysis could be performed on the group that comprises more than 2 samples,
and a minimum of 2 groups was needed. Two groups of survival and survival status were
fitted using the R package survival. A Cox proportional-hazard model and a Log-rank test
were used to test survival differences between the groups.

2.10. The Relationship between CNV and Survival

From the TCGA database, clinical survival and CNV data were retrieved. Next, merge
the two datasets via bar-coding. Samples with competing cancer mortality risks were
eliminated (for DSS and DFI data). Gene set CNV, like SNV gene sets, reflects the integrated
CNV status of each sample’s input gene set. Only samples in which at least one gene from
the input gene set was consistently amplified or deleted were grouped as Amp. or Dele.
However, if no CNVs exist in any of the genes in the input gene, the sample is classified as
a WT group. Genes with inconsistent CNV status, for example gene A being amplified and
gene B being deleted in sample 1, would be excluded from this study. For survival analysis
to be carried out, there have to be at least two groups with more than two samples. Groups
with <2 samples were also retained to plot survival curves. The R package survival was
used to fit survival time and status within the gene set CNV group. In addition, Log-rank
tests were performed to compare group survival.

2.11. The Relationship between SNV and Immune Infiltration

ImmuCellAl was used to assess the infiltration of 24 different types of immune cells.
Only if the input gene set contains at least one mutant gene can a sample be categorized as
a mutation group. However, if there is no SNV in any of the genes in the sample, it will be
classified as the WT group. The correlation between immune cell infiltration and gene-set
SNV was assessed by comparing the mean infiltration between gene set CNV groups by
the Wilcoxon test. p-values were adjusted by FDR.

2.12. Drug Sensitivity Analysis

We collected the IC50 and its corresponding mRNA gene expression for 265 small
molecules in 860 cell lines from Genomics of Drug Sensitivity in Cancer (GDSC, https:
/ /www.cancerrxgene.org/ (accessed on 10 May 2022)). The data on mRNA expression and
drug sensitivity were merged. A Pearson correlation analysis was conducted to determine
the relationship between gene mRNA expression and medication IC50. p-values were
adjusted by FDR. A positive association suggests that high gene expression indicates drug
resistance, while a negative association predicts drug sensitivity.
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2.13. MRG-Related Prognostic Prediction Feature Construction in UVM

To minimize the size of the gene set, a Least Absolute Shrinkage and Selection Operator
(LASSO) analysis was performed. The minimal lambda value was defined as the optimal
value [23]. The R software survival package was used to do multivariate Cox regression
analysis and risk prognostic modeling [24,25]. This model is a RiskScore formula with
numerous genes, each with a weight; negative values represent protected genes and positive
numbers represent risk genes. Based on those genes’ median values, we divided patients
into high-risk and low-risk categories. Log-rank was used to compare Kaplan-Meier (KM)
survival between two or more groups. At the same time, we used the ROC methods to
assess how efficiently the model could predict. For KM curves, p-values and hazard ratios
(HR) with 95% confidence intervals (CI) were derived by the Log-rank test and univariate
Cox regression.

2.14. Identification and Survival Assessment of Molecular Subpopulations

RNAseq data (Level 3) of the tumors and corresponding clinical information were ob-
tained from The Cancer Genome Atlas (TCGA) dataset (https://portal.gdc.com (accessed
on 10 May 2022)). Consistency analysis was performed using the R package Consensus-
ClusterPlus (v1.54.0) with a maximum number of clusters of 6 and 100 replicates to extract
80% of the total sample: cluster Alg = “chi” and inner Linkage = “ward. D2”. All of the
clustering heat maps were analyzed by the R software package heatmap (v1.0.12). In all
gene expression heat maps, genes with a variance of larger than 0.1 were taken out.

2.15. Functional Analysis

The “Limma” R package was used to identify differentially expressed genes (DEGs)
between two clusters. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) analyses were conducted using the “clusterProfiler” R package
to find relevant pathways, which were then visualized in Metascape 5. Based on the
“GO Bioprocess” gene set downloaded from the Molecular Signature Database (see text
footnote 5), a Gene Set Variation Analysis (GSVA) was performed using the “GSVA”
R package to demonstrate altered signaling pathways between two clusters. In addi-
tion, Gene Set Enrichment Analysis (GSEA) was performed to analyze the differences
across clusters based on the same dataset.

2.16. Immunity Correlation Analysis of Subgroups

TIMER immune infiltration analysis was done to calculate the abundance of six im-
mune infiltrating cells (covering B cells, macrophages, dendritic cells, neutrophils, CD4
T cells, and CD8 T cells) in various subgroups [26]. SIGLEC15, TIGIT, CD274, HAVCR2,
PDCD1, CTLA4, LAG3, and PDCDI1LG2 are immunological checkpoint genes [27-30].
Hence, we extracted the expression values of these eight genes to observe the expression of
immune checkpoint-related genes in the subgroups.

2.17. Statistical Analysis

Unless otherwise specified, all statistical analyses were performed using R software
(v4.0.3). The Spearman correlation test and the Cox proportional risk models were re-
spectively used for correlation analysis and calculation of survival risk and HR. Each
variable’s prognostic significance was evaluated using Kaplan—Meier survival curves and
compared using Log-rank tests. The rank sum test was conducted to differentiate between
two datasets. p value of < 0.05 was deemed statistically significant, represented by a “*”. In
addition, “**” and “***” reflect p values of less than 0.01 and less than 0.005, respectively.
The data were extracted and analyzed until 20 May 2022. The operations of this study were
all in accordance with public database regulations, and the above data were open access
and did not require additional consent from the local ethics committee. The significance of
the differences between two groups was assessed by using Mann-Whitney U test (n < 5).
Multiple comparisons were performed by one-way ANOVA followed by Bonferroni’s post
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hoc test. All results are showed as mean & SD. All biological experiments were repeated
three times using independent cell cultures (biological replications). p < 0.05 was considered
significant.* p < 0.05, ** p < 0.01, *** p < 0.001, *** p < 0.001.

3. Results
3.1. Difference of MRGs between Tumor and Normal Tissues

“Monkeypox” was entered into the GeneCards database to find Monkeypox-related
genes (MRGs), which are listed in Table 3 below.

Table 3. The abbreviations of monkeypox-related genes (MRGs).

Gene Abbreviation
ADP-Ribosylarginine Hydrolase ADPRH
BMS1 Pseudogene 20 BMS1P20
Complement C4A C4A
Complement C4B C4B
Chemokine (C-C motif) ligand 26 CCL26
Cluster of differentiation 4 CD4
CD46 molecule CD46
CD55 molecule CD55
CD8a Molecule CD8A
Complement Factor H CFH
Complement C3d Receptor 1 CR1
Complement C3d Receptor 2 CR2
Crystallin Gamma C CRYGC
C-X-C Motif Chemokine Ligand 1 CXCL1
C-X-C Motif Chemokine Ligand 8 CXCL8
Cytochrome B5 Reductase 3 CYB5R3
Exostosin Glycosyltransferase 1 EXT1
Heat Shock Transcription Factor 1 HSF1
Interferon Alpha 1 IFNA1
Interleukin 6 IL6
Interferon Regulatory Factor 3 IRF3
Killer Cell Lectin-Like Receptor C3 KLRC3
Killer Cell Lectin-Like Receptor K1 KLRK1
DNA Ligase 4 LIG4
MX Dynamin-Like GTPase 1 MX1
Nuclear Factor Kappa B Subunit 1 NFKB1
Transmembrane 9 Superfamily Member 2 TM9ISF2
Transmembrane P24 Trafficking Protein 10 TMED10
Twinfilin Actin-Binding Protein 2 TWE2
Zinc Finger Protein 846 ZNF846
Olfactory Receptor Family 10 Subfamily G Member 6 OR10G6

GSVA scores of MRGs were firstly calculated to investigate their influence on various
cancer types in clinical trials. As illustrated in Figure 1, MRGs expression vs. survival,
cancer subtype, and staging were analyzed based on the GSVA scores. In 13 solid tumors,
except THCA, GSVA scores were significantly different from neighboring normal tissues
(p < 0.05), which indicates that MRGs were expressed differently between tumors and
normal tissues and that they may be involved in tumor initiation and progression. Fur-
thermore, elevated GSVA scores in MRGs were positively associated with poor survival in
UVM, LGG, KIRC, and HNSC (Figure 1B), suggesting that MRGs might be the risk factor
of these cancers. Notably, among the listed cancer types, UVM was shown to have the
greatest risk ratio and risk factor predilection based on the GSVA score (Coxp < 0.05).
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Figure 1. Expression, survival, subtype, and staging analysis of GSVA scores for MRGs in pancy-
topenia. (A) Box plots comparing GSVA scores of tumor and normal samples. p-values: statistical
significance estimated by a t-test. * p-value < 0.05, significant difference. (B) Results of survival
differences between GSVA score groups in cancer. Risk ratios and Coxp values are shown by bubble
color and size. The row is the type of survival, and the column is the selected cancer type. Bubble
colors from blue to red represent low- to high-risk ratios; bubble size is positively correlated with
Coxp-value significance. Black outlined borders of bubbles indicate Coxp values < 0.05. (C) Box plot
showing GSVA scores for subtypes of selected cancers. p-values: statistical significance estimated by
Wilcoxon test (subtype group = 2) and ANOVA test (subtype group > 2). * p-value < 0.05, a significant
difference. (D) Presentation of GSVA score trends from stage I to stage IV. The trend line colors of
blue and red indicate decreasing and increasing trends, respectively.
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Figure 1C shows that GSVA scores of MRGs in BLCA, BRCA, GBM, KIRC, LUAD,
LUSC, and STAD were significantly linked with tumor subtype. In contrast, there was no
differential expression of GSVA scores in early COAD and HNSC, indicating no correlation
between them (p < 0.05). In the study of clinical phases, GSVA scores of CESC, UCEC, and
UCS tended to go down, while ESCA and OV scores went up (Figure 1D). There was a
downward trend in GSVA scores in both the germ cell tumor stage (designated TGCT) and
Masaoka stage (THYM only). Pathological staging analysis revealed a decreasing trend
in GSVA scores for the ACC, HNSC, KIRP, and LUAD and a rising trend in GSVA scores
for the BLCA, ESCA, KIRC, MESO, and STAD. Based on these results, it seemed that the
expression of MRGs is strongly linked to the clinical and pathological staging of tumors,
and that their abnormal expression may be linked to the growth of tumors.

3.2. Relationship between GSVA Score and Immune Infiltration

Immune infiltration generally modifies the tumor microenvironment, which further
affects tumor growth and invasion [31]. Calculating the GSVA and infiltration scores
revealed that both were positively associated with most cancers (Figure 2A). In addition,
the correlation was showing positively in most cases, with the exception of negative
correlations, specifically in neutrophils, CD8-naive cells, Th17 cells, B cells, and effector
memory cells. Upregulation of MRGScore probably increased immune infiltration and
immune cell abundance, which altered tumor progression, demonstrating that MRGs are
strongly connected with the tumor immune microenvironment.

L
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#
# #
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& B NE &
e¥ @ 43* & & &
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Figure 2. Correlation analysis of GSVA scores of MRGs with immune cells and cancer-related
pathways in pan-cancer. * p value <= 0.05; # FDR <= 0.05. (A) Heat map summarized the analysis of
Pearman correlation between GSVA scores of MRGs and immune cell infiltration. (B) Correlation
between GSVA score and pathway activity in different cancer types.
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A Survival difference between geneset B
mutant and WT.

3.3. Association between MRGs and Cancer-Related Pathways

We analyzed the association between MRG GSVA scores and cancer-related pathway
networks to better understand the specific pathways or biological processes by which
MRGs affect tumors. Figure 2B showed that MRGs were significantly involved in 10 cancer-
related signaling pathways, including apoptosis, cell cycle, DNA damage, EMT, and others.
In the majority of tumors, MRGs” GSVA scores were positively correlated with apoptosis,
EMT, hormone ER, and RAS/MAPK, while being negatively associated with the cell cycle,
DNA damage, hormone AR, and PI3K/AKT. The GSVA scores of MRGs revealed linkage
in different pathways as well as various roles in multiple pathways. These data imply that
MRGs regulate cancer-related pathways and that monkeypox may affect tumor growth by
activating or inhibiting these pathways.

3.4. The Relationship between Tumor Survival and MRGs” SNV and CNV

Genetic mutations including copy-number variants (CNVs) and single nucleotide
variants (SNV) contribute to cancer heterogeneity and challenges to cancer treatment [32].
Thus, in Figure 34, it illustrated that, in UCEC and SKCM, the HR of SNV scores of MRGs
was less than 0, and mutations in MRGs were associated with high survival and were
protective factors. However, in THYM, MESO, LIHC, ESCA, COAD, and BRCA, the HR of
the SNV fraction of MRGs was greater than 0, and mutations in MRGs were associated with
low survival and were risk factors. As was demonstrated in Figure 3B, CNV pooled scores
of MRGs in UEC, LUSC, LGG, KIRP, CESC, UVM, and THYM were positively associated
with survival, while they were not negatively correlated in other tumor samples and were
generally unrelated, implying that MRGs” CNV is a protective factor that may promote
good prognosis.

Gene set CNV and survival
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Figure 3. Relationship between MRGs and tumor survival as well as tumor drug resistance. (A) Risk
ratios and Coxp values are shown by bubble color and size. The column indicates cancer type, and
the rows denote survival type (OS, PFS, DSS, and DFI). Bubble color from blue to red indicates low-
to high-risk ratios, and bubble size is positively correlated with Coxp value significance. Black outline
borders indicate Coxp values < 0.05. (B) Log-rank p values are shown by bubble color and size. The
column selects the cancer type, and behavioral survival type (OS, PFS, DSS, and DFI). Bubble colors,
from blue to red, indicate low- to high-risk ratios, and bubble size is positively correlated with the
significance of Log-rank p values. Black outline borders indicate Log-rank p values < 0.05. (C) Bubble
plots to summarize the correlation between input genes and drugs. Only when genes associated with
at least one drug were obtained. In addition, only when drugs associated with at least one gene were
obtained. Blue bubbles indicate negative correlations, while red bubbles indicate positive correlations.
The darker the color of these bubbles, the higher the correlation. Bubble size is positively correlated
with FDR significance. Black outline borders indicate FDR < 0.05. Plots for the top 30 drugs are
shown. These drugs are ranked by the correlation coefficient of the searched genes and the combined
level of FDR.

3.5. The Considerable Impact of MRGs on the Drug Sensitivity of Tumors

Genomic changes affect the clinical response of patients to drugs. We combined
a drug sensitivity study of GDSC cancer cell lines to examine MRGs’ influence on tumor
drug resistance. Figure 3C indicates a positive correlation between the expression of the
eight genes ADPRH, CD4, CR1, CR2, LIG4, CD8A, HSF1, and ZNF846 and the IC50 of
28 medications; that is, it shows a positive relationship between the expression of the eight
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genes and tumor resistance to the treatments. Moreover, the expression of 11 genes (namely
MX1, CFH, CD46, CD55, TM9SF2, TMED10, CCL26, CXCL1, CXCL8, CYB5R3, EXT1, and
IL6) was negatively correlated with the IC50 of 28 drugs in tumors, i.e., the tumor resistance
to these drugs was negatively correlated with the expression of these genes. High gene
expression may boost these drugs’ capacity to cure cancer. According to these findings, the
differential expression of MRGs may influence how well medications work against cancers

by correlating with tumor resistance to drug treatment.

3.6. MRGs-Related Prognostic Prediction Feature Construction in UVM

The relationship between UVM and monkeypox has not been reported yet. Further-
more, the MRGs were shown to be differentially expressed in UVM based on our previous
analyses and have the highest prognostic HRs with UVM. Thus, we continued to investi-
gate the survival predictive role of MRGs in UVM. In Figure 4A,B, we used multivariate
Cox analysis based on Lasso regression to construct a risk model to obtain more accurate

predictive characteristics:
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Figure 4. Prognostic risk model of MRGs in UVM and its analysis with immune cell correlation.
(A) LASSO coefficients of MRGs were plotted at the values chosen for 10-fold cross-validation.
(B) Cross-validation error curves for the selected tuning parameter (log A). Vertical dashed lines were
plotted at the optimal values. (C) Sample distribution of risk score analysis based on the prognostic
risk model of MRGs. (D) Different patterns of survival status and survival time for high- and low-risk
samples. (E) Heat map of cluster analysis showed the expression of MRGs of the risk model in each
patient. (F) Kaplan—-Meier survival curves for OS of patients in the high-risk and low-risk groups.
If HR > 1, it means the model is a risk model; if HR < 1, it means the model is a protection model;
95% CL represents the HR confidence interval; median time represents the time (i.e., median survival
time) corresponding to the survival rate at 50% in both high-risk and low-risk groups, in years.
(G) The ROC curves of this risk model at different times with AUC, where higher AUC values
indicate the stronger predictive ability of the model. (H) Heat map of correlation between prognostic
risk model and immune score, where both horizontal and vertical coordinates represent genes,
different colors represent correlation coefficients, and darker colors represent the stronger correlation
between the two.

In this part, we show that the established risk model successfully classified MESO
patients into high-risk and low-risk groups. Figure 5D shows that low-risk groups had
more survival samples than high-risk groups. We also observed that TWF2, IL6, CXCLS,
CXCL1, and CD8A tended to be highly expressed in the high-risk group, while the tendency
of ADPRH was to be highly expressed in the low-risk group (Figure 4E). Figure 4F demon-
strates that the low-risk group had a longer overall survival rate than the high-risk group.
Figure 4G showed that the constructed risk model had good predictive performance with
an area under the curve (AUC) of 0.81, 0.889, and 0.878 for the 1-year, 3-year, and 5-year
ROC curves, respectively.

3.7. Immuno-Correlation Analysis of Prognostic Features of MRGs

Given the significant correlation between MRGs and immunity in pan-cancer, we
further analyzed the immune correlation of MRGs prognostic features in UVM. Figure 4H
showed that the prognostic characteristics of MRGs were positively correlated with the
expression of B cells, CD4" T cells, neutrophils, and myeloid dendritic cells; on the contrary,
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they were negatively correlated with the expression of CD8" T cells. These results sug-
gested that in UVM, MRGs’ prognostic features were highly correlated with the immune
microenvironment and had diverse effects on immune cells. It implies that MRGs may
have opposite roles on the regulation of different kinds of immune cells.

3.8. Identification of Two Molecular Subtypes Based on MRGs

By using a consensus clustering approach, the UVM patients in the cohort were
divided into two clusters (C1 and C2) based on the expression of MRGs (Figure 5A—C).
Overall, 22 patients were clustered into C1, and 58 patients were clustered into C2. The
expression levels of MRGs in both clusters were demonstrated by a heat map (Figure 5D).
The significant difference of the expression was found between C1 and C2, while the
MRGs were more expressed in C1 than C2. In addition, overall survival was higher in C2
patients than in C1 patients (p = 0.0245; Figure 5E). The high expression of MRGs may be
associated with the low survival in C1. In Figure 5F, we also could see that the genes were
clearly stratified into two clusters. These results suggested that MRGs were able to classify
osteosarcoma patients into two molecular subtypes with different overall survival.

3.9. DEGs and Functional Analysis

DEGs between the two groups were identified, and functional analysis was performed
to explore potential signaling mechanisms. Figure 6A,B showed that a total of 2412 DEGs
were detected, of which 22 genes were downregulated and 2390 genes were upregulated in
C1. KEGG pathway analysis (Figure 6C) showed that C1 was related with the elevation
of post-infection emergency immune pathways, such as viral infection, B-cell pathway,
and cytotoxicity, and downregulated in disease pathways such as neurodegeneration,
Parkinson’s, and Huntington’s. As for GO enrichment analysis (Figure 6C), the upregulated
DEGs were enriched in immune-related biological processes such as T-cell activation, T-
cell proliferation, antigen processing and presentation, immune cell differentiation, and
leukocyte proliferation. Similarly, GO enrichment analysis also identified downregulation
in microtubule-related pathways such as microtubule transport and microtubule regulation.
Cluster differences were strongly correlated with immunity, suggesting that immunity may
be related to the role of monkeypox on bone UVM. Next, the immunoassays were performed
to explore the immune differences between the two molecular subtypes. When UVM
patients with C2 were compared to those with C1, the TIMER algorithm disclosed that CD8*
cell expression was lower and dendritic cell expression was higher (Figure 6D). No other
immune cells were detected in a way that was statistically significant. Furthermore, as seen
by the heat map in Figure 6E, the expression of immune checkpoint genes was significantly
different between C1 and C2, with lower expression in C2 indicating a relatively higher C2
immune status. On the basis of these findings, it seems that there is a significant difference
in immune status between the two molecular subtypes.

3.10. Confirmation of MRGs Expression in KIRC

In order to increase the reliability of the analyses we performed, we subsequently
confirmed the genes expression including NFKB1, TM9SF2, CYB5R3, CD46, CD55, HSF1,
and TWEF2 by qRT-PCR in kidney renal clear cell carcinoma (KIRC). The HK-2 cell line
was used as a control, which is a normal kidney epithelial cell line. The 786-O, ACHN,
and Caki-1 cell lines are the kidney renal cell carcinoma cell lines. The gene expression
of NFKB1, TM9SF2, CYB5R3, CD46, and CD55 was remarkedly upregulated in KIRC cell
lines, while the expression of HSF1 and TWF2 was downregulated. The change of the gene
expression was consistent with the data analyzed from the TCGA and GTEx databases
(Figure 7).
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Figure 5. Subgroups typing of UVM by MRGs (A) The colors of CDF curves represent the number
of different subgroups in the grouping. (B) CDF Delta area curves. Delta area curves for consistent
clustering indicate the relative change in the area under the cumulative distribution function (CDF)
curve for each category number k compared to k-1. The horizontal coordinate indicates the category
number k, and the vertical coordinate indicates the relative change in the area under the CDF curve.
(C) Consensus clustering matrix for k = 2. (D) Heat map features of the two clusters of cluster 1 and 2
(C1 and C2). (E) KM survival curves of different clusters of samples in the dataset, where different
groups were tested by Log-rank, and 95% CL represents the HR confidence interval. Median time
represents the time corresponding to the survival rate of different groups at 50% (i.e., median survival
time), in years. (F) Scatter plot of the sample distribution.
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Figure 6. Identification of differential genes between clusters and functional analysis. (A) Volcano
plotting with fold change and corrected p-values. In the diagram, red dots indicate genes that

are significantly differentially upregulated, blue dots represent genes that are significantly differ-

entially downregulated, and gray dots denote genes that are not significant. (B) Heat map of

differential gene expression, where different colors represent the expression trends in different tis-
sues. Due to the large number of differential genes, the 50 most differentially altered upregulated
genes and 50 downregulated genes are shown here. Figure 6A,B showed that a total of 2412 DEGs

were detected, of which 22 genes were downregulated and 2390 genes were upregulated in C1.

(C) The results of differential upregulated genes KEGG pathway enrichment, differential upregulated
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genes GO term enrichment, differential downregulated genes KEGG pathway enrichment, and
differential downregulated genes GO term enrichment. The different colors represent the significance
of the differential enrichment results, and the larger the value, the smaller the FDR value. The
size of the circle represents the number of enriched gene, and the larger the number, the larger
the circle. Enrichment results with p value < 0.05 or FDR < 0.05 are considered to be enriched to a
significant pathway, i.e., the right scale of the enrichment graph -log10 (p value) is greater than 1.3.
(D) Distribution of TIMER immune scores in the two clusters, where the horizontal coordinate repre-
sents the type of immune cell infiltrating cells and the vertical coordinate represents the distribution
of this immune infiltration score in different groups, ** p value < 0.01, *** p value < 0.001, and the
asterisk represents the degree of significance. Significance was tested by the Wilcox test. (E) Heat
map of expression of immune checkpoint-associated genes in two clusters, where different colors
represent the expression trends in different samples. ** p value < 0.01, *** p value < 0.001, and asterisks
represent the level of significance. Significance was tested by the Wilcox test.
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Figure 7. The expression of monkeypox-related genes in KIRC. (A) Gene’s transcript level in KIRC
based on TCGA and GTEx databases; (B) qRT-PCR analysis of MRGs in KIRC (n = 3). p < 0.05 was
considered significant. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.001, ns: not significant.
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4. Discussion

Much remains unknown about the relationship between monkeypox and tumors. In
this study, we not only performed a comprehensive and systematic analysis of monkeypox-
associated genes in multiple samples from 33 cancer types, but we also comprehensively
assessed the roles and mechanisms of MRGs, including clinical features. Monkeypox
infection resulted in aberrant expression of MRGs, which was significantly associated with
activation of signature-related pathways, clinical survival, tumor immunity, and tumor
drug sensitivity. Meanwhile, the prognostic features of monkeypox-related genes were built
to be used as biological prognostic markers in tumors. Moreover, this study used consensus
clustering to classify UVM into two molecular subtypes based on MRGs, and their overall
survival also differed significantly. Following that, immunological and functional analyses
were conducted, which revealed the important role of MRGs in the immunological aspects
of UVM. As the first analysis of the relationship between monkeypox and pan-cancer, this
study explored the correlation of monkeypox-related genes with tumor and immunity, thus
elucidating the profound relationship between monkeypox and tumors and providing new
strategies for viral therapies targeting tumor immunity.

First, we found that MRGs were differentially expressed in tumors and normal tis-
sues. MRGs tended to be upregulated in tumors and differentially expressed in different
tumor subtypes and at different tumor stages. Additionally, survival analysis showed that
a high MRGScore was significantly associated with poor tumor prognosis in most cases,
and monkeypox may be able to influence tumorigenesis. In addition, genetic analysis
revealed that SNV and CNV of MRGs were linked to the survival of tumors. Mutations in
monkeypox-related genes were strongly associated with survival, suggesting that muta-
tions may affect tumor prognosis. Therefore, we hypothesize that genetic alterations caused
by monkeypox at the genomic level may promote tumor development in some cases.

In pathway analysis, MRGs were identified as key regulators of cancer-associated
signaling pathways and were differentially correlated with different cancer-associated
signaling pathways. These results suggest that MRGs constitute a network of interactions
of cancer-related signaling pathways that may be involved in promoting tumor progression.
Meanwhile, this study found that MRGs were correlated with drug sensitivity of anticancer
drugs. Among them, 30 drug sensitivities were associated with the expression of MRGs.

To further validate the relationship between monkeypox and tumors and to explore
the prognostic value of MRGs in tumor patients, a prognostic risk model of UVM based on
MRGs was constructed in this study. The six genes used for risk modeling in this study are
closely associated with tumor development and progression. ADPRH expression is tightly
linked to tumor immune infiltrating cells (TIICs), and its high expression is associated
with poor prognosis in glioma [33]. The combination of high CD8A and low HAPLN3
expression can identify subtypes of BLCA patients with good survival rates and help
refine the selection of immunotherapy for BLCA patients [26]. CXCL1, produced by breast
cancer cells, can promote cancer growth and development [27]. CXCL8 promotes triple-
negative breast cancer growth and development, as well as paclitaxel resistance [28]. IL6
can promote the growth of prostate and rectal cancers [29,30]. TWF2 deficiency correlates
with decreased invasive and migratory capacity of the human hepatocellular carcinoma
cell line HUH-7 [34]. The survival analysis in this study showed that the established risk
model showed effective predictive performance for the survival of UVM patients. It was
associated with elevated CD8" cells and decreased dendritic cells. All of these results show
that MRGs play a prognostic role in UVM and that there is a link between monkeypox
and tumors.

Throughout, we analyzed the relationship between MRGs and tumor immunity at
both the pan-cancer level and UVM. We found that there was a positive correlation be-
tween MRGs and immune infiltration in pan-cancer, and there may be some co-expression
with most of the immune infiltrating cells. However, the relationship of MRGs in dif-
ferent cell types had a more distinct stratification, which may be related to the different
expression and prognostic relevance of MRGs in different tumors. In UVM, MRGs also
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had a close relationship with immune infiltration, and interestingly, the subgroup with
poorer prognosis was instead the one with higher scores of immunity and higher immune
infiltration. Nevertheless, as shown by immune checkpoint analysis, immune checkpoint
expression was higher in subgroup 1, with poorer prognosis, than in subgroup 2, with
better prognosis, and we speculated that MRGs may mediate immune escape of tumors in
UVM and even in pan-cancer. In the subsequent investigation, we need to carry out further
experimental validation.

The main limitation of this study is that the relationship between monkeypox and
cancers has not been studied extensively and there are relatively few research results avail-
able as a reference, which may limit the mechanistic elaboration of this study. However,
our results showed that the regulation of MRGs existed at all regulatory levels, including
genetic and epigenetic alterations, mRNA expression, immune infiltration microenviron-
ment, and pathway correlation. These changes may, in turn, lead to differences in drug
efficacy, treatment response, and patient survival. These results explored and showed
the connection between monkeypox and tumors, and more importantly, they suggest the
feasibility of monkeypox virus-based therapeutic approaches for tumors.

5. Summary

In conclusion, we comprehensively elucidated the clinical and immunological profiles
of monkeypox-related genes in 33 tumors. Our results showed that the expression of
MRGs was connected with tumor prognosis, immunometabolism, and drug sensitivity.
A potentially intimate link between monkeypox and tumors exists, indicating that such
therapies could be developed if confirmed in the future that monkeypox virus is involved
in cancer development.
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