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Abstract: Obesity and its associated comorbidities have become pandemic, and challenge the global
healthcare system. Lifestyle changes, nutritional interventions and phamaceuticals should be dif-
ferently combined in a personalized strategy to tackle such a public health burden. Altered brown
adipose tissue (BAT) function contributes to the pathophysiology of obesity and glucose metabolism
dysfunctions. BAT thermogenic activity burns glucose and fatty acids to produce heat through
uncoupled respiration, and can dissipate the excessive calorie intake, reduce glycemia and circulate
fatty acids released from white adipose tissue. Thus, BAT activity is expected to contribute to whole
body energy homeostasis and protect against obesity, diabetes and alterations in lipid profile. To
date, pharmacological therapies aimed at activating brown fat have failed in clinical trials, due to
cardiovascular side effects or scarce efficacy. On the other hand, several studies have identified
plant-derived chemical compounds capable of stimulating BAT thermogenesis in animal models,
suggesting the translational applications of dietary supplements to fight adipose tissue dysfunctions.
This review describes several nutraceuticals with thermogenic properties and provides indications, at
a molecular level, of the regulation of the adipocyte thermogenesis by the mentioned phytochemicals.
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1. Introduction

During the last decades, the prevalence of obesity has risen significantly worldwide.
Obesity is associated with hormonal dysfunctions and systemic inflammation which con-
tribute to insulin resistance, dyslipidemia, hypertension and metabolic syndrome (MetS),
resulting in increased cardiovascular risk [1]. Anti-obesity pharmacological approaches
currently either reduce absorption of dietary fat or decrease appetite [2]. So far, scarce
long-term efficacy and potential adverse effects limit the use of pharmaceutical anti-obesity
drugs [3], and phytochemicals may represent attractive options in term of negligible side
effects and costs [4]. Two distinct types of fat are found in mammals, described as white
adipose tissue (WAT) and brown adipose tissue (BAT). WAT is mainly deputed to store
energy as triglycerides, whereas BAT dissipates energy as heat [5]. The presence of BAT
is observed in rodents throughout life. In humans, albeit present in newborns and young
children, BAT activity has historically been considered non relevant in adult subjects [6].

Studies performed in the early 2000s led to the discovery of metabolically active BAT
in adult humans, thus providing a potential novel target to enhance energy expenditure
(EE) and counteract obesity [7]. BAT is able to release energy in the form of heat, through
the activity of the brown adipocyte-specific uncoupling protein 1 (UCP1), which generates
heat by dissipating the proton gradient across the inner membrane of the mitochondria,
with subsequent inhibition of ATP synthesis [7]. Such thermogenic activity, termed as
non-shivering thermogenesis, contributes to regulating body temperature and can dissipate
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excess calories. Cold exposure leads to increased activity of sympathetic nervous system
(SNS) fibers innervating BAT and represents a crucial mechanism of activation for BAT,
promoting its thermogenic function [8]. Interestingly, cold stimulation not only activates
BAT depots but also induces the emergence of brown-like adipocytes, termed “beige” or
“brite” adipocytes, in WAT depots [9].

Such a process, called the “browning of WAT”, induces the formation of beige
adipocytes, which reveal morphological and thermogenic properties similar to those of
classical brown adipocytes [10]. Both preclinical and clinical studies have shown that BAT
activation and/or browning of WAT are accompanied by increased EE and protection
against overweight and glucose metabolism dysfunctions, indicating that stimulation of
brown/brite adipocyte function results in beneficial effects on the metabolic health [9].
Cold-induced activation of BAT has been shown to improve insulin sensitivity both in
healthy and in diabetic subjects [11,12].

Interestingly, it is debatable whether the raising of BAT activity and/or the induc-
tion of browning, which have been detected in murine tumor models and in oncological
patients, may promote cancer-associated cachexia or, on the contrary, may curb tumor
growth [13–17].

Pharmacological approaches aimed to stimulate brown fat activity in humans could
be a potential strategy to target obesity and associated metabolic diseases [18]. BAT acti-
vation can be finely modulated by important endocrine axes with relevant implications
on cardiometabolic health [19,20]. On the other hand, accumulating evidence reveals that
brown and beige adipocyte thermogenic activity is also modulated by diet [4], suggesting
that diets with different compositions in macronutrients may modulate brown fat activity
differently [21]. Importantly, a number of studies over the last two decades have identi-
fied several nutritional compounds capable of stimulating the thermogenic function of
brown and beige adipocytes [4]. This review aims to discuss a variety of nutraceuticals
with documented abilities to boost the thermogenic activity of adipose tissue, also pro-
viding hints about molecular mechanisms by which such compounds modulate adipose
tissue thermogenesis.

2. Molecular Pathways in Brown/Beige Fat Formation and Function

Analysis of molecular mechanisms and signaling pathaways regulating white and
brown adipocyte differentiation became an area of intense research activity in the early
1980s [22,23]. The current knowledge on this topic reveals that a number of transcription fac-
tors, transcriptional coactivators and corepressors form a complex transcriptional network
which, in response to extracellular stimuli, regulates adipocyte differentiation [24]. A prem-
inent role is played by the interaction of the transcriptional factors PPARγ with CCAAT-
enhancer-binding proteins (C/EBPs), which directs both brown and white adipocyte differ-
entiation [25]. Crucial contribution to brown and beige adipocyte differentiation is given
by PRD1-BF-1-RIZ1 homologous domain containing protein 16 (PRDM16), which interacts
with PPARγ and C/EBPs through its zinc finger motifs (ZF1, ZF2) [26] (Figure 1). SIRT1-
dependent PPARγ deacetylation has been shown to promote its binding to PRDM16 with
subsequent induction of thermogenic genes [27]. The protein deacetylase SIRT1 has also
been found to promote the function of the AMP-activated protein kinase (AMPK), through
deacetylation of the serine-threonine protein kinase LKB1 [28], and stimulate (see below)
brown/beige fat formation. Activation of PPARγ as well as of PPARα, whose expression
is higher in BAT than in WAT, increases expression of UCP1, PRDM16 and the PPARγ
coactivator 1α (PGC-1α) which promotes mitochondrial biogenesis and β-oxidation [29,30].
Additional transciptional factors such as Krüppel-like factor 11, early B-cell factor and
the EWS/YBX1/BMP7 axis have been found to affect PPARγ function and stimulate the
expression of brown and beige fat genes, as described in detail elsewhere [29,31]. A key
role in the regulation of the adipocyte thermogenic program is played by AMPK, a sensor
of cellular energy status, which phosphorylates transcription factors and proteins involved
in the formation and maintenance of brown and beige adipose tissue [32] (Figure 1).
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Figure 1. Molecular pathways regulating brown/beige adipocyte differentiation. Cooperation of
PPARγ with C/EBPs is crucial for an optimal differentiation. PRDM16 promotes a thermogenic
program thorugh interaction with C/EBPs and PPARγ, and loss of PRDM16 results in defective
BAT formation. SIRT1 has been shown to deacetylate PPARγ. SIRT1-mediated deacetylation of
PPARγ stimulates its interaction with PRDM16, leading to increased expression of brown and beige
fat-specific genes. SIRT1 has also been shown to activate AMPK, a key enzyme involved in energy
homeostasis. Activation of AMPK contributes to mitochodrial function by regulating the process
of mitophagy, and stimulates ATGL activity to increase lipolysis. β-adrenergic receptor activation
also stimulates lipolysis, with subsequent release of free fatty acids which promote mitochondrial
β-oxidation and direct activation of UCP1.

Genetic removal of AMPK leads to the impairment in BAT formation [33] and WAT
browning [34]. At a molecular level, AMPK has been found to modulate mitophagy and
preserve mitochondrial function in the adipocyte [34]. In addition, AMPK has been shown
to activate desnutrin/ATGL which hydrolyzes triacylglycerols to release fatty acids which,
in turn, act as substrates for thermogenesis [35].

Cold exposure results in sympathetic activation of the thermogenic functions of brown
and beige fat [36]. Norepinephrine (NE) is released from sympathetic nerve endings
and binds to the adipocyte β3-adrenergic receptor, with a subsequent increase in cAMP
and activation of protein kinase A (PKA) which promotes triglyceride hydrolysis [37,38].
Free fatty acids released by lipolysis both serve as fuel for mitochondrial β-oxidation and
promote direct activation of UCP1 [39] (Figure 1). Exposure to cold temperature also
stimulates AMPK function, leading to thermogenic effects [34]. Interestingly, the activation
of molecular signaling pathways involved in brown/beige adipose tissue formation by
nutraceutical compounds may represent a novel strategy to counteract obesity and its
associated comorbidities [40].

3. Transient Receptor Potential Channels Activators

Transient receptor potential (TRP) channels represent a family of non-selective ion
channels, found in several cell types, including sensory neurons and adipocytes [4]. A
number of studies has shown that TRP channels regulate thermoregulation by stimulation
of the SNS, with subsequent BAT activation and increased EE. Several dietary compounds
have been found to activate TRP channels [4]. Capsaicin and capsinoids are present in
chili peppers and act as potent activators of the TRP vanilloid 1 (TRPV1), a channel which
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exhibits high permeability to calcium and can be activated by toxins and temperatures
higher than 42 ◦C, revealing a role as a receptor of noxius stimuli [41]. Preclinical data by
Kawabata et al. [42] show that stimulation of gastrointestinal TRPV1 by capsinoids pro-
motes BAT activity and EE through activation of the extrinsic nerves in the gastrointestinal
tract. Gastrointestinal vagal afferents project to nucleus tractus solitarii, which regulates
the sympathetic nervous stimulation to BAT [43], thus suggesting that brown adipocyte
activation is mediated by TRPV1 through the stimulation of sympathetic nerves.

On the other hand, TRPV1 expression has been detected in WAT and BAT [44], indi-
cating potential cell-autonomous effects of TRPV1 activation in brown adipocytes, thus
leading to increased BAT thermogenesis through local activation of TRPV1. Treatment
of brown adipocytes with capsaicin was able to promote calcium influx and increase the
expression of brown adipogenesis markers such as PPARγ and PGC-1α [45]. Of note, the
treatment of differentiating 3T3-L1 preadipocytes with capsaicin was found to promote the
expression of several thermogenic genes known to be upregulated during the process of
“browning” (i.e., PGC-1α, NCOA1, FOXC2, PRDM16, SIRT1), suggesting that stimulation
of adipose-specific TRPV1 may induce the “beige” phenotype [46]. In accordance with
these findings, treatment of mice with a capsaicin analog (capsiate) resulted in increased
levels of UCP1 in BAT with a parallel rise in metabolic rate [47]. The involvement of TRPV1
was confirmed by studying TRPV1KO mice treated with capsaicin that were not protected
from diet-induced obesity [48]. In humans, intake of capsinoids results in enhancement of
EE and BAT activation, also revealing anti-obesogenic effects, confirming the preclinical
data and suggesting that intake of foods containing capsinoids may represent an efficient
strategy to reduce fat mass accumulation [42,49]. At a molecular level, in the adipocyte,
the opening of TRPV1 promotes Ca2+ influx which may activate the Ca2+/Calmodulin-
stimulated protein kinase kinase β and, in turn, AMPK, which is known to stimulate the
thermogenic gene program through the increased expression of PRDM16 [32,50,51].

As shown by cell-based experiments, other food compounds such as the black pepper
components piperine, isopiperine, isochavicine, piperanine, piperolein A and B, [52];
sulfides present in garlic such as diallyl sulfide, diallyl disulfide and diallyl trisulfide [53];
and gingerols and shogaols occuring in ginger [54,55], are able to activate TRPV1 as well as
TRP ankyrin 1 (TRPA1), another member of the TRP family. In rats fed a high fat diet (HFD),
allyl-containing sulfides of garlic may mediate the increase of UCP1 and the anti-obesity
effects of garlic oil administration [56]. In humans, intake of grains of paradise or black
ginger extract has been shown to increase EE through BAT activation [57–59]. Ginger
supplementation in mice fed a HFD counteracted fat accumulation through stimulation
of BAT function and activation of WAT browning [59]. In addition, in mice, dietary
supplementation with fish oil rich in fatty acids eicosapentaenoic acid and docosahexaenoic
acid has been shown to activate TRPV1 and increase UCP1 expression in brown/beige
adipocytes through stimulation of SNS, suggesting that omega-3 fatty acids are potential
activators of thermogenic fat [60], potentially countearacting fat mass expansion via TRPV1
activation. Oleuropein aglycone, a polyphenol abundant in extra virgin olive oil, and allyl
isothiocyanate, which can be found in yellow mustard, wasabi and menthol, act as agonists
of TRPA1, whose activation stimulates β-adrenergic signaling and promotes brown fat
thermogenic activity in rodents [61]. These findings suggest that also dietary TRPA1 ligands
may be an efficient approach to treat obesity.

In addition, menthol represents a ligand for the TRP melastatin 8 (TRPM8) channel,
a TRP family member whose activation increses UCP1 expression in adipocyte cultures.
Such effects of menthol were observed also in the adipose tissue of mice [62]. Expression
of TRPM8 in brown adipocytes suggests that TRPM8 ligands can directly activate BAT.
Importantly, TRPM8-induced BAT activation was able to prevent obesity and glucose
intolerance in mice fed a HFD [63]. Interestingly, genetic polymorphisms identified in the
TRPM8 gene have been associated with different suscetibility to MetS, further suggesting
the TRPM8 function, and its modulation by dietary ligands, may affect adipose tissue and
glucose metabolism [64].
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4. Green Tea Compounds (Catechins and Caffein)

A number of studies have shown that intake of green tea catechins, i.e., the polyphe-
nols epigallocatechin gallate (EGCG) and epigallocatechin, stimulates thermogenic fat
activity [4]. In rats fed an HFD, supplementation with catechins leads to reduced white fat
mass and increased expression of UCP1 in BAT, suggesting anti-obesogenic effects of these
polyphenolic substances [65]. In accordance with this data, mice treated with theaflavins
showed an increase in EE, with a concomitant increase of UCP1 and PGC-1α levels in
BAT [66]. In mice fed an HFD, green tea extract supplemention was able to increase EE as
well as protein content of BAT, and dampen weight gain [67]. These data hint that induction
of BAT thermogenesis could mediate the effects of catechin administration. Cotreatment of
mice with the β-adrenoceptor antagonist propranolol prevented such effects, indicating
a crucial role for the adrenergic pathway in eliciting the anti-obesity actions of tea cate-
chins [67]. Mechanistically, catechins were found to inhibit catechol-O-methyltransferase,
an enzyme involved in the degradation of NE, and this enzymatic activity is expected to
promote the sympathetic stimulation of BAT [68]. Induction of browning was also observed
in the WAT of obese rats treated with green tea extract. The WAT of these rodents revealed
upregulated expression of genes involved in beige adipocyte formation such as PPARγ,
PRDM16 and bone morphogenetic protein-7 (BMP-7) [69].

The alkaloid caffein is present in green tea extracts, and can promote lipolysis and exert
thermogenic function in adipocytes through the local rise in cAMP intracellular levels [70].
Mice treated with caffeine displayed the increased thermogenic activity of BAT [71] and,
accordingly, additional experiments showed that exposure to caffeine raised levels of
UCP1 and PGC-1α, and promoted mitochondrial biogenesis in adipocyte cultures [72].
Enhancement of UCP1 function by caffein has been suggested to be mediated by inhibition
of adipocyte phosphodiesterase, with subsequent increases in cAMP levels and PKA
activation which, in turn, stimulates UCP1 activity [73,74].

Enhancement of human BAT activity, as indicated by fluorodeoxyglucose-positron
emission tomography, has been shown after oral ingestion of a green tea extract (50 mg
caffeine and 90 mg EGCG), with a parallel increase in EE [75]. This study, as previously
observed by Dulloo et al. [76], suggested a more decisive impact of EGCG, rather than of
caffeine, on EE. On the other hand, drinking coffee has been shown to raise the superclavic-
ular temperature, i.e., in a region which colocates with brown fat, and suggested t caffeine
efficiently promotes the activation of BAT in humans [72]. These conflicting results in the
response to caffein may be explained by differences in doses and duration of the studies.
Several studies have investigated if the thermogenic activity induced by catechins and
caffein is able to counteract fat expansion and body weight gain in humans, and a meta-
analysis performed by Phung et al. shows that intake of catechins and caffein, compared
with caffein alone, is more efficient in reducing BMI, body weight and waist circumference,
suggesting that catechins and caffein synergize in regulating body fat mass [77–80].

5. Flavonoids

In addition to the abovementioned flavanols, epigallocatechin and EGCG, other sub-
families of flavonoids have been investigated as modulators of brown adipocyte ther-
mogenic function. Flavonoids are present in fruits, vegetables, tea and wine and are
associated with protection against type 2 diabetes, obesity and cadiovascular disease [81].
A favourable impact of the flavanone hesperidin has been observed on lipid profiles and
blood pressure [82]. Treatment of rats with G-hesperidin (4G-alpha-glucopyranosyl hes-
peridin), a glucosyl derivative of hesperidin which is more water-soluble and efficiently
absorbed, shows the increased activity of sympathetic nerves innervating BAT with po-
tential thermogenic effects [82]. A study performed on mice treated with α-monoglucosyl
hesperidin (αGH), another derivative of hesperidine, revealed a reduction in white fat
depots that was mediated by the induction of brown-like adipocyte formation, indicating
that αGH-induced browning of inguinal WAT could mediate the observed increase in
thermogenesis which led to decreased body fat deposition [83]. At a molecular level, αGH
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has been suggested to act as an agonist of PPARγ which, in turn, stabilizes PRDM16 which
promotes a brown fat-specific gene program [26,83] (Figure 1).

As observed by cell culture-based experiments, treatment of 3T3-L1 murine adipocytes
with a concentrated water extract of Prunus mume fruit, rich in naringin, was able to pro-
mote expression of genes involved in mitochondrial biogenesis genes, (NAMPT, Nrf1,
Nrf2, CPT1α) and in brown-like adipocyte differentiation (PGC-1α, UCP1, CIDEA, Cox7α1,
Cox8b) also reducing, in parallel, reactive oxygen species abundance. These data suggested
the flavanone naringin is able to favour the conversion of white to brite adipocytes, po-
tentially representing a coumpound suitable for counteracting obesity development [84]
and, interestingly, a clinical study revealed that treatment with the flavonoids naringin or
hesperidin in combination with the alkaloid p-synephrine (see below) enhanced the effects
of p-synephrine to increase the resting metabolic rate of the participants [85].

Quercetin is abundant in berries, apples, red onions, grapes, broccoli, and other
vegetables, and preclinical studies have shown that such a flavonol stimulates browning of
WAT. In mice, dietary supplementation with quercetin increased UCP1 expression in WAT
and BAT, thus promoting browning of WAT and BAT activity [86]. Quercetin treatment
resulted in the rise of plasma NE levels, stimulating activation of cAMP-dependent PKA
and AMPK, two crucial players for brown/beige adipocyte function [87]. Stimulation
of βARs in brown and white adipocytes has been shown to raise levels of intracellular
cAMP, with subsequent activation of PKA and AMPK [88], as observed upon treatment
with quercetin which, in fact, resulted in the sympathetic activation of thermogenic adipose
tissue. Of note, quercetin was also able to increase the abundance of PPARγ and PGC1α
proteins, which could further stimulate UCP1 expression and mitochondrial biogenesis
in the adipose tissue [86]. Accordingly, quercetin was able to induce browning of WAT in
obese mice, and to improve glucose and lipid metabolism, thus suggesting anti-obesity
effects [89].

A number of studies have shown that flavones are compounds capable of regulating
lipid and glucose profiles, counteracting inflammation and oxidative stress [90]. Ther-
mogenic properties of luteolin have been investigated in mice fed a HFD supplemented
with such flavones [91]. Dietary luteolin was able to prevent HFD-induced body weight
gain, fat expansion and glucose metabolism alterations, and increase EE. Such metabolic
effects were associated with stimulation of the thermogenic gene program both in WAT
and in BAT. Luteolin treatment mechanistically increased protein abundance of AMPK,
SIRT1 and PGC-1α, which together form a molecular network modulating EE [92]. Of
note, the cotreatment of luteolin-treated primary brown and subcutaneous adipocytes
with an AMPK inhibitor repressed the increase of SIRT1, PGC-1α and thermogenic genes,
confirming the pivotal role of AMPK in mediating the effects of luteolin [91].

Isoflavones, also called phytoestrogens, represent another category of flavonoids
which show beneficial effects on type 2 diabetes and obesity in preclinical studies. Soy
isoflavones, such as genistein and daidzein, have been shown to counteract hepatic steatosis
in obese rats or mice through reduction in lipogenesis and increased fatty acid oxidation [93].
In the adipose tissue, soy isoflavones promote the activation of AMPK and ATGL, with a
parallel reduction of SREBP1 protein levels, resulting in reduced lipid accumulation and
fat mass expansion [94]. In addition to the inhibition of fat accumulation, the induction of
browning has been observed in adipocyte cultures treated with genistein showing reduced
expression of genes enriched in white adipocytes, and displaying increased levels of of
brown/beige adipocyte-specific transcipts, including UCP1. Interestingly, cotreatment with
an inhibitor of SIRT1 repressed the rise in UCP1 levels, indicating the involvement of SIRT1
in mediating the formation of beige adipocyte induced by genistein [95]. Such effects were
confirmed also in vivo, in obese mice with dietary supplementation of genistein which
displayed reduced obesity and improved glucose metabolism and the induction of WAT
browning [96].

Interestingly, another study showed that rats treated with genistein displayed im-
proved adiposity and insulin sensitivity associated with increased plasma levels of the
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myokine irisin [97,98]. Released from skeletal muscle, irisin promotes WAT browning which
is expected to protect against dysregulated fat mass expansion and glucose metabolism
alterations [99]. The induction of browning through enhancement of irisin shows an ad-
ditonal mechanism by which genistein may stimulate beige adipocyte formation. Similar
metabolic responses, in terms of reduced expression of lipogenesis with concomitant stimu-
lation of browning, were also observed in mice exposed to the isoflavone daidzein which
resulted in reduced fat mass and decreased protein abundance of the lipogenic enzyme
stearoyl coenzyme A desaturase 1, paralleled by an increase in UCP1 protein levels [100].
To date, there is no evidence that dietary supplementation with isoflavones also leads to
the mentioned metabolic effects on adipose tissue in humans [101].

6. Stilbenes

Resveratrol and pterostilbene (PTS) are two polyphenols belonging to the category
of the stilbenes, present in grapes and blueberries, which show the ability to modulate
molecular pathways regulating cell senescence, as observed in a number of preclinical
studies [102]. Anti-oxidant and anti-inflammatory effects have been diplayed by resveratrol
and PTS [102] which are also able to regulate the thermogenic capacity of adipose tissue,
at least in experimental models [103]. Mice fed a HFD supplementated with resveratrol
showed reduced weight gain, which was associated with an increased formation of brown
adipocytes in the interscapular brown fat depots. Dietary resveratrol led to an increased
expression of brown adipogenic markers, including PRDM16 and UCP1, via enhancement
of adipocyte-specific AMPK activity [104]. Another study perfomed on HFD mice treated
with resveratrol showed the induction of brown-like adipocyte formation in inguinal WAT
(iWAT), confirming the involvement of AMPK in mediating the effects of resveratrol [105].
Both these studies observed brown and beige adipocyte formation in adipocyte cultures
from either iBAT or iWAT upon ex vivo treatment with resveratrol, showing also cell-
autonomous effects of this stilbenoid. Interestingly, 3T3-L1 cells treated with resveratrol
showed increased expression of beige adipocyte markers through activation of mammalian
target of rapamycin (mTOR), suggesting the involvement of this serine/threonine kinase as
an additional mediator of resveratrol [106], even though the role of mTOR in the regulation
of beige adipocyte formation is still controversial [107].

In addition, a study by Lee et al. showed that the NAD+-dependent deacetylase SIRT1
mediates the protective effects of resveratrol observed on glucose and lipid profiles in
mice, including the induction of browning [108]. At the molecular level, SIRT1 induces
“browning” through deacetylation of PPARγ on Lys268 and Lys293. Deacetylation of these
two residues allows the recruitment of PRDM16 to PPARγ, with subsequent stimulation
of the thermogenic gene program in the adipose tissue [27]. AMPK has been proposed to
induce resveratrol-induced SIRT1 activation by increasing NAD+ levels [109] through en-
hancement of the the NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase
(NAMPT) [110]. There are several preclinical and clinical studies showing that resveratrol
administration results in anti-obesity effects [111]. In particular, in MetS patients treated
with resveratrol, there was a reduction in weight, BMI, fat mass, waist circumference and
insulin levels [112]. A meta-analysis performed by Tabrizi et al. has shown that resveratrol
administration reduces weight, fat mass and BMI [113], suggesting that such effects may be
mediated by BAT enhancement, even though the modulation of adipose tissue thermogenic
function has not been observed in humans. In subjects with type 2 diabetes, resveratrol
supplementation has been shown to improve ex vivo mitochondrial function but did not
affect BAT activity [114].

Reduced bioavailability of resveratrol may limit its biological activity and beneficial
effects on adipose tissue [103], and several studies focused on pterostilbene, a natural
dimethylated analog of resveratrol which has displayed improved pharmacokinetic prop-
erties [115]. Pterostilbene has been found to induce expression of thermogenic genes in
white adipocyte cultures as well as in WAT of mice [116]. Another study has observed that
dietary supplementation with pterostilbene resulted in reduction in fat mass, with a parallel
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higher expression level of thermogenic and oxidative genes in iBAT of rats [117]. Increased
expression of PPARα, induced by pterostilbene, was suggested to contribute to the rise
in UCP1 levels [118]. However, neither anti-obesity effects nor induction of thermogenic
adipocytes have been reported in clinical studies, suggesting that further investigations are
required to study the efficacy of pterostilbene on human adipose tissue [119].

7. Sympathomimetics and Other Thermogenic Compounds

In addition to caffein, ephedrine and synephrine have putative sympathomimetic ac-
tivity by stimulating catecholamine release from sympathetic nerves [4]. A study peformed
in 1984 suggested that treatment of mice with ephedrine, extracted from Ephedra plants, was
able to increase the abundance of a specific 32,000 molecular weight, GDP-binding protein
in the mitochondria, and these data were considered as an indication of the increased
thermogenic activity of BAT [120]. More recent evidence shows that the acute oral intake of
ephedrine results in increased BAT activity, measured by using (18)F-fluorodeoxyglucose
positron emission tomography-computed tomography (FDG-PET) in lean, but not in obese,
subjects [121]. In another study, long-term ephedrine treatment led to reduction in body fat
but did not stimulate BAT activity, excluding that the decrease in WAT mass could derive
from BAT-mediated adaptive thermogenesis and that chronic treatment with ephedrine
can enhance BAT function [122]. These findings suggest that the metabolic profile or dura-
tion of the treatment may affect the outcome in humans. On the other hand, obese mice
treated with ephedrine displayed reductions in body weight and fat, with a parallel rise
in oxygen consumption and an increased expression of mitochondrial biogenesis-related
genes and UCP1 in BAT [123], thus showing a robust response in terms of fat brown activa-
tion, in contrast with the previous mentioned clinical study. These data suggest a higher
responsiveness to ephedrine for the murine BAT, compared with humans.

Synephrine is a sympathomimetic amine, found in Citrus aurantium, whose admin-
istration has been shown to increase oxygen consumption, EE and lipid oxidation in
healthy men [124]. Interestingly, other studies showed that synephrine intake resulted
in increased EE and fat oxidation rate during physical exercise [125,126]. Treatment of
mouse inguinal preadipocyte cultures with p-synephrine has been shown to induce expres-
sion of brown/beige adipocyte markers, including UCP1 [127]. Of note, UCP1 induction
was repressed by cotreatement with a β3-adrenoceptor-specific antagonist, revealing the
potential ability of p-synephrine to bind and activate adipocyte β3-adrenoceptor, with sub-
sequent direct stimulatory effects on thermogenic adipocyte differentiation [127]. However,
BAT function modulation by supplementation with synephrine has not been observed in
clinical studies.

Over the last years, a number of studies have shown that berberin exerts hypolipi-
demic effects through increased expression of hepatic LDL receptor, suggesting a potential
therapeutic use of this alkaloid to treat metabolic diseases such as obesity and diabetes [128].
Cell culture-based experiments and animal studies have revealed that berberin also re-
presses white adipogenesis, via the up-regulation of C/EBP inhibitors such as CHOP
and DEC2 [129], and promotes BAT activity and browning of WAT in obese mice. Mech-
anistically, such effects on adipose tissue were mediated by local activation of AMPK
with, in turn, up-regulation of PGC-1α and increased levels of UCP1 [130]. Berberine
has also been shown to repress white adipocyte proliferation and differentiation through
down-regulation of galectin-3, a protein which contains a carbohydrate-recognition binding
domain and affects expression and transcriptional activity of PPARγ [131,132]. In addition,
berberine was able to stimulate brown adipogenesis in cultures of human adipocytes, via
increased demethylation of the PRDM16 promoter and subsequent increased transcrip-
tion of this master regulator of brown/beige adipogenesis [133] (Figure 1). A systematic
review and meta-analysis of human studies on berberine supplementation has observed
that intake of this alkaloid led to a decrease in body weight and reduction in BMI and
waist circumference, indicating the anti-obesity effects of berberine [134]. Other meta-
analyses showed the beneficial effects of berberine intake on blood glucose metabolism in



Cells 2022, 11, 3996 9 of 18

type 2 diabetes patients [135] as well as improvement of the lipid profile in terms of reduced
levels of total cholesterol, triglycerides and LDL cholesterol [136]. If such beneficial effects
of berberin in clinical trials could be ascribed, at least in part, to its ability to promote brown
fat function, is an issue which still needs to be addressed and requires further studies.

Vitamin A is known to be involved in cell proliferation and differentiation, immu-
nity, reproduction and retinal function [137]. The participation of vitamin A in several
crucial physiological processes can be explained by considering that retinoic acid and its
metabolites act both as transcriptional regulators and modulators of extranuclear signaling
transduction cascades in different cell types [138]. Vitamin A and its metabolites regulate
gene expression by modulating transcriptional activity of the retinoic acid receptors RAR,
RXR and PPAR [137]. Retinoic acid-responsive elements have been found in the regula-
tory regions of UCP1 gene, and incubation of brown adipocyte cultures with retinoic acid
increased UCP1 transcript levels [139]. Transcriptional regulation of UCP1 by retinoids
is mediated mainly by RARα, RARβ and RXRα [140], even though retinoic acid has also
been shown to activate p38 mitogen-activated protein kinase which, in turn, promotes
transcription of UCP1 [141,142]. On the other side, in 3T3-L1 cultures, retinoic acid was
found to reduce the expression the lipogenic transcription factors and the intracellular lipid
content [143]. Interestingly, the retinoic acid precursor retinaldehyde (Rald) has been found
in mouse and human fat depots, and studies in adipocyte cultures showed that Rald treat-
ment stimulated the expression of UCP1 through the recruitment of RARα and PGC-1α to
the promoter of UCP1 [144]. Of note, treatment of obese mice with Rald was able to repress
fat mass expansion [145], further suggesting that retinoids are able to modulate adipose
tissue metabolism. Clinical studies on the potential relationship between retinoids and
activation of thermogenic fat are not available, and clinical trials are required to investigate
such effects in humans.

8. Nutraceuticals and Microbiota

The composition of the gut microbiota has been shown to affect host metabolisms and
energy homeostasis, and regulate the thermogenic function of brown fat [146]. The altered
gut microbiota profile has been recognised to contribute to the pathogenesis of metabolic
alterations such as obesity, diabetes and MetS [147]. In particular, an increased ratio of
Firmicutes to Bacteroidetes, observed in obese mice, has been suggested to contribute
to obesity development [148]. Such a profile has been found in the gut microbiota of
obese humans, compared with lean subjects, with the abundance of Bacteroidetes in obese
subjects increasing after weight loss [149]. Reduction in gut microbiota richness has also
been proposed to contribute to the pathophysiology of obesity [150].

Bacterial genera such as Bacteroides, Faecalibacterium, and Clostridium are able to
produce and modulate total levels and relative proportions of specific short-chain fatty acids
(SCFAs) in the systemic circulation [151,152]. Several genera in the phylum Bacteroidetes
produce acetate and propionate, whereas butyrate mostly derives from genera in the
phylum Firmicutes [153]. Circulating SCFAs have been proposed to regulate a variety of
metabolic processes in different organs and tissue, at least in animal models, including
adipose tissue thermogenic function [151,152]. Treatment of brown or white adipocyte
cultures with SCFA, i.e., acetate, has shown the induction of brown fat markers [151]
and, in mice, acetate or butyrate adminsitration was able to stimulate beige adipocyte
differentiation [154] and BAT activation [155].

Preclinical studies have shown that nutraceuticals capable of modulating the micro-
biota profile can affect thermogenic fat activation. Obese mice treated with the flavonoid
tangeretin displayed a reduction in body weight, liver steatosis and improved glucose
metabolism [156]. Of note, tangeretin treatment was able to alter the gut microbiota com-
position and stimulate BAT activity, counteracting the dysbiosis and reducing the ratio
of Firmicutes to Bacteroidetes [156]. In another study, mice fed a HFD supplemented
with the natural polymethoxyflavone nobiletin showed reduced obesity and induction of
WAT browning, along with a composition shift in the gut microbiota, which displayed
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an increase in the abundance of Bacteroidetes and in the ratio of Bacteroidetes to Firmi-
cutes [157]. Interestingly, transplantation of the microbiota from mice treated with nobiletin
to obese mice resulted in increased BAT activity, induction of beige adipocyte formation and
reduced obesity in the recipient animals, indicating that nobiletin was capable of modifying
the gut microbiota composition, leading to increased gut microbial production of acetate
and subsequent enhancement of adipose tissue thermogenic activity [157]. Other phyto-
chemicals such as quercetin and L-theanine were found to modulate the gut microbiota
composition, increase the intestinal production of SCFAs and stimulate the thermogenic
activity of adipose tissue in mice treated with either compound [156,158,159].

Transplantation experiments of fecal microbiota from mice treated with resveratrol to
microbiota-depleted mice further revealed a causal relationship between specific changes
in the gut microbial community composition and WAT browning [160]. The mentioned
studies suggest that the gut microbiota–adipose tissue axis might account for the activating
effects on adipose tissue thermogenesis by dietary phytochemicals. However, such evidence
derives from preclinical studies, and clinical trials are deemed necessary to confirm the
occurrence of this axis in humans.

9. Conclusions

A number of studies suggest that the activation of BAT thermogenesis represents
as a novel strategy to counteract obesity and associated metabolic diseases. The use of
phrmacological agents, capable of activating human BAT, has found a limited success
due to associated cardiovascular side effects [9]. As described above, specific nutraceuti-
cals, provided also as combinations of different compounds, have been found to induce
thermogenic gene expression in the adipose tissue of animal models. Preclinical studies
have allowed the identification of molecular targets and signaling pathways involved
in brown/beige adipocyte thermogenesis, which are modulated by dietary supplements.
Up-regulated expression of PPARγ, C/EBPs, PGC-1α and PRDM16, with concomitant
increases in the thermogenic protein UCP1, were found to be induced by nutraceuticals
such as capsinoids, catechins, sympathomimetics and flavonoids [67,86,161,162] (Figure 2).
Thermogenic activation of adipose tissue has been associated with reduction of white fat
mass in studies with obese rodents treated with phytochemicals, supporting that such com-
pounds can counteract excessive expansion of WAT through the activation of brown/beige
adipocytes [163].

Interestingly, a number of studies have shown the activation of brown/beige adipose
tissues in animal models of cancer [14,164–166] and in patients with different types of tumor
(such as hepatocellular carcinoma, pancreatic adenocarcinoma, anaplastic carcinoma of the
lung, etc.) [15,167–169]. Such thermogenic activation has been suggested to contribute to
the increased EE in cancer-associated cachexia, a condition characterized by a remarkable
body-weight reduction. However, the role played by BAT in cancer progression is still
controversial. Recent evidence has shown that cold-activated BAT counteracts cancer
growth in tumor-bearing mice [16]. Several types of tumor use glycolisis to produce
energy for their development and progression [170], and the activation of thermogenic
fat stimulates the uptake of blood glucose by adipocytes, with subsequent reduction in
circulating levels of this fuel for cancer cells [16]. In addition, BAT has been proposed to
release anti-inflammatory cytokines that could dampen tumor growth [17]. Under this
perspective, nutraceutical supplements for BAT activation may be combined with cancer
treatments to improve prognosis in oncological patients.
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Figure 2. Schematic representation of the molecur targets involved in brown/beige adipocyte
thermogenesis, which are regulated by nutraceuticals. UCP1 function of brown/beige adipocytes
is activated by capsinoids, catechins, ephedrine and synephrin via stimulation of the sympathetic
nervous system (SNS). Other phytochemicals such as quercetin, resveratrol, isoflavones and berberin
directly promote the activation of factors (i.e., PPARγ, AMPK, PRDM16) which increase UCP1
function and expression. Adipocyte AMPK is also activated by capsinoids. Both resveratrol and
quercetin have been shown to affect gut microbiota function, resulting in increased production of
SCFAs which stimulate UCP1-dependent thermogenesis. Of note, the isoflavone genistein has been
shown to increase the circulating levels of the myokine irisin which, in the adipose tissue, induces
expression of thermogenic genes, including UCP1.

Notably, recent studies suggest that changes in the composition of gut microbiota affect
the thermogenic function of BAT and WAT, contributing to EE and conferring protection
against obesity and associated diseases [147]. There is evidence that specific changes in
gut microbiota composition and metabolite production by nutraceuticals result in BAT
activation and WAT browning [152]. Therefore, thermogenic fat activation by nutraceutical
compounds can rely on different mechanisms, i.e., increased outflow of SNS to adipose
tissue, enhancement of thermogenic function of adipocytes in a cell-autonomous manner
or modulation of the gut microbiota metabolism (Figure 2).

Most of the aformentioned studies nevertheless provide data from experimental
animal and/or cell-based models, and clinical trials are needed to investigate the effects on
adipose tissue thermogenesis by nutraceuticals in humans. In clinical studies, it should be
kept in mind that individual responsiveness to thermogenic compouds may potentially
be influenced by the metabolic profile, in terms of degree of obesity, presence of different
features of MetS and genetic predisposition to developing BAT. Nutraceuticals capable of
stimulating BAT thermogenesis may thus be considered as a promising approach to be
adopted in the context of programs of cardiometabolic rehabilitation.

Indeed, the use of nutritional compounds may provide significant advantages, in term
of the costs and safety of therapeutic approaches, to counteract adipose tissue dysfunctions
and associated metabolic disorders.
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