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Abstract: Besides BRCA1 and BRCA2, several other inheritable mutations have been identified
that increase ovarian cancer risk. Surgical excision of the fallopian tubes and ovaries reduces
ovarian cancer risk, but for some non-BRCA hereditary ovarian cancer mutations the benefit of
this intervention is unclear. The fallopian tubes of women with hereditary ovarian cancer mutations
provide many insights into the early events of carcinogenesis and process of malignant transformation.
Here we review cancer pathogenesis in hereditary cases of ovarian cancer, the occurrence of pre-
invasive lesions and occult carcinoma in mutation carriers and their clinical management.

Keywords: hereditary breast and ovarian cancer syndrome; ovarian cancer pathogenesis;
carcinogenesis; serous tubal intraepithelial carcinoma; STIC; BRCA1; BRCA2; PALB2; RAD51; ATM;
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1. Introduction

Familial or hereditary ovarian cancer syndromes (HOC) encompass a number of tu-
mor suppressor genes in which heritable mutations together account for 24% of epithelial
ovarian cancer cases [1]. The last decade has seen major clinical advances in the treat-
ment of ovarian cancer including the use of angiogenesis inhibitors [2] and poly-ADP
ribose polymerase inhibitors [3–6] which have dramatically improved overall survival
in this disease. Despite these improvements, ovarian carcinoma remains the most lethal
gynecologic malignancy with more than 21,000 new cases and 13,000 deaths in the U.S. in
2020 [7]. Among these, hereditary cancer syndromes are a prime target for early detection
and prevention. Current guidelines recommend germline genetic testing for all women
with ovarian cancer, cascade testing of family members and risk-reducing surgery for those
with actionable mutations [8,9]. In this review, we will summarize what is known about
hereditary ovarian cancer pathogenesis in women with germline mutations in several DNA
repair pathways.

Multiple genes with pathogenic mutations in the germline have been implicated in
hereditary ovarian cancer risk. The most commonly identified are BRCA1 and BRCA2 of
the Fanconi anemia pathway, which are inherited in an autosomal dominant manner [10].
Loss-of-function mutation of a single allele confers a lifetime risk of ovarian cancer of
40% and 18% for BRCA1 and BRCA2, respectively [11]. Mutations of other genes in the
Fanconi anemia pathway also confer increased ovarian cancer risk, including PALB2 [12,13];
ATM [14]; RAD51C/D [15–17]; and BRIP1 [18,19]. Mutations of the mismatch DNA repair
pathway genes MLH1, MSH2, and MSH6 are associated with an increased lifetime risk
of ovarian cancer (11% for MLH1, 17.4% for MSH2, and 10.8% for MSH6 by age 75) [20].
(Figure 1).
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Figure 1. DNA repair pathways with genes associated with hereditary ovary cancer and their risk
assessment according to the 2019 NCCN guidelines. Created with Biorender.

Current evidence indicates the fimbriae of the fallopian tube, rather than the ovary
is the etiological site of high grade serous ovarian cancer (HGSC) in women with both
sporadic and hereditary cases [21–27]. In 2001, Piek et al first reported dysplastic changes
in the fallopian tube epithelia (FTE) of BRCA mutation carriers undergoing risk-reducing
surgery [28]. These lesions, termed serous tubal intraepithelial carcinoma (STIC), the
immediate precursor to HGSC arise from secretory cells, have p53 mutation with strong
immunohistochemical staining and are highly proliferative [2,23,25,29–31]. Since these
foundational developments, numerous studies have identified STIC as well as occult
carcinoma in the fallopian tube [28,32–35].

The standard of care for women with BRCA1 and BRCA2 mutations is risk-reducing
surgical resection of the fallopian tubes and ovaries (RRBSO) [8]. Mutations in non-BRCA
HOC-associated genes are more frequently being detected with increased utilization of
germline genetic screening but their optimal management is less clear. For several non-
BRCA HOC mutations the National Comprehensive Cancer Network cites unknown risk
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or insufficient evidence to support increased screening or prophylaxis [8]. The mechanistic
similarities and differences between carcinogenesis in BRCA mutation carriers, other HOC
mutation carriers and sporadic cases remain unclear. Here, we discuss pre-neoplastic
lesions and occult carcinoma occurring in women with BRCA mutations as well as other
rare and recently described HOC mutations and describe the early events in carcinogenesis
in this population.

2. Pathogenesis in Hereditary Ovarian Cancer: Insights from Risk-Reducing
Surgery Specimens

The fallopian tubes of women with HOC mutations who have undergone RRBSO
provide important insights into the process of malignant transformation. Many previous
studies have made inferences about ovarian cancer pathogenesis from high grade serous
carcinoma cases with concurrent precursor lesions. There is, however, a concern that
rapidly expanding invasive carcinoma destroys precursor lesions and fundamentally alters
the precancerous environment of the tube [36,37]. What then can we learn from the
histopathological and molecular genetic analysis of the fallopian tubes of women with
HOC mutations but without cancer?

The distal fallopian tube epithelia (FTE) of BRCA mutations carriers shows sev-
eral transcriptional differences from tubal epithelia of unaffected women. Monoallelic
BRCA1 and BRCA2 mutation carriers have significant modulation of genes associated with
transcriptional regulation, cell cycle control and cell adhesion [38]. Multiple pathways in
carcinogenesis are implicated including MAPK, adipokine, TGF-B and p53 signaling [39].
Notably, the differentially expressed genes in BRCA mutation carriers closely resemble
serous carcinoma, rather than those of the low-risk (non-carrier) fallopian tube. Other
studies have shown transcriptional changes in tubal epithelia of BRCA mutation carriers
that indicate altered responses to inflammation and cellular stress. Compared to wild-type,
tubal epithelia from BRCA1 mutation carriers have increased expression of NAMPT, an
enzyme involved in glucose metabolism and cellular stress as well as C/EBP-δ, a transcrip-
tion factor implicated in inflammation, DNA damage response and tumorigenesis [39,40].
The DNA damage and repair markers P53 and γ-H2A also show high nuclear expression
in the FTE and ovarian surface epithelium of BRCA1/2 mutation carriers compared to
non-mutation carriers [41]. The physiologic process of ovulation exposes the tubal fimbriae
to reactive oxygen species and induces DNA double strand breaks [42] and BRCA muta-
tion carriers appear to be more susceptible to these stresses. The cyclic hormonal context
provided by the ovulatory cycle cannot be ignored [43,44].

BRCA1 and BRCA2 heterozygous fallopian tubes collected during the post-ovulatory
luteal phase have a global gene expression profile similar to high grade serous carcinoma
but distinct from follicular phase mutation carriers and both follicular and luteal phase
controls [39]. BRCA1-mutated luteal phase fallopian tubes also demonstrate differential
expression of more than 100 inflammation-related and NF-κB signaling genes compared
to post-ovulatory non-mutation carriers which likely contributes to tumorigenesis [45].
Despite these observed transcriptional changes, most women with BRCA mutations will
never develop ovarian cancer, complicating the identification of the specific transcrip-
tional program that leads to neoplasia. One study has addressed this challenge by using
BRCA1 fallopian tubes with STIC (i.e., demonstrated proclivity to neoplasia) and per-
forming microdissection and expression profiling of the histologically normal epithelial
regions [46]. The authors compared gene expression in this histologically normal FTE from
mutation carriers to non-mutation carriers. Notably, nearly one quarter of the highly differ-
entially expressed genes were also differentially expressed in BRCA1-associated carcinomas.
The preneoplastic signature present in BRCA1 mutation carriers included modulation of
EFEMP1, involved with cell-cell communication and angiogenesis regulation; E2F3, a cell
cycle regulator implicated in malignant transformation; and CSPG5, a growth factor and
activator of HER2/neu, all of which have been described in human carcinogenesis from
multiple disease sites.
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Epigenetic mechanisms also contribute to hereditary carcinogenesis and several stud-
ies have addressed this using risk-reducing surgery specimens from BRCA mutation carriers
without cancer. FTE from BRCA mutation carriers show increased promoter methylation
of tumor suppressor genes compared with non-mutation carriers [47,48]. This increased
methylation pattern does not correspond to preneoplastic foci and there is no difference in
methylation between p53 signatures and adjacent histologically normal FTE [47]. Disrup-
tion of existing epigenetic control is also a relevant mechanism. Analysis of differentially
methylated genes in prophylactically removed fallopian tubes from BRCA mutation carri-
ers shows the gene HOXC4 is highly expressed in the fimbriae which is a key trigger for
activation-induced deaminase and induces epigenetic reprogramming [48]. Bartlett et al
show overexpression of activation induced deaminase in cultured fimbrial cells modifies
the methylation pattern to one that closely resembles HGSC and cellular differentiation. Yet
another epigenetic mechanism is monoubiquitination of histone H2B which is performed
by BRCA1 and regulates gene expression, DNA damage response and chromatin segre-
gation [49]. In non-mutation carriers, there is incremental loss of monoubiquitination of
histone H2B from histologically normal fallopian tube, to STIC to HGSC, indicating this
is an early and progressive epigenetic step in carcinogenesis [50]. Interestingly, germline
BRCA1 mutants do not show loss of monoubiquitination of histone H2B compared to wild
type, including after sub-analysis of BRCA1 mutations specifically involving the functional
domain responsible for ubiquitination [49]. While these findings need to be validated using
larger sample sizes, they suggest one distinct mechanism of carcinogenesis occurring in
sporadic but not hereditary cases.

These findings add to the growing evidence of haploinsufficiency as a carcinogenic
mechanism in HOC. Contrary to the “two-hit hypothesis” which requires loss-of-function
mutations in both alleles of a tumor suppressor gene for tumorigenesis, the studies high-
lighted above indicate multiple pathogenic tubal changes occur with monoallelic germline
BRCA mutation. Increased cancer susceptibility in the fallopian tube appears to begin with
loss of a single allele of BRCA1 or BRCA2. There is parallel evidence that other, non-BRCA
mutations may also model haploinsufficiency. Lee et al [51] showed both monoallelic and
biallelic PALB2 mutated breast tumors have no significant difference in homologous recom-
bination deficiency scores. Tumors with monoallelic germline PALB2 mutations are also
more likely to have high risk frameshift mutations than somatic PALB2-null tumors [52].
Additionally, both preneoplastic FTE lesions and primary peritoneal carcinoma have been
reported in PALB2 heterozygote patients [53,54]. Taken together, loss of heterozygosity
does not appear to be the rate-limiting step in HOC pathogenesis.

3. Types of Preneoplastic Fallopian Tube Lesions and Significance

Several preneoplastic histopathological entities associated with HGSC have been iden-
tified in FTE including the p53-signature [30,31], secretory cell outgrowths (SCOUTs) [55],
serous tubal intraepithelial lesions (STILs) and serous tubal intraepithelial carcinoma
(STIC) [56] and are depicted in Figure 2. Secretory cell outgrowths (SCOUTs) are arrays of
>30 cells found in either the proximal or distal tube with absent ciliated differentiation, loss
of PAX2 and intact p53 [55]. It remains unclear if SCOUTs progress to other pre-neoplastic
lesions or serous carcinoma. The p53 signature is a closely related entity but characterized
by loss of p53 with accumulation of the deficient protein. The p53 signature occurs in the
distal fallopian tube, involves an array of >12 benign secretory cells, exhibits strong p53
immunostaining, low proliferative index and co-localizes with gamma- H2AX [31,57]. In
contrast, serous tubal intraepithelial carcinoma (STIC) is a noninvasive lesion characterized
by nuclear enlargement and hyperchromasia, chromatin aggregation and strongly posi-
tive p53 immunostaining [58]. Additionally, they have loss of polarity, epithelial tufting,
and high proliferative index [59]. Intermediate lesions with aberrant p53 expression but
lacking these diagnostic features of STIC and low proliferation are termed serous tubal
intraepithelial lesions (STIL) [60]. Although the clinical significance of some of these lesions
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remains unclear, there is growing evidence that they represent a spectrum of “early serous
proliferations” that coexist with or precede the development of HGSC [61,62].

Figure 2. Histologic features of HGSC precursor lesions occurring in the fallopian tube. (A) p53
signature: hematoxylin and eosin (H&E) staining shows a single layer of cells, mostly non-ciliated,
with abundant cytoplasm and bland cytologic features. (B) Serous tubal intraepithelial lesion (STIL):
H&E shows non-stratified lining and lack of conspicuous nuclear atypia and is non-diagnostic for
intraepithelial carcinoma. (C) Serous Tubal Intraepithelial Carcinoma (STIC): H&E shows the distal
fallopian tube epithelium demonstrates absent cilia, loss of polarity and marked cytologic atypia.
(D–F) Immunohistochemistry for p53 of the above sections shows aberrant staining and overexpres-
sion, a feature common to all tubal HGSC precursor lesions.

Evolutionary analyses show that p53 signatures and STICs are the precursors to ovar-
ian carcinoma and ultimately metastases [63]. However, the paradigm of transformation of
a single preneoplastic lesion into HGSC has been challenged by whole-exome mutational
analysis of micro-dissected p53 signatures and STIC. Using this approach, Wu et al found
multiple unique p53 mutations present in multiple STIC lesions isolated from a single
patient. In patients with both STIC and occult carcinoma, phylogenetic analysis showed
STIC was in some cases clonally related and in others, not [36]. This suggests multiple STIC
may develop in tandem and divergently before one expands and becomes HGSC.

4. Incidence of Preneoplastic Lesions and Occult Carcinoma in HOC Mutation Carriers

Reports on the incidence of STICs in patients with increased hereditary ovarian cancer
risk vary widely [56]. The diagnosis of these rare lesions has poor inter/intra-observer
reproducibility and is dependent on micro-sectioning technique [25,64]. For BRCA1 and
BRCA2 mutation carriers, the incidence of isolated STIC was thought to be 3% based on
pooled data from more than 2000 RRBSOs from nine studies [65]. Recent data indicate
that the incidence is higher. A multicenter retrospective study of more than 450 BRCA1/2
mutation carriers undergoing RRBSO showed a 3.5% incidence of STIC but when a subset of
these samples underwent detailed pathologic review, 12.4% were found to have either STIC,
STIL or invasive carcinoma [66]. A prospective study which used the SEE-FIM protocol for
all pathologic analyses found STIC lesions in 9.9% of 500 RRBSO specimens from patients
with BRCA1/2 mutations [67]. There is a paucity of clinical data available on the prevalence
of precursor lesions in asymptomatic women with other, non-BRCA mutations implicated
in HOC due to their rarity. The largest study of this population to date was performed by
Rush et al and included 273 patients with non-BRCA HOC mutations or high-risk family
history who underwent RRBSO. Isolated STIC was found in one PALB2 mutation carrier
and none were found in the high-risk family history group or among 41 patients with
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defects in other homologous recombination genes or mismatch repair genes [54]. One
other study has identified intraepithelial neoplasia without invasive carcinoma in a PALB2
mutation carrier, although only preliminary results are available [68]. A small retrospective
study of 18 patients showed no serous intraepithelial precursor lesions among patients
with RAD51C, BARD1, BRIP1, PALB2 or CHEK2 mutations who underwent RRBSO [11].

Multiple studies have reported on occult carcinoma detected at RRBSO, with estimates
between 1–12% for BRCA mutations carriers [69]. A recent systematic review suggests
the incidence may be at the lower end of published estimates [70]. Using 27 studies
including over 6000 high risk women undergoing RRBSO, Piedimonte et al found a pooled
prevalence of occult carcinoma of only 1.2%. This study was limited by excluding non-
BRCA mutations and by combined analysis of BRCA mutations carriers with patients with
high-risk family history, which could underestimate the true prevalence. A summary
of the incidence of preneoplastic lesions and occult carcinoma identified following risk-
reducing surgery including non-BRCA mutations is provided in Table 1. Though limited to
a few studies with small sample sizes, these data can inform preoperative counselling and
planning. They indicate there is minimal occult disease at time of risk-reducing surgery
for most non-BRCA HOC mutations. Pathologic findings from larger cohorts of women
with these rare mutations may support or refute the timing of risk reducing surgery in this
population. The unique observation of STIC in patients with PALB2 mutations warrants
further investigation.

Table 1. Incidence of isolated serous tubal intraepithelial carcinoma (STIC) or occult carcinoma (OC)
in non-BRCA germline mutation carriers following risk-reducing surgery.

Mutation Incidence Lesions Reference

BARD1 0/4
0/1

STIC or OC
STIC or OC

[53]
[11]

BRIP1 0/9
0/2

STIC or OC
STIC or OC

[53]
[11]

PALB2
1/10
1/?
0/3

STIC
STIC

STIC or OC

[53]
[69]
[11]

MLH1 0/1 STIC or OC [53]

MSH2 0/4 STIC or OC [53]

MSH6 0/8 STIC or OC [53]

PMS2 0/2 STIC or OC [53]

RAD51C 0/2
0/4

STIC or OC
STIC or OC

[53]
[11]

RAD51D 0/2 STIC or OC [53]

5. Clinical Management of Isolated Pre-Invasive Lesions in Hereditary Ovarian Cancer
Mutation Carriers

The optimal clinical management of HOC mutation carriers with isolated pre-invasive
FTE lesions detected following prophylactic surgery remains unknown. A systematic
review of 14 studies showed that management practices vary widely: 36% of patients
received subsequent hysterectomy, 21% received lymph node assessment and 14% received
adjuvant chemotherapy. Among women with BRCA mutations with STIC identified after
RRBSO, 7.5% of patients later developed primary peritoneal carcinoma [71]. Management
is thus directed at risk reduction for and early detection of primary peritoneal carcinoma.
Surveillance with physical exam, CA-125 and ultrasound and CT imaging can be considered
but may be low yield given that carcinoma develops several years after RRBSO [71,72].
Limited evidence argues against comprehensive staging surgery for this group. In one
systematic review, zero patients with BRCA1 or BRCA2 mutations and isolated STIC who
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subsequently underwent staging surgery had invasive cancer [72]. Similarly, Wethington
et al reported on seven patients with BRCA mutations and isolated STICs who underwent
staging and none had other disease [73]. Adjuvant chemotherapy may not be warranted in
cases of isolated STIC but data on use and development of primary peritoneal carcinoma
are lacking [72].

6. Incidence of Ovarian Carcinoma with Rare HOC Susceptibility Mutations

Pathogenic variants in PALB2, ATM and BARD1 are recognized by the NCCN as
involved in hereditary breast and ovarian cancer syndrome but have insufficient evidence
to determine their ovarian cancer risk [74].

6.1. BARD1

Massive parallel sequencing studies have shown BARD1 loss-of-function mutation
occurs in <1% of women with ovarian cancer [1]. Among women with BARD1 mutations
one study appeared to show an increased ovarian cancer risk (OR 4.2 95% CI 1.4–12.5) com-
pared to population estimates from large, publicly available exome sequencing datasets [10].
Other U.S. cohorts compared to the same controls have not found BARD1 to be significantly
associated with ovarian carcinoma [75].

6.2. PALB2

PALB2 was initially reported to occur at similar frequency in ovarian cancer to controls
in large European cohorts [76]. However, the largest study to-date of patients with PALB2
mutations including more than 500 families found a relative risk of ovarian cancer of
2.91 (95% CI 1.40–6.04) compared to country-specific population incidence [77]. Primary
peritoneal carcinoma has also been reported in a patient with PALB2 mutation following
RRBSO [53].

6.3. ATM

For ATM, the prevalence of this mutation was 0.6% out of more than 1500 women
with ovarian cancer reported to SEER registries. ATM was associated with a relative risk
between 2.25 and 2.97% and has been estimated from clinical trial populations [10] using
Exome Aggregation Consortium controls [78] and local controls [79].

Recent evidence suggests PALB2 and ATM are associated with increased risk and
expanded screening and risk-reducing surgery should be investigated for these groups.
Studies of BARD1 mutation and ovarian cancer risk are contradictory and the link re-
mains unclear.

The MRN complex (MRE11, RAD50, and NBN) is implicated in nonhomologous end
joining DNA repair and has rarely been reported in association with ovarian cancer.

6.4. NBN

One biallelic NBN germline mutation was identified from 354 Russian women with
ovarian carcinoma [80]. Other reports from the same geographic region have identified the
same founder mutation in 1.7% of women with ovarian cancer [81]. However, in another
study comparing more than 3000 women with epithelial ovarian cancer to healthy controls,
there was no difference in NBN mutation frequency [76].

6.5. MRE11

The first report of MRE11-associated ovarian carcinoma was from a cohort of 151 women
with hereditary breast or ovarian cancer, of whom one was found to have a germline
MRE11 mutation [82]. Parallel genomic sequencing of 360 women with pelvic serous
carcinoma also identified one patient with this mutation [1]. Conversely, this patient had a
concurrent BRCA2 mutation and tumor analysis showed loss of heterozygosity for BRCA2
only. Another study did not find an increased incidence of MRE11 mutation in women
with ovarian cancer [10].
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6.6. RAD50

RAD50 mutations were not identified in a prospective series of 62 patients with
ovarian carcinoma [83] but were found in another unselected ovarian cancer cohort with
one affected patient out of 360 [1].

The studies of MRN complex (RAD50, MRE11, NBN) mutations and ovarian cancer
summarized above are contradictory and are insufficient to determine ovarian cancer risk.
Further investigation of the impact of pathogenic variants in these genes is needed.

7. Strategies for Risk-Reduction in HOC Mutation Carriers

Ovarian cancer screening is ineffective for women of average risk but may have a
role for those at high risk due to HOC mutations or family history. Screening with a
combination of serial CA-125 and pelvic ultrasound is commonly used for women in this
high-risk group. NCCN guidelines note this strategy can be considered but that it has not
been shown to decrease ovarian cancer mortality [8,84]. Studies specific to high ovarian
cancer risk populations have shown that screening with pelvic ultrasound and CA-125
results in diagnosis at earlier stage [85,86] and may improve survival [86], although an
ovarian cancer-specific survival benefit has not been demonstrated. In the absence of data
on screening for women with non-BRCA HOC mutations, it is reasonable to consider this
approach for this group.

Surgical risk-reduction with bilateral salpingo-oophorectomy is the mainstay of man-
agement for women with HOC mutations. In BRCA1 and BRCA2 mutation carriers, RRBSO
reduces ovarian, fallopian tube and peritoneal cancer risk by 80% and all-cause mortality by
68% [87]. BRCA1 mutation carriers are recommended to undergo a RRBSO between 35 and
40 years of age, while BRCA2 mutation carriers may delay the procedure until age 40 and
45 because of later presentation of disease [88]. There are currently no prospective data
available on RRBSO for other non-BRCA HOC mutation carriers. The mutation-specific
lifetime risk of ovarian cancer compared to BRCA-negative/family history positive women
(2.6%) has been used as a threshold to guide management [8,89]. On this basis, current
guidelines recommend RRBSO or consideration of RRBSO for patients with BRIP1, MSH2,
MLH1, EPCAM, RAD51C and RAD51D mutations [8] (Table 2). Family history and other
independent risk factors for ovarian cancer should also be considered in timing RRBSO.
However, there remain several genes associated with HOC but with insufficient evidence
to determine their ovarian cancer risk or to recommend surgical prophylaxis (Figure 1).

While the indication for RRBSO is reduction of ovarian cancer risk, this intervention
may have a secondary effect of reducing breast cancer risk. In a study of 876 women with
BRCA1 and BRCA2 mutations, Choi et al found a decrease in breast cancer incidence in
the first five years following RRBSO and a weaker but significant decrease in long-term
risk for BRCA1 mutation carriers only [90]. A study by Stjepanovic et al also found that
premenopausal RRSBO decreased short term risk of breast cancer in BRCA1 mutation carri-
ers, though longer follow-up and larger sample size is needed to determine the potential
benefit in BRCA2 carriers [91]. For women with other HOC mutations associated with
significant breast cancer risk such as CHEK2, PALB2 and ATM, the impact of RRBSO on
breast cancer risk remains unknown.
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Table 2. Summary of HOC mutations with increased or unknown risk of ovarian carcinoma and
recommended management.

Gene Ovarian Cancer Risk Recommended Management

ATM Possible increased risk Insufficient evidence for RRBSO

BARD1 Unknown risk or insufficient evidence

BRCA1 Increased risk RRBSO at 35–40 years or completion of childbearing

BRCA2 Increased risk RRBSO at 40–45 years or completion of childbearing

BRIP1 Increased risk Consider RRBSO at 45–50 years

MSH2, MLH1, EPCAM Increased risk Consider RRBSO, timing individualized

MSH6, PMS2 Increased risk Insufficient evidence for RRBSO

NBN Unknown risk or insufficient evidence

PALB2 Unknown risk or insufficient evidence

RAD51C Increased risk Consider RRBSO at 45–50 years

RAD51D Increased risk Consider RRBSO at 45–50 years

STK11 Increased risk of non-epithelial ovarian cancer

Adapted from NCCN Clinical practice guidelines in oncology- Genetic/Familial High-Risk Assessment: Breast
and Ovarian (January 2019).

Chemoprevention with oral contraceptives can reduce cancer risk for women with
HOC who desire contraception but have not completed childbearing or undergone RRBSO.
For women with BRCA1 and BRCA2 mutations, oral contraceptive use reduces the risk of
ovarian cancer by 50% with a further 36% risk reduction for each additional 10 years of
use [92]. There are mixed data [93] on the associated breast cancer risk for women with BRCA
mutations receiving oral contraceptives with no significant risk in some reports [92,94] and
mild to moderate increased risk in others [95,96]. Patients with HOC mutations should be
informed of the possible increase in breast cancer risk when initiating oral contraceptives.

Two studies have shown aspirin may decrease ovarian cancer risk in the general
population and this approach may prove useful for women with HOC mutations. A
pooled analysis of the Ovarian Cancer Association Consortium found that aspirin use
was modestly associated with reduced ovarian cancer risk (OR 0.91 95% CI 0.84–0.99) [97].
A Danish case-control study found no difference in risk for anytime aspirin users but
continuous, long-term aspirin use was associated with decreased epithelial ovarian cancer
risk (OR 0.56 95% CI 0.32–0.97) [98]. The randomized phase II STICs and Stones trial
(NCT03480776) is currently underway to evaluate aspirin use in women with BRCA1 and
BRCA2 mutations prior to RRBSO.

8. Ongoing Clinical Trials

Several clinical trials are currently exploring novel risk-reducing interventions for
women with high-risk hereditary ovarian cancer mutations and are detailed in Table 3.
Although effective in decreasing ovarian cancer risk, RRBSO has many negative sequelae
including increased risk of stroke and cardiovascular disease, dementia, and osteoporo-
sis [99]. Besides this, women undergoing oophorectomy are frequently premenopausal,
with surgery prompting abrupt genitourinary syndrome of menopause, sexual dysfunc-
tion, vasomotor symptoms and mood disturbances which negatively impact quality of
life [100]. Given the evidence that the fimbriae of the fallopian tube, rather than the ovary
is the etiological site of high-grade serous carcinoma, RRBSO may not be the only preven-
tative strategy, particularly for patients with HOC mutations that impart lower ovarian
cancer risk.
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Table 3. Ongoing clinical trials of risk reduction strategies for HOC. RRS = risk-reducing salpingectomy; RRO = risk reducing oophorectomy; RRBSO = concurrent
risk-reducing salpingo-oophorectomy.

TUBA-WISP-II SOROCk Radical Fimbriectomy PROTECTOR WISP STICS and STONEs

Identifier NCT04294927 NCT04251052 NCT01608074 ISRCTN25173360 NCT02760849 NCT03480776

Trial design 2-arm non randomized 2-arm non randomized Single-arm 3-arm non randomized 2-arm non randomized 2-arm randomized

Number of patients 3000 (estimated) 2262 (estimated) 123 (actual) 1000 (estimated) 423 (actual) 414 (estimated)

Treatment arms 1. RRS + RRO
2. RRSO

1. RRS
2. RRSO

1. Bilateral radical
fimbriectomy.

1. RRS + RRO
2. RRSO

3. No surgery

1. RRS + RRO
2. RRSO

1. Daily aspirin
2. Placebo

Patient population

Premenopausal women
aged 25–50 years old with
BRCA1, BRCA2, RAD51C,

RAD51D, or BRIP1
germline mutation.

Premenopausal women
aged 35–50 years old with

a pathogenic or likely
pathogenic germline

BRCA1 mutation.

Premenopausal women
over 35 with a BRCA1/2

mutation or family history
of breast/ovarian cancer.

Premenopausal
women with increased

genetic risk due to
genetic mutation
(BRCA1, BRCA2,

RAD51C, RAD51D,
BRIP1) or strong family

history.

Premenopausal women
aged 30–50 years old with
a deleterious mutation in:

BRCA1, BRCA2, BRIP1,
PALB2, RAD51C, RAD51D,

BARD1, MSH2, MSH6,
MLH1, PMS2, or EPCAM.

Adult women with
BRCA1/BRCA2

germline mutation
planning risk-reducing
surgery in 6 months to

2 years.

Primary outcome High grade serous ovarian
cancer incidence

Time to development of
high grade serous

carcinoma
Rate of pelvic cancer Sexual function Change in Female Sexual

Function Index

Premalignant and
malignant lesions

found after RRBSO

Secondary outcomes

Incidence of pre-malignant
findings in tubes/ovaries
Perioperative mortality

and morbidity
Incidence of pelvic cancer
Incidence of breast cancer
Uptake of risk reducing

oophorectomy

Health-related quality
of life

Sexual dysfunction
Menopausal symptoms

Cancer distress
Estrogen deprivation

symptoms
Medical decision making

Adverse events

Surgical morbidity
Rate of occult lesions on
fimbriectomy specimens

Incidence of breast cancer
and recurrence of

breast cancer
Rate of secondary

oophorectomy and
associated morbidity

Proteomic profile of tissue
from radical fimbriectomy

Endocrine
function/menopause

Quality of life
Satisfaction/regret
Surgical morbidity

Psychological health
Incidence of STIC and

invasive carcinoma
Utility score

Cost effectiveness

Severity of menopausal
symptoms

Quality of life
Mental health
Completion of
oophorectomy

Patient-reported
acceptance of the

intervention
Compliance (serum

monitoring)

Estimated primary
completion date February 2040 October 2032 December 2019 July 2028 May 2041 December 2023
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Two ongoing clinical trials investigate ovarian conservation in women with HOC
mutations. SOROCk (NCT04251052) will investigate the efficacy of risk reduction following
salpingectomy only and is limited to patients with BRCA1 mutations. In the Radical Fim-
briectomy trial (NCT01608074) patients with BRCA1/2 mutations will undergo laparoscopic
resection of the fallopian tube and fimbrio-ovarian junction with ovarian conservation. The
preliminary data from this trial presented in 2018 demonstrated that of 121 patients who
underwent this procedure, 1.7% had STIC and 0.8% had invasive carcinoma with an overall
favorable safety profile [101].

Alternately, a staged procedure with salpingectomy followed by interval oophorec-
tomy could temporarily preserve ovarian function while still offering risk reduction. TUBA-
WISP-II (NCT04294927) seeks to address the safety and efficacy of this staged approach.
TUBA-WISP-II will examine the primary outcome of high grade serous ovarian cancer
incidence and secondary outcomes of peri-operative morbidity and completion of oophorec-
tomy for women with BRCA and other HOC mutations. Both trials include women with
BRCA and other HOC mutations. Lastly, the PROTECTOR (ISRCTN25173360) and WISP
(NCT02760849) trials will focus on quality of life outcomes following staged RRBSO includ-
ing sexual function, psychological well-being, and satisfaction/regret [102]. Preliminary
data from WISP presented in 2019 showed no patients had developed carcinoma and
women who underwent a staged procedure had fewer menopausal symptoms and less
decision regret, even when compared to women who received hormone replacement
therapy [68].

9. Conclusions

Ovarian cancer pathogenesis in hereditary cases begins with altered responses to
inflammation and cellular stress in the fallopian tube which occur in the context of cyclic
hormonal control and ovulation. Epigenetic reprogramming and loss of monoubiquitina-
tion of histone H2B also play roles in tumor initiation. Multiple pathogenic changes are
observed in the tubal fimbria of women with BRCA and other monoallelic tumor suppressor
gene mutations, indicating cancer susceptibility is not dependent on loss of heterozygosity.
Numerous studies have focused on the cancer risks of BRCA1 and BRCA2, but increased
attention is needed to the multitude of non-BRCA mutations that impart ovarian cancer
risk. So far, tubal preneoplastic lesions have been identified in PALB2 mutation carriers but
not in those with other homologous recombination or mismatch repair gene mutations. Use
of germline genetic screening is expanding, and we can expect to see greater numbers of pa-
tients with these rare mutations prior to cancer diagnosis. Delineation of mutation-specific
cancer risks and the benefits of preventative interventions will allow more personalized
management of ovarian cancer risk that also minimizes harm.
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