Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals
Abstract
:1. Introduction
2. Evolution of Eyes and Photoreceptor Cell Types
2.1. PRC Evolution
2.2. Genetics of Eye Development and PRC Determination
2.3. Cnidarian Photoreception
2.4. Opsins and Phototransduction Cascades
2.5. Gi/Gt-Opsins (Traditionally C-Opsins)
2.5.1. Gi/Transducin Cascade
2.5.2. Deuterostome Gi/Gt-Opsins
2.5.3. Protostome Gi Opsins
2.6. Gq-Opsins (Traditional R-Opsins)
2.6.1. Gq Cascade
2.6.2. Protostome Gq-Opsins
2.6.3. Deuterostome Gq-Opsins
3. Tetraopsins
3.1. Go-Opsins
Go Cascade
3.2. Neuropsins
3.3. Photoisomerases
3.3.1. RGRs
3.3.2. Peropsins
3.3.3. Retinochromes
4. Xenopsin
5. Cnidopsin
5.1. Gs Cascade
5.2. Anthozoa Opsins
5.3. Expression of Bilaterian Phototransduction Genes in Cnidarians
5.3.1. Methods
5.3.2. Results
6. Placopsins and Ctenophore Opsins
7. Visual Cycle
7.1. Vertebrate Visual Cycle
7.2. Invertebrate Visual Cycle
8. Cnidaria Visual Cycle
9. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Monteiro, A.; Podlaha, O. Wings, Horns, and Butterfly eyespots:How Do Complex Traits Evolve? PLoS Biol. 2009, 7, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Shubin, N.; Tabin, C.; Carroll, S. Deep Homology and the Origins of Evolutionary Novelty. Nature 2009, 457, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M. Beyond Casual Resemblance: Rigorous Frameworks for Comparing Regeneration Across Species. Annu. Rev. Cell Dev. Biol. 2021, 37, 415–440. [Google Scholar] [CrossRef] [PubMed]
- von Salvini-Plawen, L. Photoreception and the Polyphyletic Evolution of Photoreceptors (with Special Reference to Mollusca). Am. Malacol. Bull. 2008, 26, 83–100. [Google Scholar] [CrossRef]
- Goldsmith, T.H. Evolutionary Tinkering with Visual Photoreception. Vis. Neurosci. 2013, 30, 21–37. [Google Scholar] [CrossRef]
- Serb, J.M.; Porath-Krause, A.J.; Pairett, A.N. Uncovering a Gene Duplication of the Photoreceptive Protein, Opsin, in Scallops (bivalvia: Pectinidae). Integr. Comp. Biol. 2013, 53, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Gehring, W.J. The Evolution of Vision. Wiley Interdiscip. Rev. Dev. Biol. 2014, 3, 1–40. [Google Scholar] [CrossRef]
- Salvini-Plawen, L.V.; Mayr, E. On the Evolution of Photoreceptors and Eyes. J. Evol. Biol. 1977, 10, 207–263. [Google Scholar]
- Koenig, K.M.; Gross, J.M. Evolution and Development of Complex Eyes: A Celebration of Diversity. Development 2020, 147, dev182923. [Google Scholar] [CrossRef]
- Hardie, R.C. Phototransduction in Drosophila Melanogaster. J. Exp. Biol. 2001, 204, 3403–3409. [Google Scholar] [CrossRef]
- Lamb, T.D.; Collin, S.P.; Pugh, E.N., Jr. Evolution of the Vertebrate Eye: Opsins, Photoreceptors, Retina and Eye Cup. Nat. Rev. Neurosci. 2007, 8, 960–976. [Google Scholar] [CrossRef] [PubMed]
- Fain, G.L.; Hardie, R.; Laughlin, S.B. Phototransduction and the Evolution of Photoreceptors. Curr. Biol. CB 2010, 20, R114–R124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garm, A.; Svaerke, J.-E.; Pontieri, D.; Oakley, T.H. Expression of Opsins of the Box Jellyfish Reveals the First Photopigment in Cnidarian Ocelli and Supports the Presence of Photoisomerases. Front. Neuroanat. 2022, 16, 916510. [Google Scholar] [CrossRef] [PubMed]
- Eakin, R.M. Evolution of Photoreceptors. Cold Spring Harb. Symp. Quant. Biol. 1965, 30, 363–370. [Google Scholar] [CrossRef]
- Arendt, D.; Wittbrodt, J. Reconstructing the Eyes of Urbilateria. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2001, 356, 1545–1563. [Google Scholar] [CrossRef] [Green Version]
- Arendt, D. Evolution of Eyes and Photoreceptor Cell Types. Int. J. Dev. Biol. 2003, 47, 563–571. [Google Scholar]
- Nilsson, D.E. The Evolution of Eyes and Visually Guided Behaviour. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2009, 364, 2833–2847. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, D.-E. Eye Evolution and Its Functional Basis. Vis. Neurosci. 2013, 30, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Eakin, R.M. Continuity and Diversity in Photoreceptors. Vis. Cells Evol. 1982, 91–105. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201302622999 (accessed on 25 September 2022).
- Vanfleteren, J.R. Monophyletic Line of Evolution? Ciliary Induced Photoreceptor Membranes. Vis. Cells Evol. 1982. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201302623000 (accessed on 25 September 2022).
- Schmidt-Rhaesa, A. The Evolution of Organ Systems; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Halder, G.; Callaerts, P.; Gehring, W.J. Induction of Ectopic Eyes by Targeted Expression of the Eyeless Gene in Drosophila. Science 1995, 267, 1788–1792. [Google Scholar] [CrossRef] [Green Version]
- Zagozewski, J.L.; Zhang, Q.; Pinto, V.I.; Wigle, J.T.; Eisenstat, D.D. The Role of Homeobox Genes in Retinal Development and Disease. Dev. Biol. 2014, 393, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Oakley, T.H. The Eye as a Replicating and Diverging, Modular Developmental Unit. Trends Ecol. Evol. 2003, 18, 623–627. [Google Scholar] [CrossRef]
- Oakley, T.H.; Speiser, D.I. How Complexity Originates: The Evolution of Animal Eyes. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 237–260. [Google Scholar]
- Musser, J.M.; Arendt, D. Loss and Gain of Cone Types in Vertebrate Ciliary Photoreceptor Evolution. Dev. Biol. 2017, 431, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Wernet, M.F.; Perry, M.W.; Desplan, C. The Evolutionary Diversity of Insect Retinal Mosaics: Common Design Principles and Emerging Molecular Logic. Trends Genet. 2015, 31, 316–328. [Google Scholar] [CrossRef] [Green Version]
- Perry, M.; Kinoshita, M.; Saldi, G.; Huo, L.; Arikawa, K.; Desplan, C. Molecular Logic behind the Three-Way Stochastic Choices That Expand Butterfly Colour Vision. Nature 2016, 535, 280–284. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.C.; Urban, E.A.; Lyons, E.L.; Herman, T.G.; Johnston, R.J. Interdependent Regulation of Stereotyped and Stochastic Photoreceptor Fates in the Fly Eye. Dev. Biol. 2021, 471, 89–96. [Google Scholar] [CrossRef]
- Picciani, N.; Kerlin, J.R.; Sierra, N.; Swafford, A.J.; Ramirez, D.; Roberts, N.G.; Cannon, J.T.; Daly, M.; Oakley, T.H. Prolific Origination of Eyes in Cnidaria with Co-Option of Non-Visual Opsins. Curr. Biol. CB 2018, 28, 2413–2419.e4. [Google Scholar] [CrossRef] [Green Version]
- Miranda, L.S.; Collins, A.G. Eyes in Staurozoa (cnidaria): A Review. PeerJ 2019, 7, e6693. [Google Scholar] [CrossRef]
- Sydney, B.; Picciani, N.; Oakley, T.H.; Plachetzki, D. Chapter 2: Cnidarians. In Diversity and Evolution of Cnidarian Visual Systems Distributed Vision: From Simple Sensor to Sophisticated Combination Eyes; Buschbeck, E., Bok, M., Eds.; Berlin/Heidelberg, Germany, in press.
- Martin, V.J. Photoreceptors of cnidarians. Can. J. Zool. 2002, 80, 1703–1722. [Google Scholar]
- Graziussi, D.F.; Suga, H.; Schmid, V.; Gehring, W.J. The ‘Eyes Absent’ (eya) Gene in the Eye-Bearing Hydrozoan Jellyfish Cladonema Radiatum: Conservation of the Retinal Determination Network. J. Exp. Zoology. Part B Mol. Dev. Evol. 2012, 318, 257–267. [Google Scholar] [CrossRef]
- Stierwald, M.; Yanze, N.; Bamert, R.P.; Kammermeier, L.; Schmid, V. The Sine oculis/Six Class Family of Homeobox Genes in Jellyfish with and without Eyes: Development and Eye Regeneration. Dev. Biol. 2004, 274, 70–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suga, H.; Tschopp, P.; Graziussi, D.F.; Stierwald, M.; Schmid, V.; Gehring, W.J. Flexibly Deployed Pax Genes in Eye Development at the Early Evolution of Animals Demonstrated by Studies on a Hydrozoan Jellyfish. Proc. Natl. Acad. Sci. USA 2010, 107, 14263–14268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, P.N. Convergent Evolution of Eyes with Divergent Gene Expression in Jellyfish. Ph.D. Thesis, UC Santa Barbara, Santa Barbara, CA, USA, 2000. [Google Scholar]
- Suga, H.; Schmid, V.; Gehring, W.J. Evolution and Functional Diversity of Jellyfish Opsins. Curr. Biol. CB 2008, 18, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macias-Muñoz, A.; Murad, R.; Mortazavi, A. Molecular Evolution and Expression of Opsin Genes in Hydra Vulgaris. BMC Genom. 2019, 20, 992. [Google Scholar] [CrossRef] [PubMed]
- Terakita, A. The Opsins. Genome Biol. 2005, 6, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamb, T.D.; Arendt, D.; Collin, S.P. The Evolution of Phototransduction and Eyes. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2009, 364, 2791–2793. [Google Scholar] [CrossRef] [Green Version]
- Shichida, Y.; Matsuyama, T. Evolution of Opsins and Phototransduction. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2009, 364, 2881–2895. [Google Scholar] [CrossRef] [Green Version]
- Porter, M.L.; Blasic, J.R.; Bok, M.J.; Cameron, E.G.; Pringle, T.; Cronin, T.W.; Robinson, P.R. Shedding New Light on Opsin Evolution. Proc. R. Soc. B Biol. Sci. 2011, 279, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Hering, L.; Mayer, G. Analysis of the Opsin Repertoire in the Tardigrade Hypsibius Dujardini Provides Insights into the Evolution of Opsin Genes in Panarthropoda. Genome Biol. Evol. 2014, 6, 2380–2391. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, M.D.; Pairett, A.N.; Pankey, M.S.; Serb, J.M.; Speiser, D.I.; Swafford, A.J.; Oakley, T.H. The Last Common Ancestor of Most Bilaterian Animals Possessed at Least Nine Opsins. Genome Biol. Evol. 2016, 8, 3640–3652. [Google Scholar]
- Vöcking, O.; Kourtesis, I.; Tumu, S.C.; Hausen, H. Co-Expression of Xenopsin and Rhabdomeric Opsin in Photoreceptors Bearing Microvilli and Cilia. eLife 2017, 6, e23435. [Google Scholar] [CrossRef] [PubMed]
- Gornik, S.G.; Bergheim, B.G.; Morel, B.; Stamatakis, A.; Foulkes, N.S.; Guse, A. Photoreceptor Diversification Accompanies the Evolution of Anthozoa. Mol. Biol. Evol. 2020, 38, 1744–1760. [Google Scholar] [CrossRef]
- Roberto, F.; Hamilton, S.C.; McInerney, J.O.; Pisani, D. Metazoan Opsin Evolution Reveals a Simple Route to Animal Vision. Proc. Natl. Acad. Sci. USA 2012, 109, 18868–18872. [Google Scholar]
- Fleming, J.; Feuda, R.; Roberts, N.; Pisani, D. A Novel Approach to Investigate the Effect of Tree Reconstruction Artifacts in Single-Gene Analysis Clarifies Opsin Evolution in Nonbilaterian Metazoans. Genome Biol. Evol. 2020, 12, 3906–3916. [Google Scholar] [CrossRef] [PubMed]
- Yau, K.-W.; Hardie, R.C. Phototransduction Motifs and Variations. Cell 2009, 139, 246–264. [Google Scholar] [CrossRef] [Green Version]
- Arendt, D.; Tessmar-Raible, K.; Snyman, H.; Dorresteijn, A.W.; Wittbrodt, J. Ciliary Photoreceptors with a Vertebrate-Type Opsin in an Invertebrate Brain. Science 2004, 306, 869–871. [Google Scholar] [CrossRef]
- Velarde, R.A.; Sauer, C.D.; Walden, K.K.O.; Fahrbach, S.E.; Robertson, H.M. Pteropsin: A Vertebrate-like Non-Visual Opsin Expressed in the Honey Bee Brain. Insect Biochem. Mol. Biol. 2005, 35, 1367–1377. [Google Scholar] [CrossRef]
- Kawamura, S.; Tachibanaki, S. Phototransduction in Rods and Cones. Vertebr. Photoreceptors Funct. Mol. Bases 2014, 1, 23–45. [Google Scholar]
- Maeda, T.; Imanishi, Y.; Palczewski, K. Rhodopsin Phosphorylation: 30 Years Later. Prog. Retin. Eye Res. 2003, 22, 417–434. [Google Scholar] [CrossRef]
- Baldwin, M.W.; Ko, M.-C. Functional Evolution of Vertebrate Sensory Receptors. Horm. Behav. 2020, 124, 104771. [Google Scholar] [CrossRef]
- Rennison, D.J.; Owens, G.L.; Taylor, J.S. Opsin Gene Duplication and Divergence in Ray-Finned Fish. Mol. Phylogenetics Evol. 2012, 62, 986–1008. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-J.; Wang, F.-Y.; Li, W.-H.; Wang, T.-Y. The Rises and Falls of Opsin Genes in 59 Ray-Finned Fish Genomes and Their Implications for Environmental Adaptation. Sci. Rep. 2017, 7, 15568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Dowdall, J.; Karagic, N.; Härer, A.; Meyer, A. Diversity in Visual Sensitivity across Neotropical Cichlid Fishes via Differential Expression and Intraretinal Variation of Opsin Genes. Mol. Ecol. 2021, 30, 1880–1891. [Google Scholar] [CrossRef] [PubMed]
- Okano, T.; Yoshizawa, T.; Fukada, Y. Pinopsin Is a Chicken Pineal Photoreceptive Molecule. Nature 1994, 372, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, Y.; Hisatomi, O.; Yoshida, M.; Tokunaga, F. Pinopsin Expressed in the Retinal Photoreceptors of a Diurnal Gecko. FEBS Lett. 2001, 496, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Frigato, E.; Vallone, D.; Bertolucci, C.; Foulkes, N.S. Isolation and Characterization of Melanopsin and Pinopsin Expression within Photoreceptive Sites of Reptiles. Die Nat. 2006, 93, 379–385. [Google Scholar] [CrossRef]
- Sato, K.; Yamashita, T.; Kojima, K.; Sakai, K.; Matsutani, Y.; Yanagawa, M.; Yamano, Y.; Wada, A.; Iwabe, N.; Ohuchi, H.; et al. Pinopsin Evolved as the Ancestral Dim-Light Visual Opsin in Vertebrates. Commun. Biol. 2018, 1, 156. [Google Scholar] [CrossRef]
- Blackshaw, S.; Snyder, S.H. Parapinopsin, a Novel Catfish Opsin Localized to the Parapineal Organ, Defines a New Gene Family. J. Neurosci. 1997, 17, 8083–8092. [Google Scholar] [CrossRef] [Green Version]
- Koyanagi, M.; Kawano, E.; Kinugawa, Y.; Oishi, T.; Shichida, Y.; Tamotsu, S.; Terakita, A. Bistable UV Pigment in the Lamprey Pineal. Proc. Natl. Acad. Sci. USA 2004, 101, 6687–6691. [Google Scholar] [CrossRef] [Green Version]
- Koyanagi, M.; Wada, S.; Kawano-Yamashita, E.; Hara, Y.; Kuraku, S.; Kosaka, S.; Kawakami, K.; Tamotsu, S.; Tsukamoto, H.; Shichida, Y.; et al. Diversification of Non-Visual Photopigment Parapinopsin in Spectral Sensitivity for Diverse Pineal Functions. BMC Biol. 2015, 13, 73. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, A.; Kojima, D.; Imai, H.; Terakita, A.; Okano, T.; Shichida, Y.; Fukada, Y. Chimeric Nature of Pinopsin between Rod and Cone Visual Pigments. Biochemistry 1999, 38, 14738–14745. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, M.; Kawano-Yamashita, E.; Wada, S.; Terakita, A. Vertebrate Bistable Pigment Parapinopsin: Implications for Emergence of Visual Signaling and Neofunctionalization of Non-Visual Pigment. Front. Ecol. Evol. 2017, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Soni, B.G.; Foster, R.G. A Novel and Ancient Vertebrate Opsin. FEBS Lett. 1997, 406, 279–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Philp, A.R.; Garcia-Fernandez, J.M.; Soni, B.G.; Lucas, R.J.; Bellingham, J.; Foster, R.G. Vertebrate Ancient (VA) Opsin and Extraretinal Photoreception in the Atlantic Salmon (Salmo Salar). J. Exp. Biol. 2000, 203 Pt 12, 1925–1936. [Google Scholar] [CrossRef]
- Santillo, S.; Orlando, P.; De Petrocellis, L.; Cristino, L.; Guglielmotti, V.; Musio, C. Evolving Visual Pigments: Hints from the Opsin-Based Proteins in a Phylogenetically Old ‘Eyeless’ Invertebrate. Bio Syst. 2006, 86, 3–17. [Google Scholar] [CrossRef]
- Halford, S.; Pires, S.S.; Turton, M.; Zheng, L.; González-Menéndez, I.; Davies, W.L.; Peirson, S.N.; García-Fernández, J.M.; Hankins, M.W.; Foster, R.G. VA Opsin-Based Photoreceptors in the Hypothalamus of Birds. Curr. Biol. CB 2009, 19, 1396–1402. [Google Scholar] [CrossRef] [Green Version]
- Blackshaw, S.; Snyder, S.H. Encephalopsin: A Novel Mammalian Extraretinal Opsin Discretely Localized in the Brain. J. Neurosci. Off. J. Soc. Neurosci. 1999, 19, 3681–3690. [Google Scholar] [CrossRef] [Green Version]
- Halford, S.; Freedman, M.S.; Bellingham, J.; Inglis, S.L.; Poopalasundaram, S.; Soni, B.G.; Foster, R.G.; Hunt, D.M. Characterization of a Novel Human Opsin Gene with Wide Tissue Expression and Identification of Embedded and Flanking Genes on Chromosome 1q43. Genomics 2001, 72, 203–208. [Google Scholar] [CrossRef]
- Ooka, S.; Katow, T.; Yaguchi, S.; Yaguchi, J.; Katow, H. Spatiotemporal Expression Pattern of an Encephalopsin Orthologue of the Sea Urchin Hemicentrotus Pulcherrimus during Early Development, and Its Potential Role in Larval Vertical Migration. Dev. Growth Differ. 2010, 52, 195–207. [Google Scholar] [CrossRef]
- Nissilä, J.; Mänttäri, S.; Särkioja, T.; Tuominen, H.; Takala, T.; Timonen, M.; Saarela, S. Encephalopsin (OPN3) Protein Abundance in the Adult Mouse Brain. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2012, 198, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Moutsaki, P.; Whitmore, D.; Bellingham, J.; Sakamoto, K.; David-Gray, Z.K.; Foster, R.G. Teleost Multiple Tissue (tmt) Opsin: A Candidate Photopigment Regulating the Peripheral Clocks of Zebrafish? Mol. Brain Res. 2003, 112, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, M.; Takada, E.; Nagata, T.; Tsukamoto, H.; Terakita, A. Homologs of Vertebrate Opn3 Potentially Serve as a Light Sensor in Nonphotoreceptive Tissue. Proc. Natl. Acad. Sci. USA 2013, 110, 4998–5003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, K.; Yamashita, T.; Imamoto, Y.; Shichida, Y. Diversity of Active States in TMT Opsins. PLoS ONE 2015, 10, e0141238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontinha, B.M. TMT-Opsins Differentially Modulate Medaka Brain Function in a Context-Dependent Manner. Intrinsic Act. 2019, 7, A3.17. [Google Scholar] [CrossRef]
- Kusakabe, T.; Kusakabe, R.; Kawakami, I.; Satou, Y.; Satoh, N.; Tsuda, M. Ci-opsin1, a Vertebrate-Type Opsin Gene, Expressed in the Larval Ocellus of the Ascidian Ciona Intestinalis. FEBS Lett. 2001, 506, 69–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vopalensky, P.; Pergner, J.; Liegertova, M.; Benito-Gutierrez, E.; Arendt, D.; Kozmik, Z. Molecular Analysis of the Amphioxus Frontal Eye Unravels the Evolutionary Origin of the Retina and Pigment Cells of the Vertebrate Eye. Proc. Natl. Acad. Sci. USA 2012, 109, 15383–15388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Aniello, S.; Delroisse, J.; Valero-Gracia, A.; Lowe, E.; Byrne, M.; Cannon, J.; Halanych, K.; Elphick, M.; Mallefet, J.; Kaul-Strehlow, S.; et al. Opsin Evolution in the Ambulacraria. Mar. Genom. 2015, 24, 177–183. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Chen, I.-S.; Kubo, Y.; Furutani, Y. A Ciliary Opsin in the Brain of a Marine Annelid Zooplankton Is Ultraviolet-Sensitive, and the Sensitivity Is Tuned by a Single Amino Acid Residue. J. Biol. Chem. 2017, 292, 12971–12980. [Google Scholar] [CrossRef] [Green Version]
- Verasztó, C.; Gühmann, M.; Jia, H.; Rajan, V.B.V.; Bezares-Calderón, L.A.; Piñeiro-Lopez, C.; Randel, N.; Shahidi, R.; Michiels, N.K.; Yokoyama, S.; et al. Ciliary and Rhabdomeric Photoreceptor-Cell Circuits Form a Spectral Depth Gauge in Marine Zooplankton. eLife 2018, 7, e36440. [Google Scholar] [CrossRef]
- Eriksson, B.J.; Fredman, D.; Steiner, G.; Schmid, A. Characterisation and Localisation of the Opsin Protein Repertoire in the Brain and Retinas of a Spider and an Onychophoran. BMC Evol. Biol. 2013, 13, 186. [Google Scholar] [CrossRef] [Green Version]
- Collantes-Alegre, J.M.; Mattenberger, F.; Barberà, M.; Martínez-Torres, D. Characterisation, Analysis of Expression and Localisation of the Opsin Gene Repertoire from the Perspective of Photoperiodism in the Aphid Acyrthosiphon Pisum. J. Insect Physiol. 2018, 104, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Montell, C. Drosophila Visual Transduction. Trends Neurosci. 2012, 35, 356–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henze, M.J.; Oakley, T.H. The Dynamic Evolutionary History of Pancrustacean Eyes and Opsins. Integr. Comp. Biol. 2015, 55, 830–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, I.; Yamakawa, Y.; Shimazaki, Y.; Iwasa, T. Molecular Cloning of Bombyx Cerebral Opsin (Boceropsin) and Cellular Localization of Its Expression in the Silkworm Brain. Biochem. Biophys. Res. Commun. 2001, 287, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.; Rozas, N.S.; Oakley, T.H.; Mitchell, J.; Colley, N.J.; McFall-Ngai, M.J. Evidence for Light Perception in a Bioluminescent Organ. Proc. Natl. Acad. Sci. USA 2009, 106, 9836–9841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Backfisch, B.; Rajan, V.B.V.; Fischer, R.M.; Lohs, C.; Arboleda, E.; Tessmar-Raible, K.; Raible, F. Stable Transgenesis in the Marine Annelid Platynereis dumerilii Sheds New Light on Photoreceptor Evolution. Proc. Natl. Acad. Sci. USA 2013, 110, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Spaethe, J.; Briscoe, A.D. Molecular Characterization and Expression of the UV Opsin in Bumblebees: Three Ommatidial Subtypes in the Retina and a New Photoreceptor Organ in the Lamina. J. Exp. Biol. 2005, 208, 2347–2361. [Google Scholar] [CrossRef]
- Ogueta, M.; Hardie, R.C.; Stanewsky, R. Non-Canonical Phototransduction Mediates Synchronization of the Drosophila Melanogaster Circadian Clock and Retinal Light Responses. Curr. Biol. CB 2018, 28, 1725–1735.e3. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.P.; Liu, Z.X.; Chen, Y.T.; Wang, Y.; Chen, J.Z.; Fu, S.; Ma, W.F.; Xia, S.; Liu, D.; Wu, T.; et al. CRISPR/Cas9-Mediated Knockout of LW-Opsin Reduces the Efficiency of Phototaxis in the Diamondback Moth Plutella xylostella. Pest Manag. Sci. 2021, 77, 3519–3528. [Google Scholar] [CrossRef]
- Leung, N.Y.; Montell, C. Unconventional Roles of Opsins. Annu. Rev. Cell Dev. Biol. 2017, 33, 241–264. [Google Scholar] [CrossRef]
- Colbourne, J.K.; Pfrender, M.E.; Gilbert, D.; Thomas, W.K.; Tucker, A.; Oakley, T.H.; Tokishita, S.; Aerts, A.; Arnold, G.J.; Basu, M.K.; et al. The Ecoresponsive Genome of Daphnia pulex. Science 2011, 331, 555–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattar, S.; Lucas, R.J.; Mrosovsky, N.; Thompson, S.; Douglas, R.H.; Hankins, M.W.; Lem, J.; Biel, M.; Hofmann, F.; Foster, R.G.; et al. Melanopsin and Rod-Cone Photoreceptive Systems Account for All Major Accessory Visual Functions in Mice. Nature 2003, 424, 76–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panda, S.; Nayak, S.K.; Campo, B.; Walker, J.R.; Hogenesch, J.B.; Jegla, T. Illumination of the Melanopsin Signaling Pathway. Science 2005, 307, 600–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.L.; Robinson, P.R. Melanopsin—Shedding Light on the Elusive Circadian Photopigment. Chronobiol. Int. 2004, 21, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Chew, K.S.; Schmidt, T.M.; Rupp, A.C.; Kofuji, P.; Trimarchi, J.M. Loss of Gq/11 Genes Does Not Abolish Melanopsin Phototransduction. PLoS ONE 2014, 9, e98356. [Google Scholar] [CrossRef] [Green Version]
- del Pilar Gomez, M.; Angueyra, J.M.; Nasi, E. Light-Transduction in Melanopsin-Expressing Photoreceptors of Amphioxus. Proc. Natl. Acad. Sci. USA 2009, 106, 9081–9086. [Google Scholar] [CrossRef] [Green Version]
- Lowe, E.K.; Garm, A.L.; Ullrich-Lüter, E.; Cuomo, C.; Arnone, M.I. The Crowns Have Eyes: Multiple Opsins Found in the Eyes of the Crown-of-Thorns Starfish Acanthaster Planci. BMC Evol. Biol. 2018, 18, 168. [Google Scholar] [CrossRef]
- Kojima, D.; Terakita, A.; Ishikawa, T.; Tsukahara, Y.; Maeda, A.; Shichida, Y. A Novel G O -Mediated Phototransduction Cascade in Scallop Visual Cells. J. Biol. Chem. 1997, 272, 22979–22982. [Google Scholar] [CrossRef] [Green Version]
- Gomez, M.D.P.; Nasi, E. Light Transduction in Invertebrate Hyperpolarizing Photoreceptors: Possible Involvement of a Go-Regulated Guanylate Cyclase. J. Neurosci. Off. J. Soc. Neurosci. 2000, 20, 5254–5263. [Google Scholar] [CrossRef] [Green Version]
- Koyanagi, M.; Terakita, A.; Kubokawa, K.; Shichida, Y. Amphioxus Homologs of Go-Coupled Rhodopsin and Peropsin Having 11-Cis—And All-Trans-Retinals as Their Chromophores. FEBS Lett. 2002, 531, 525–528. [Google Scholar] [CrossRef] [Green Version]
- Holland, L.Z. The Amphioxus Genome Illuminates Vertebrate Origins and Cephalochordate Biology. Genome Res. 2008, 18, 1100–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gühmann, M.; Jia, H.; Randel, N.; Verasztó, G.; Bezares-Calderón, L.A.; Michiels, N.K.; Yokoyama, S.; Jékely, G. Spectral Tuning of Phototaxis by a Go-Opsin in the Rhabdomeric Eyes of Platynereis. Curr. Biol. CB 2015, 25, 2265–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randel, N.; Jékely, G. Phototaxis and the Origin of Visual Eyes Main Text. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2015, 371, 20150042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarttelin, E.E.; Bellingham, J.; Bibb, L.C.; Foster, R.G.; Hankins, M.W.; Gregory-Evans, K.; Gregory-Evans, C.Y.; Wells, D.; Lucas, R.J. Expression of Opsin Genes Early in Ocular Development of Humans and Mice. Exp. Eye Res. 2003, 76, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Kumbalasiri, T.; Provencio, I. Melanopsin and Other Novel Mammalian Opsins. Exp. Eye Res. 2005, 81, 368–375. [Google Scholar] [CrossRef]
- Nakane, Y.; Ikegami, K.; Ono, H.; Yamamoto, N.; Yoshida, S.; Hirunagi, K.; Ebihara, S.; Kubo, Y.; Yoshimura, T. A Mammalian Neural Tissue Opsin (Opsin 5) Is a Deep Brain Photoreceptor in Birds. Proc. Natl. Acad. Sci. USA 2010, 107, 15264–15268. [Google Scholar] [CrossRef] [Green Version]
- Nakane, Y.; Shimmura, T.; Abe, H.; Yoshimura, T. Intrinsic Photosensitivity of a Deep Brain Photoreceptor. Curr. Biol. CB 2014, 24, R596–R597. [Google Scholar] [CrossRef]
- Yamashita, T.; Ohuchi, H.; Tomonari, S.; Ikeda, K.; Sakai, K.; Shichida, Y. Opn5 Is a UV-Sensitive Bistable Pigment That Couples with Gi Subtype of G Protein. Proc. Natl. Acad. Sci. USA 2010, 107, 22084–22089. [Google Scholar] [CrossRef] [Green Version]
- Neal, S.; de Jong, D.M.; Seaver, E.C. CRISPR/CAS9 Mutagenesis of a Single R-Opsin Gene Blocks Phototaxis in a Marine Larva. Proc. Biol. Sci. R. Soc. 2019, 286, 20182491. [Google Scholar] [CrossRef] [Green Version]
- Buhr, E.D.; Vemaraju, S.; Diaz, N.; Lang, R.A.; Van Gelder, R.N. Neuropsin (OPN5) Mediates Local Light-Dependent Induction of Circadian Clock Genes and Circadian Photoentrainment in Exposed Murine Skin. Curr. Biol. CB 2019, 29, 3478–3487.e4. [Google Scholar] [CrossRef]
- Hao, W.; Fong, H.K.W. Blue and Ultraviolet Light-Absorbing Opsin from the Retinal Pigment Epithelium. Biochemistry 1996, 35, 6251–6256. [Google Scholar] [CrossRef]
- Chen, P.; Lee, T.D.; Fong, H.K.W. Interaction of 11-Cis-Retinol Dehydrogenase with the Chromophore of Retinal G Protein-Coupled Receptor Opsin. J. Biol. Chem. 2001, 276, 21098–21104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vöcking, O.; Leclère, L.; Hausen, H. The Rhodopsin-Retinochrome System for Retinal Re-Isomerization Predates the Origin of Cephalopod Eyes. BMC Ecol. Evol. 2021, 21, 215. [Google Scholar] [CrossRef]
- Gühmann, M.; Porter, M.L.; Bok, M.J. The Gluopsins: Opsins without the Retinal Binding Lysine. Cells 2022, 11, 2441. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Hao, W.; Rife, L.; Wang, X.P.; Shen, D.; Chen, J.; Ogden, T.; Van Boemel, G.B.; Wu, L.; Yang, M.; et al. A Photic Visual Cycle of Rhodopsin Regeneration Is Dependent on Rgr. Nat. Genet. 2001, 28, 256–260. [Google Scholar] [CrossRef]
- Díaz, N.M.; Morera, L.P.; Tempesti, T.; Guido, M.E. The Visual Cycle in the Inner Retina of Chicken and the Involvement of Retinal G-Protein-Coupled Receptor (RGR). Mol. Neurobiol. 2017, 54, 2507–2517. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Gilbert, D.J.; Copeland, N.G.; Jenkins, N.A.; Nathans, J. Peropsin, a Novel Visual Pigment-like Protein Located in the Apical Microvilli of the Retinal Pigment Epithelium. Proc. Natl. Acad. Sci. USA 1997, 94, 9893–9898. [Google Scholar] [CrossRef]
- Tarttelin, E.E.; Bellingham, J.; Hankins, M.W.; Foster, R.G.; Lucas, R.J. Neuropsin (Opn5): A Novel Opsin Identified in Mammalian Neural Tissue. FEBS Lett. 2003, 554, 410–416. [Google Scholar] [CrossRef]
- Tosches, M.A.; Bucher, D.; Vopalensky, P.; Arendt, D. Melatonin Signaling Controls Circadian Swimming Behavior in Marine Zooplankton. Cell 2014, 159, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Bailey, M.J.; Cassone, V.M. Opsin Photoisomerases in the Chick Retina and Pineal Gland: Characterization, Localization, and Circadian Regulation. Investig. Ophthalmol. Vis. Sci. 2004, 45, 769–775. [Google Scholar] [CrossRef]
- Nagata, T.; Koyanagi, M.; Tsukamoto, H.; Terakita, A. Identification and Characterization of a Protostome Homologue of Peropsin from a Jumping Spider. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2009, 196, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Battelle, B.-A.; Ryan, J.F.; Kempler, K.E.; Saraf, S.R.; Marten, C.E.; Warren, W.C.; Minx, P.; Montague, M.J.; Green, P.J.; Schmidt, S.A.; et al. Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of Limulus Polyphemus (Arthropoda: Chelicerata). Genome Biol. Evol. 2016, 8, 1571–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, J.D.; Ng, S.Y.; Lloyd, M.; Eddington, S.; Sun, H.; Nathans, J.; Bok, D.; Radu, R.A.; Travis, G.H. Peropsin Modulates Transit of Vitamin A from Retina to Retinal Pigment Epithelium. J. Biol. Chem. 2017, 292, 21407–21416. [Google Scholar] [CrossRef] [Green Version]
- Hara, T.; Hara, R. New Photosensitive Pigment Found in the Retina of the Squid Ommastrephes. Nature 1965, 206, 1331–1334. [Google Scholar] [CrossRef] [PubMed]
- Terakita, A.; Hara, R.; Hara, T. Retinal-Binding Protein as a Shuttle for Retinal in the Rhodopsin-Retinochrome System of the Squid Visual Cells. Vis. Res. 1989, 29, 639–652. [Google Scholar] [CrossRef]
- Hara, T.; Hara, R. Retinal-Binding Protein: Function in a Chromophore Exchange System in the Squid Visual Cell. Prog. Retin. Eye Res. 1991, 10, 179–206. [Google Scholar] [CrossRef]
- Macias-Muñoz, A.; Rangel Olguin, A.G.; Briscoe, A.D. Evolution of Phototransduction Genes in Lepidoptera. Genome Biol. Evol. 2019, 11, 2107–2124. [Google Scholar] [CrossRef]
- Rawlinson, K.A.; Lapraz, F.; Ballister, E.R.; Terasaki, M.; Rodgers, J.; McDowell, R.J.; Girstmair, J.; Criswell, K.E.; Boldogkoi, M.; Simpson, F.; et al. Extraocular, Rod-like Photoreceptors in a Flatworm Express Xenopsin Photopigment. eLife 2015, 8, e45465. [Google Scholar] [CrossRef]
- Döring, C.C.; Kumar, S.; Tumu, S.C.; Kourtesis, I.; Hausen, H. The Visual Pigment Xenopsin Is Widespread in Protostome Eyes and Impacts the View on Eye Evolution. eLife 2020, 9, e55193. [Google Scholar] [CrossRef]
- Passamaneck, Y.J.; Furchheim, N.; Hejnol, A.; Martindale, M.Q.; Lüter, C. Ciliary Photoreceptors in the Cerebral Eyes of a Protostome Larva. EvoDevo 2011, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Plachetzki, D.C.; Degnan, B.M.; Oakley, T.H. The Origins of Novel Protein Interactions during Animal Opsin Evolution. PLoS ONE 2007, 2, e1054. [Google Scholar] [CrossRef] [PubMed]
- Liegertová, M.; Pergner, J.; Kozmiková, I.; Fabian, P.; Pombinho, A.R.; Strnad, H.; Pačes, J.; Vlček, C.; Bartůněk, P.; Kozmik, Z. Cubozoan Genome Illuminates Functional Diversification of Opsins and Photoreceptor Evolution. Sci. Rep. 2015, 5, 11885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyanagi, M.; Takano, K.; Tsukamoto, H.; Ohtsu, K.; Tokunaga, F.; Terakita, A. Jellyfish Vision Starts with cAMP Signaling Mediated by Opsin-Gs Cascade. Proc. Natl. Acad. Sci. USA 2008, 105, 15576–15580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plachetzki, D.C.; Fong, C.R.; Oakley, T.H. The Evolution of Phototransduction from an Ancestral Cyclic Nucleotide Gated Pathway. Proc. R. Soc. B Biol. Sci. 2010, 277, 1963–1969. [Google Scholar] [CrossRef] [Green Version]
- Plachetzki, D.C.; Fong, C.R.; Oakley, T.H. Cnidocyte Discharge Is Regulated by Light and Opsin-Mediated Phototransduction. BMC Biol. 2012, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Mason, B.; Schmale, M.; Gibbs, P.; Miller, M.W.; Wang, Q.; Levay, K.; Shestopalov, V.; Slepak, V.Z. Evidence for Multiple Phototransduction Pathways in a Reef-Building Coral. PLoS ONE 2012, 7, e50371. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Godzik, A. Cd-Hit: A Fast Program for Clustering and Comparing Large Sets of Protein or Nucleotide Sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the next-Generation Sequencing Data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [Green Version]
- Rivera, A.S.; Pankey, M.S.; Plachetzki, D.C.; Villacorta, C.; Syme, A.E.; Serb, J.M.; Omilian, A.R.; Oakley, T.H. Gene Duplication and the Origins of Morphological Complexity in Pancrustacean Eyes, a Genomic Approach. BMC Evol. Biol. 2010, 10, 123. [Google Scholar] [CrossRef] [Green Version]
- Schnitzler, C.E.; Pang, K.; Powers, M.L.; Reitzel, A.M.; Ryan, J.F.; Simmons, D.; Tada, T.; Park, M.; Gupta, J.; Brooks, S.Y.; et al. Genomic Organization, Evolution, and Expression of Photoprotein and Opsin Genes in Mnemiopsis Leidyi: A New View of Ctenophore Photocytes. BMC Biol. 2012, 10, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R.; Teeling, E. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Murad, R.; Macias-Muñoz, A.; Wong, A.; Ma, X.; Mortazavi, A. Coordinated Gene Expression and Chromatin Regulation during Hydra Head Regeneration. Genome Biol. Evol. 2021, 13, evab221. [Google Scholar] [CrossRef] [PubMed]
- Khalturin, K.; Shinzato, C.; Khalturina, M.; Hamada, M.; Fujie, M.; Koyanagi, R.; Kanda, M.; Goto, H.; Anton-Erxleben, F.; Toyokawa, M.; et al. Medusozoan Genomes Inform the Evolution of the Jellyfish Body Plan. Nat. Ecol. Evol. 2019, 3, 811–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Srivastava, M.; Begovic, E.; Chapman, J.; Putnam, N.H.; Hellsten, U.; Kawashima, T.; Kuo, A.; Mitros, T.; Salamov, A.; Carpenter, M.L.; et al. The Trichoplax Genome and the Nature of Placozoans. Nature 2008, 454, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Feuda, R.; Rota-Stabelli, O.; Oakley, T.H.; Pisani, D. The Comb Jelly Opsins and the Origins of Animal Phototransduction. Genome Biol. Evol. 2014, 6, 1964–1971. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, H.; Terakita, A. Diversity and Functional Properties of Bistable Pigments. Photochem. Photobiol. Sci. 2010, 9, 1435–1443. [Google Scholar] [CrossRef]
- Wang, J.S.; Kefalov, V.J. The Cone-Specific Visual Cycle. Prog. Retin. Eye Res. 2011, 30, 115–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saari, J.C. Regeneration of 11-Cis-Retinal in Visual Systems with Monostable and Bistable Visual. In Vertebrate Photoreceptors; Furukawa, T., Hurley, J.B., Kawamura, S., Eds.; Springer: Tokyo, Japan, 2014; pp. 47–71. ISBN 978-4-431-54879-9. [Google Scholar]
- Choi, E.H.; Daruwalla, A.; Suh, S.; Leinonen, H.; Palczewski, K. Retinoids in the Visual Cycle: Role of the Retinal G Protein-Coupled Receptor. J. Lipid Res. 2021, 62, 100040. [Google Scholar] [CrossRef] [PubMed]
- Saari, J.C. Vitamin A Metabolism in Rod and Cone Visual Cycles. Annu. Rev. Nutr. 2012, 32, 125–145. [Google Scholar] [CrossRef] [PubMed]
- Kuksa, V.; Imanishi, Y.; Batten, M.; Palczewski, K.; Moise, A.R. Retinoid Cycle in the Vertebrate Retina: Experimental Approaches and Mechanisms of Isomerization. Vision Res. 2003, 43, 2959–2981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radu, R.A.; Hu, J.; Peng, J.; Bok, D.; Mata, N.L.; Travis, G.H. Retinal Pigment Epithelium-Retinal G Protein Receptor-Opsin Mediates Light-Dependent Translocation of All-Trans-Retinyl Esters for Synthesis of Visual Chromophore in Retinal Pigment Epithelial Cells. J. Biol. Chem. 2008, 283, 19730–19738. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.H.; Kono, M.; Koutalos, Y.; Ablonczy, Z.; Crouch, R.K. New Insights into Retinoid Metabolism and Cycling within the Retina. Prog. Retin. Eye Res. 2013, 32, 48–63. [Google Scholar] [CrossRef] [Green Version]
- Morshedian, A.; Kaylor, J.J.; Ng, S.Y.; Tsan, A.; Frederiksen, R.; Xu, T.; Yuan, L.; Sampath, A.P.; Radu, R.A.; Fain, G.L.; et al. Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells. Neuron 2019, 102, 1172–1183.e5. [Google Scholar] [CrossRef]
- Jiang, M.; Pandey, S.; Fong, H.K.W. An Opsin Homolog in the Retina and Pigment-Epithelium. Investig. Ophthalmol. Vis. Sci. 1993, 34, 3669–3678. [Google Scholar]
- Van Hooser, J.P.; Liang, Y.; Maeda, T.; Kuksa, V.; Jang, G.F.; He, Y.G.; Rieke, F.; Fong, H.K.W.; Detwiler, P.B.; Palczewski, K. Recovery of Visual Functions in a Mouse Model of Leber Congenital Amaurosis. J. Biol. Chem. 2002, 277, 19173–19182. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Choi, E.H.; Tworak, A.; Salom, D.; Leinonen, H.; Sander, C.L.; Hoang, T.V.; Handa, J.T.; Seth Blackshaw, X.; Palczewska, G.; et al. Photic Generation of 11-Cis-Retinal in Bovine Retinal Pigment Epithelium. J. Biol. Chem. 2019, 294, 19137–19154. [Google Scholar] [CrossRef]
- Lamb, T.D.; Pugh, E.N. Dark Adaptation and the Retinoid Cycle of Vision. Prog. Retin. Eye Res. 2004, 23, 307–380. [Google Scholar] [CrossRef] [PubMed]
- Hara, R.; Hara, T.; Tokunaga, F. Photochemistry Retinochrome. Photochem. Photobiol. 1981, 33, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, K.; Hara, R.; Hara, T.; Kakitani, T. Squid Retinochrome. Configurational Changes of the Retinal Chromophore. Biophys. J. 1983, 44, 127–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, T.; Hara, R. Distribution of Rhodopsin and Retinochrome in the Squid Retina. J. Gen. Physiol. 1976, 67, 791–805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozaki, K.; Terakita, A.; Hara, R.; Hara, T. Rhodopsin and Retinochrome in the Retina of a Marine Gastropod, Conomulex Luhuanus. Vision Res. 1986, 26, 691–705. [Google Scholar] [CrossRef]
- O’Connor, M.; Garm, A.; Marshall, J.N.; Hart, N.S.; Ekström, P.; Skogh, C.; Nilsson, D.E. Visual Pigment in the Lens Eyes of the Box Ra Jellyfish Chiropsella Bronzie. Proc. R. Soc. B Biol. Sci. 2010, 277, 1843–1848. [Google Scholar] [CrossRef]
Gene Name | Function | Hydra | Aurelia | Tripedalia * | Reference |
---|---|---|---|---|---|
G-alpha-i | G-protein cascade activation | 1 | 2 | 1 | Figure S1 |
G-alpha-o | G-protein cascade activation | 1 | 1 | 1 | Figure S1 |
G-alpha-q | G-protein cascade activation | 1 | 1 | 1 | Figure S1 |
GNB1-4-like | member of the G-protein complex | 3 | 1 | 1 | Figure S2 |
GNB5-like | member of the G-protein complex | 1 | 1 | 1 | Figure S2 |
CNG-like | calcium/sodium ion channel | 0 | 1 | 0 | Figure S3 |
CNG-alpha-like | calcium/sodium ion channel | 1 | 1 | 1 | Figure S3 |
TRP | calcium/sodium ion channel | 1 | 2 | 1 | Figure S4 |
AC-type2/3 | enzyme that transduces G-protein signal | 1 | 1 | 1 | Figure S5 |
AC-type5 | enzyme that transduces G-protein signal | 1 | 1 | 1 | Figure S5 |
AC-type9 | enzyme that transduces G-protein signal | 2 | 1 | 1 | Figure S5 |
GC 88E | enzyme that transduces G-protein signal | 0 | 3 | 2 | Figure S6 |
GC-alpha-like | enzyme that transduces G-protein signal | 1 | 1 | 2 | Figure S6 |
GC-beta | enzyme that transduces G-protein signal | 1 | 1 | 1 | Figure S6 |
PDE11A | enzyme that transduces G-protein signal | 1 | 1 | 1 | Figure S8 |
PDE5A | enzyme that transduces G-protein signal | 1 | 1 | 1 | Figure S8 |
PDE6-like | enzyme that transduces G-protein signal | 2 | 2 | 1 | Figure S8 |
PLC beta1 | enzyme that transduces G-protein signal | 3 | 1 | 1 | Figure S7 |
PLC beta4 | enzyme that transduces G-protein signal | 1 | 1 | 1 | Figure S7 |
Arrestin | deactivates active rhodopsin | 1 | 1 | 1 | Figure S10 |
Rhk | deactivates active rhodopsin | 1 | 1 | 1 | Figure S9 |
SEC14-2 | transport protein | 1 | 1 | 2 | Figure S11 |
SEC14-5 | transport protein | 1 | 1 | 1 | Figure S11 |
Clavesin/RLBP1 | transports retinal chromophore | 1 | 1 | 1 | Figure S12 |
RLBP1-like | transports retinal chromophore | 1 | 1 | 1 | Figure S13 |
ALDHX | dehydrogenase enzyme | 1 | 1 | 2 | Figure S14 |
ALDH1/2/X | dehydrogenase enzyme | 1 | 2 | 2 | Figure S14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vöcking, O.; Macias-Muñoz, A.; Jaeger, S.J.; Oakley, T.H. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022, 11, 3966. https://doi.org/10.3390/cells11243966
Vöcking O, Macias-Muñoz A, Jaeger SJ, Oakley TH. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells. 2022; 11(24):3966. https://doi.org/10.3390/cells11243966
Chicago/Turabian StyleVöcking, Oliver, Aide Macias-Muñoz, Stuart J. Jaeger, and Todd H. Oakley. 2022. "Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals" Cells 11, no. 24: 3966. https://doi.org/10.3390/cells11243966
APA StyleVöcking, O., Macias-Muñoz, A., Jaeger, S. J., & Oakley, T. H. (2022). Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells, 11(24), 3966. https://doi.org/10.3390/cells11243966