The Emerging Significance of Histone Lysine Demethylases as Prognostic Markers and Therapeutic Targets in Head and Neck Cancers
Abstract
:1. Introduction
2. The Role of KDMs in HNSCC Biology
3. Prognostic Significance of KDMs in HNSCC
4. Pharmacological Inhibition of KDMs in HNSCC
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Szyfter, K.; Kiwerska, K.; Wierzbicka, M. HPV-related HNC—New challenge and hope for head and neck cancer subjects. J. Med. Sci. 2018, 87, 112–116. [Google Scholar] [CrossRef]
- Wierzbicka, M.; Klussmann, J.P.; Giorgi, M.R.S.; Wuerdemann, N.; Dikkers, F.G. Oral and laryngeal HPV infection: Incidence, prevalence and risk factors, with special regard to concurrent infection in head, neck and genitals. Vaccine 2021, 39, 2344–2350. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chen, L.; Savage, S.R.; Eguez, R.V.; Dou, Y.; Li, Y.; da Veiga Leprevost, F.; Jaehnig, E.J.; Lei, J.T.; Wen, B.; et al. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 2021, 39, 361–379.e16. [Google Scholar] [CrossRef]
- Paluszczak, J.; Baer-Dubowska, W. Epigenome and cancer: New possibilities of cancer prevention and therapy? Postępy Biochem. 2005, 51, 244–250. [Google Scholar] [PubMed]
- Maleszewska, M.; Wojtas, B.; Kamińska, B. Deregulacja mechanizmów epigenetycznych w nowotworach. Postępy Biochem. 2018, 64, 148–156. [Google Scholar] [PubMed] [Green Version]
- Majchrzak-Celińska, A.; Warych, A.; Szoszkiewicz, M. Novel Approaches to Epigenetic Therapies: From Drug Combinations to Epigenetic Editing. Genes 2021, 12, 208. [Google Scholar] [CrossRef]
- Castilho, R.M.; Squarize, C.H.; Almeida, L.O. Epigenetic Modifications and Head and Neck Cancer: Implications for Tumor Progression and Resistance to Therapy. Int. J. Mol. Sci. 2017, 18, 1506. [Google Scholar] [CrossRef]
- Romanowska, K.; Sobecka, A.; Rawłuszko-Wieczorek, A.A.; Suchorska, W.M.; Golusiński, W. Head and Neck Squamous Cell Carcinoma: Epigenetic Landscape. Diagnostics 2020, 11, 34. [Google Scholar] [CrossRef]
- Noberini, R.; Restellini, C.; Savoia, E.O.; Raimondi, F.; Ghiani, L.; Jodice, M.G.; Bertalot, G.; Bonizzi, G.; Capra, M.; Maffini, F.A.; et al. Profiling of Epigenetic Features in Clinical Samples Reveals Novel Widespread Changes in Cancer. Cancers 2019, 11, 723. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-W.; Kao, S.-Y.; Ms, H.-J.W.; Yang, M.-H. Histone modification patterns correlate with patient outcome in oral squamous cell carcinoma. Cancer 2013, 119, 4259–4267. [Google Scholar] [CrossRef] [PubMed]
- Ando, M.; Saito, Y.; Xu, G.; Bui, N.Q.; Medetgul-Ernar, K.; Pu, M.; Fisch, K.; Ren, S.; Sakai, A.; Fukusumi, T.; et al. Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nat. Commun. 2019, 10, 2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefano, L.D.; Dyson, N.J. The emerging roles for histone demethylases in the modulation of signaling pathways. Biomol. Concepts 2013, 4, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Tran, K.A.; Dillingham, C.M.; Sridharan, R. The role of α-ketoglutarate–dependent proteins in pluripotency acquisition and maintenance. J. Biol. Chem. 2019, 294, 5408–5419. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Cesaroni, M.; Chung, W.; Panjarian, S.; Tran, A.; Madzo, J.; Okamoto, Y.; Zhang, H.; Chen, X.; Jelinek, J.; et al. Transcriptional Selectivity of Epigenetic Therapy in Cancer. Cancer Res. 2017, 77, 470–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.; Abba, M.; Molinolo, A.A.; Vitale-Cross, L.; Wang, Z.; Zaida, M.; Delic, N.C.; Samuels, Y.; Lyons, J.G.; Gutkind, J.S. The head and neck cancer cell oncogenome: A platform for the development of precision molecular therapies. Oncotarget 2014, 5, 8906–8923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleszcz, R.; Skalski, M.; Krajka-Kuźniak, V.; Paluszczak, J. The inhibitors of KDM4 and KDM6 histone lysine demethylases enhance the anti-growth effects of erlotinib and HS-173 in head and neck cancer cells. Eur. J. Pharm. Sci. 2021, 166, 105961. [Google Scholar] [CrossRef] [PubMed]
- Ismail, T.; Lee, H.-K.; Kim, C.; Kwon, T.; Park, T.J. KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenet. Chromatin 2018, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Li, Q.; Li, Q.; Zhu, J.; Gu, K.; Jiang, X.; Hu, Q.; Feng, F.; Qu, W.; Chen, Y.; et al. Small molecule KDM4s inhibitors as anti-cancer agents. J. Enzym. Inhib. Med. Chem. 2018, 33, 777–793. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Kim, G.W.; Jeon, Y.H.; Yoo, J.; Lee, S.W.; Kwon, S.H. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J. 2020, 34, 3461–3484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, J.; Jeon, Y.H.; Cho, H.Y.; Lee, S.W.; Kim, G.W.; Lee, D.H.; Kwon, S.H. Advances in Histone Demethylase KDM3A as a Cancer Therapeutic Target. Cancers 2020, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, Y.; Wang, Q.; Hu, H.; Li, Z.; Wang, D.; Zhang, W.; Qi, B.; Ye, J.; Wu, H.; et al. The histone demethylase LSD1 is a novel oncogene and therapeutic target in oral cancer. Cancer Lett. 2016, 374, 12–21. [Google Scholar] [CrossRef] [PubMed]
- AlSaqer, S.F.; Tashkandi, M.M.; Kartha, V.; Yang, Y.-T.; Alkheriji, Y.; Salama, A.; Varelas, X.; Kukuruzinska, M.; Monti, S.; Bais, M.V. Inhibition of LSD1 epigenetically attenuates oral cancer growth and metastasis. Oncotarget 2017, 8, 73372–73386. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, S.P.; Singh, S.; Gupta, A.; Yadav, S.; Singh, S.R.; Shukla, S. Integrated genomic analyses identify KDM1A’s role in cell proliferation via modulating E2F signaling activity and associate with poor clinical outcome in oral cancer. Cancer Lett. 2015, 367, 162–172. [Google Scholar] [CrossRef]
- Yan, M.; Yang, X.; Wang, H.; Shao, Q. The critical role of histone lysine demethylase KDM2B in cancer. Am. J. Transl. Res. 2018, 10, 2222–2233. [Google Scholar] [PubMed]
- Peta, E.; Sinigaglia, A.; Masi, G.; Di Camillo, B.; Grassi, A.; Trevisan, M.; Messa, L.; Loregian, A.; Manfrin, E.; Brunelli, M.; et al. HPV16 E6 and E7 upregulate the histone lysine demethylase KDM2B through the c-MYC/miR-146a-5p axys. Oncogene 2018, 37, 1654–1668. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Wu, S.; Zou, C.; Wei, H. Circular RNA circFOXO3 regulates KDM2A by targeting miR-214 to promote tumor growth and metastasis in oral squamous cell carcinoma. J. Cell. Mol. Med. 2022, 26, 1842–1852. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, B.; Deng, P.; Cheng, Y.; Yu, Y.; Kevork, K.; Ramadoss, S.; Ding, X.; Li, X.; Wang, C.-Y. KDM3 epigenetically controls tumorigenic potentials of human colorectal cancer stem cells through Wnt/β-catenin signalling. Nat. Commun. 2017, 8, 15146. [Google Scholar] [CrossRef] [PubMed]
- Macedo-Silva, C.; Miranda-Gonçalves, V.; Lameirinhas, A.; Lencart, J.; Pereira, A.; Lobo, J.; Guimarães, R.; Martins, A.T.; Henrique, R.; Bravo, I.; et al. JmjC-KDMs KDM3A and KDM6B modulate radioresistance under hypoxic conditions in esophageal squamous cell carcinoma. Cell Death Dis. 2020, 11, 1068. [Google Scholar] [CrossRef]
- Berry, W.L.; Janknecht, R. KDM4/JMJD2 Histone Demethylases: Epigenetic Regulators in Cancer Cells. Cancer Res. 2013, 73, 2936–2942. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Li, W.; Zang, W.; Liu, Z.; Xu, X.; Yu, H.; Yang, Q.; Jia, J. JMJD2B Promotes Epithelial–Mesenchymal Transition by Cooperating with β-Catenin and Enhances Gastric Cancer Metastasis. Clin. Cancer Res. 2013, 19, 6419–6429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Yu, Q.-H.; Wang, X.-Y.; Yu, L.-P.; Wang, Z.-F.; Cao, Y.-C.; Li, J.-D. JMJD2A promotes the Warburg effect and nasopharyngeal carcinoma progression by transactivating LDHA expression. BMC Cancer 2017, 17, 477. [Google Scholar] [CrossRef]
- Ding, X.; Pan, H.; Li, J.; Zhong, Q.; Chen, X.; Dry, S.M.; Wang, C.-Y. Epigenetic Activation of AP1 Promotes Squamous Cell Carcinoma Metastasis. Sci. Signal. 2013, 6, ra28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Liu, W.; Jia, L.; Chen, D.; Chang, I.; Lake, M.; Bentolila, L.A.; Wang, C.-Y. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Mol. Cell 2021, 81, 2148–2165.e9. [Google Scholar] [CrossRef]
- Jia, R.; Yang, L.; Yuan, X.; Kong, J.; Liu, Y.; Yin, W.; Gao, S.; Zhang, Y. GASC1 Promotes Stemness of Esophageal Squamous Cell Carcinoma via NOTCH1 Promoter Demethylation. J. Oncol. 2019, 2019, 1621054. [Google Scholar] [CrossRef]
- Harmeyer, K.M.; Facompre, N.D.; Herlyn, M.; Basu, D. JARID1 Histone Demethylases: Emerging Targets in Cancer. Trends Cancer 2017, 3, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Jablonowski, C.; Cheng, P.-H.; AlTahan, A.; Li, C.; Wang, Y.; Palmer, L.; Lan, C.; Sun, B.; Abu-Zaid, A.; et al. KDM5A Regulates a Translational Program that Controls p53 Protein Expression. iScience 2018, 9, 84–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plch, J.; Hrabeta, J.; Eckschlager, T. KDM5 demethylases and their role in cancer cell chemoresistance: KDM5 demethylases. Int. J. Cancer 2019, 144, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zhu, M.; Tang, Q. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-181a retards nasopharyngeal carcinoma development by mediating KDM5C. J. Cancer Res. Clin. Oncol. 2021, 147, 2867–2877. [Google Scholar] [CrossRef]
- Cui, Z.; Song, L.; Hou, Z.; Han, Y.; Hu, Y.; Wu, Y.; Chen, W.; Mao, L. PLU-1/JARID1B overexpression predicts proliferation properties in head and neck squamous cell carcinoma. Oncol. Rep. 2015, 33, 2454–2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.-S.; Lin, Y.-C.; Adebayo, B.O.; Wu, A.; Chen, J.-H.; Peng, Y.-J.; Cheng, M.-F.; Lee, W.-H.; Hsiao, M.; Chao, T.-Y.; et al. Silencing JARID1B suppresses oncogenicity, stemness and increases radiation sensitivity in human oral carcinoma. Cancer Lett. 2015, 368, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Facompre, N.D.; Harmeyer, K.M.; Sole, X.; Kabraji, S.; Belden, Z.; Sahu, V.; Whelan, K.; Tanaka, K.; Weinstein, G.S.; Montone, K.T.; et al. JARID1B Enables Transit between Distinct States of the Stem-like Cell Population in Oral Cancers. Cancer Res. 2016, 76, 5538–5549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcipowski, K.M.; Martinez, C.A.; Ntziachristos, P. Histone demethylases in physiology and cancer: A tale of two enzymes, JMJD3 and UTX. Curr. Opin. Genet. Dev. 2016, 36, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, A.; Kaarniranta, K.; Hiltunen, M.; Kauppinen, A. Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process. J. Mol. Med. 2014, 92, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Gameiro, S.F.; Kolendowski, B.; Zhang, A.; Barrett, J.W.; Nichols, A.C.; Torchia, J.; Mymryk, J.S. Human papillomavirus dysregulates the cellular apparatus controlling the methylation status of H3K27 in different human cancers to consistently alter gene expression regardless of tissue of origin. Oncotarget 2017, 8, 72564–72576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-M.; He, L.-R.; Chen, J.-W.; Zhou, J.; Nie, R.-C.; Jin, X.-H.; Wang, X.; Fu, J.-H.; Wang, F.-W.; Xie, D. JMJD3 promotes esophageal squamous cell carcinoma pathogenesis through epigenetic regulation of MYC. Signal Transduct. Target. Ther. 2020, 5, 165. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Yang, Q.; Qi, S.; Li, H. PHF8 Plays an Oncogene Function in Hepatocellular Carcinoma Formation. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2019, 27, 613–621. [Google Scholar] [CrossRef]
- Shao, P.; Liu, Q.; Maina, P.; Cui, J.; Bair, T.B.; Li, T.; Umesalma, S.; Zhang, W.; Qi, H.H. Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Res. 2017, 45, 1687–1702. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Liu, L.; She, L.; Tan, H.; Wei, M.; Chen, C.; Su, Z.; Huang, D.; Tian, Y.; Qiu, Y.; et al. Elevated expression of histone demethylase PHF8 associates with adverse prognosis in patients of laryngeal and hypopharyngeal squamous cell carcinoma. Epigenomics 2015, 7, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Qiu, J.J.; Zhu, S.; Cao, B.; Sun, L.; Li, S.; Li, P.; Zhang, S.; Dong, S. Oncogenic Features of PHF8 Histone Demethylase in Esophageal Squamous Cell Carcinoma. PLoS ONE 2013, 8, e77353. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhou, W.-Y.; He, R.-X. Down-regulation of JMJD5 suppresses metastasis and induces apoptosis in oral squamous cell carcinoma by regulating p53/NF-κB pathway. Biomed. Pharmacother. 2019, 109, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-Y.; Lin, C.-K.; Tsao, C.-H.; Hsieh, C.-C.; Lin, G.-J.; Ma, K.-H.; Shieh, Y.-S.; Sytwu, H.-K.; Chen, Y.-W. Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models. Oncotarget 2017, 8, 33756–33769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, C.; Li, Z.; Qi, B.; Zhang, W.; Cheng, J.; Wang, Y. High expression of the histone demethylase LSD1 associates with cancer cell proliferation and unfavorable prognosis in tongue cancer. J. Oral Pathol. Med. 2015, 44, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Xu, H.; Wu, X.; Li, T.; Li, J.; Zhou, Y.; Dan, H.; Jiang, L.; Zeng, X.; Ji, P.; et al. KDM4A as a prognostic marker of oral squamous cell carcinoma: Evidence from tissue microarray studies in a multicenter cohort. Oncotarget 2017, 8, 80348–80357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, L.D.; Peterle, G.T.; Dos Santos, M.; Trivilin, L.O.; Mendes, S.O.; de Oliveira, M.M.; Dos Santos, J.G.; Stur, E.; Agostini, L.P.; Couto, C.V.; et al. JMJD1A, H3K9me1, H3K9me2 and ADM expression as prognostic markers in oral and oropharyngeal squamous cell carcinoma. PLoS ONE 2018, 13, e0194884. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Qiu, Y.; Li, G.; Liu, C.; She, L.; Zhang, D.; Chen, X.; Zhu, G.; Zhang, X.; Tian, Y.; et al. KDM5B overexpression predicts a poor prognosis in patients with squamous cell carcinoma of the head and neck. J. Cancer 2018, 9, 198–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-H.; Chen, C.-H.; Chien, C.-Y.; Su, Y.-Y.; Luo, S.-D.; Li, S.-H. Overexpression of UTX promotes tumor progression in Oral tongue squamous cell carcinoma patients receiving surgical resection: A case control study. BMC Cancer. 2021, 21, 979. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Han, F.; Wu, J.; Gao, F.-X.; Li, Y.; Yan, D.-X.; He, X.-M.; Long, Y.; Tang, X.-P.; Ren, D.-L.; et al. KDM6B promotes ESCC cell proliferation and metastasis by facilitating C/EBPβ transcription. BMC Cancer 2021, 21, 559. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, J.; Diao, P.; Wang, D.; Jiang, H.; Wang, Y. Therapeutically targeting head and neck squamous cell carcinoma through synergistic inhibition of LSD1 and JMJD3 by TCP and GSK-J1. Br. J. Cancer 2020, 122, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Tsao, C.H.; Hsieh, C.C.; Lin, C.K.; Lin, C.S.; Li, Y.H.; Chang, W.C.; Cheng, J.C.; Lin, G.J.; Sytwu, H.K.; et al. Downregulation of Jumonji-C domain-containing protein 5 inhibits proliferation by silibinin in the oral cancer PDTX model. PLoS ONE 2020, 15, e0236101. [Google Scholar]
- Wang, B.; Zhao, B.; Pang, L.-P.; Zhao, Y.-D.; Guo, Q.; Wang, J.-W.; Zheng, Y.-C.; Zhang, X.-H.; Liu, Y.; Liu, G.-Y.; et al. LPE-1, an orally active pyrimidine derivative, inhibits growth and mobility of human esophageal cancers by targeting LSD1. Pharmacol. Res. 2017, 122, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, I.; Akutsu, Y.; Murakami, K.; Akanuma, N.; Isozaki, Y.; Maruyama, T.; Toyozumi, T.; Matsumoto, Y.; Suito, H.; Takahashi, M.; et al. Histone Demethylase LSD1 Inhibitors Prevent Cell Growth by Regulating Gene Expression in Esophageal Squamous Cell Carcinoma Cells. Ann. Surg. Oncol. 2016, 23, 312–320. [Google Scholar] [CrossRef]
- Kosumi, K.; Baba, Y.; Sakamoto, A.; Ishimoto, T.; Harada, K.; Nakamura, K.; Kurashige, J.; Hiyoshi, Y.; Iwatsuki, M.; Iwagami, S.; et al. Lysine-specific demethylase-1 contributes to malignant behavior by regulation of invasive activity and metabolic shift in esophageal cancer: Significance of LSD1 in esophageal cancer. Int. J. Cancer 2016, 138, 428–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm, C.; Hackenberg, S.; Bregenzer, M.; Meyer, T.; Gehrke, T.; Kleinsasser, N.; Hagen, R.; Scherzad, A. Effect of Hypoxia on Proliferation and the Expression of the Genes HIF-1α and JMJD1A in Head and Neck Squamous Cell Carcinoma Cell Lines. Anticancer Res. 2021, 41, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Q.; Imoto, I.; Fukuda, Y.; Pimkhaokham, A.; Shimada, Y.; Imamura, M.; Sugano, S.; Nakamura, Y.; Inazawa, J. Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res. 2000, 60, 4735–4739. [Google Scholar]
- Li, H.; Wawrose, J.S.; Gooding, W.E.; Garraway, L.A.; Lui, V.W.Y.; Peyser, N.D.; Grandis, J.R. Genomic analysis of head and neck squamous cell carcinoma cell lines and human tumors: A rational approach to preclinical model selection. Mol. Cancer Res. 2014, 12, 571–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, J.H.; Lee, J.; Roh, J.-L. Mitochondrial pyruvate carrier 1 regulates ferroptosis in drug-tolerant persister head and neck cancer cells via epithelial-mesenchymal transition. Cancer Lett. 2021, 507, 40–54. [Google Scholar] [CrossRef]
- Facompre, N.D.; Harmeyer, K.M.; Sahu, V.; Gimotty, P.A.; Rustgi, A.K.; Nakagawa, H.; Basu, D. Targeting JARID1B’s demethylase activity blocks a subset of its functions in oral cancer. Oncotarget 2018, 9, 8985–8998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; An, X.; Han, Y.; Ma, R.; Yang, K.; Zhang, L.; Chi, J.; Li, W.; Llobet-Navas, D.; Xu, Y.; et al. Overexpression of JARID1B promotes differentiation via SHIP1/AKT signaling in human hypopharyngeal squamous cell carcinoma. Cell Death Dis. 2016, 7, e2358. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.; Liu, D.; Li, W.; Li, Y.; Liang, Y.; Shi, W.; Zhao, S. Original Research: miR-194 inhibits proliferation and invasion and promotes apoptosis by targeting KDM5B in esophageal squamous cell carcinoma cells. Exp. Biol. Med. 2017, 242, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.-J.; Li, F.-R.; Yu, J. Mitochondrial pathway of the lysine demethylase 5C inhibitor CPI-455 in the Eca-109 esophageal squamous cell carcinoma cell line. World J. Gastroenterol. 2021, 27, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Lu, H.I.; Huang, W.T.; Tien, W.Y.; Lan, Y.C.; Lin, W.C.; Tsai, H.T.; Chen, C.H. The Prognostic Significance of Histone Demethylase UTX in Esophageal Squamous Cell Carcinoma. Int. J. Mol. Sci. 2018, 19, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Labban, D.; Jo, S.H.; Ostano, P.; Saglietti, C.; Bongiovanni, M.; Panizzon, R.; Dotto, G.P. Notch-effector CSL promotes squamous cell carcinoma by repressing histone demethylase KDM6B. J. Clin. Investig. 2018, 128, 2581–2599. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-H.; Lu, H.-I.; Chen, Y.-H.; Lo, C.-M.; Huang, W.-T.; Tien, W.-Y.; Lan, Y.-C.; Tsai, H.-T.; Chen, C.-H. JMJD3 expression is an independent prognosticator in patients with esophageal squamous cell carcinoma. Surgery 2019, 165, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Kleszcz, R.; Szymańska, A.; Krajka-Kuźniak, V.; Baer-Dubowska, W.; Paluszczak, J. Inhibition of CBP/β-catenin and porcupine attenuates Wnt signaling and induces apoptosis in head and neck carcinoma cells. Cell. Oncol. 2019, 42, 505–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prickaerts, P.; Adriaens, M.E.; Beucken, T.V.D.; Koch, E.; Dubois, L.; Dahlmans, V.E.H.; Gits, C.; Evelo, C.T.A.; Chan-Seng-Yue, M.; Wouters, B.G.; et al. Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3. Epigenet. Chromatin 2016, 9, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, R.; Masson, N.; Dunne, K.; Flashman, E.; Kawamura, A. The Activity of JmjC Histone Lysine Demethylase KDM4A is Highly Sensitive to Oxygen Concentrations. ACS Chem. Biol. 2017, 12, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Yim, S.; Park, H. The cancer driver genes IDH1/2, JARID1C/KDM5C, and UTX/KDM6A: Crosstalk between histone demethylation and hypoxic reprogramming in cancer metabolism. Exp. Mol. Med. 2019, 51, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Histone Lysine Demethylase | Target Site | Tumor Localization | Significance | Reference |
---|---|---|---|---|
KDM1A (LSD1) | H3K4me1/2 H3K9me1/2 | Oral cavity | Involved in the cell cycle and proliferation by modulating E2F signaling. Overexpression is associated with poor clinical outcomes. | [24] |
Tongue | Aberrantly overexpressed in a significant fraction of tongue SCC. High expression promotes cancer cell growth, proliferation, and metastasis as well as correlates with tumor size, pathological grade, and poor prognosis. Involved in the regulation of the microenvironment and EMT. | [23,52,53] | ||
Esophagus | Expression is higher in esophageal cancer tissues than in normal tissues and correlates with lymphovascular invasion, high tumor stage, and poor prognosis. Involved in cell growth and proliferation. Role in migration, invasion, and EMT. Contributes to Warburg’s effect by promoting glucose uptake and a metabolic shift toward glycolysis. | [61,62,63] | ||
KDM2A (JHDM1A/ FBXL11) | H3K4me3 H3K36me1/2 | Tongue | Involved in cancer cell proliferation and tumor progression. | [27] |
KDM2B (JHDM1B/ FBXL10) | H3K36me1/2 H3K4me3 | Larynx | Overexpressed in a subset of HPV-positive laryngeal squamous cell carcinomas. Associated with c-MYC copy number gain. | [26] |
KDM3A (JHDM2A/ JMJD1A/ TSGA) | H3K9me1/2 | Oral cavity | Nuclear expression is associated with a 10-fold increase in lymph node metastasis risk. | [55] |
Hypopharynx/larynx | Hypoxia-related regulator of carcinogenesis. | [64] | ||
Esophagus | Role in hypoxia-related radioresistance and cancer progression. | [29] | ||
KDM4A (JMDM3A/ JMJD2A) | H3K4me3 H3K9me2/3 H3K36me2/3 | Oral cavity/ larynx | Involved in immune evasion and invasive growth. Targeting KDM4A enhances anti-PD-1 therapy and eliminates cancer stem cells. | [34] |
Nasopharynx | Overexpression correlates positively with tumor stage, metastasis, and clinical stage. Role in promoting cancer cell proliferation, migration, invasion, and Warburg effect. | [32] | ||
Larynx/ hypopharynx/oral cavity | Frequently overexpressed compared to normal epithelia. The high abundance of this protein is associated with metastasis, and its depletion reduces the invasive potential of SCC cells. Involved in the regulation of the JUN and FOSL1 expression. | [33] | ||
KDM4C (JMDM3C/ JMJD2C/ GASC1) | H3K4me3 H3K9me1/2/3 H3K36me2/3 | Esophagus | Gene frequently amplified in esophageal SCC. Its high expression is associated with poor survival. Role in stemness promotion via NOTCH1 promoter demethylation. | [35,65] |
KDM5A (JARID1A/RBP2) | H3K4me2/3 H3K9me1/2 | Head and neck | One of the 8 genes amplified in both cell lines and tumors in genomic analysis, involving 39 HNSCC cell lines and 106 HNSCC tumors. | [66] |
Tongue/larynx | Role in the regulation of the EMT and ferroptosis susceptibility. | [67] | ||
KDM5B (JARID1B/ PLU-1) | H3K4me2/3 H3K36me3 | Head and neck | Frequently overexpressed in different types of HNSCC. Upregulation is associated with progression parameters, including lymph node metastasis and recurrence. Knockdown results in cell cycle arrest and apoptosis by suppressing Bcl-2 family members. | [40,56] |
Tongue/ Oral cavity | Frequently upregulated with a role in migration, invasion, stemness, EMT, and radioresistance. Its catalytic activity is not required to sustain parts of its prooncogenic functions, like repressing E-cadherin and promoting invasion. | [41,42,68] | ||
Hypopharynx | Possible role as a tumor suppressor by promoting differentiation and inhibiting proliferation. | [69] | ||
Esophagus | Downregulation by miR-194 results in inhibition of cancer cells proliferation and invasion along with intensified apoptosis. | [70] | ||
KDM5C (JARID1C/ SMCX) | H3K4me2/3 H3K9me3 H3K27me3 | Esophagus | Its inhibition entails upregulation of apoptosis-related genes and reduces cell proliferation. | [71] |
KDM6A (UTX) | H3K27me2/3 | Head and neck | Its expression is altered in about a third of HNSCC cases. Frequently overexpressed in HPV-positive tumors. Activity of this histone demethylase is required to maintain p16 expression, which is necessary for HPV E7 expressing cancer cells, despite the tumor-suppressing role of p16 in most cancers. | [16,45] |
Esophagus | High expression is associated with a better prognosis, and downregulation increases cell growth and reduces E-cadherin expression. Role in hypoxia-related radioresistance. | [29,72] | ||
Tongue | Overexpression is associated with a poor prognosis in patients after surgical resection. Involved in the regulation of the cell cycle, EMT, and invasion. | [57] | ||
KDM6B (JMJD3) | H3K9me3 H3K27me2/3 | Tongue/hypopharynx | Simultaneous inhibition of LSD1 and JMJD3 impairs cell proliferation and induces apoptosis and senescence. | [59] |
Oral cavity/ tongue/ hypopharynx | Role as a tumor suppressor. Repression by Notch-effector CSL promotes proliferation and tumorigenesis. | [73] | ||
Esophagus | Overexpression is associated with poor prognosis. Upregulation is especially pronounced in patients with lymph node metastasis. Important role in the regulation of many signaling pathways involved in cancer cells proliferation, stemness, invasion, and susceptibility to therapy. | [46,58,74] | ||
KDM7B (PHF8) | H3K4me3 H3K9me1/2 H4K20me1 H3K27me2 | Larynx/ hypopharynx | High expression is associated with shorter survival and disease-free survival. Overexpression correlates positively with T classification, clinical stage, and tumor relapse. | [49] |
Esophagus | Knockdown results in inhibition of cancer cells proliferation, an increase in apoptosis, a reduction of colony formation, and a drop in the number of migratory and invasive cells. | [50] | ||
KDM8 (JMJD5) | H3K4me3 H3K9me3 H3K36me2 | Tongue/ Oral cavity/ Larynx | Overexpressed in comparison to normal oral mucosa. Suppression entails reduced cancer cell migration and invasion, at least in part through its involvement in the regulation of EMT. Inhibition promotes apoptosis by regulating the activation of caspases and p53. | [51] |
Tongue | Frequently overexpressed, leading to increased proliferation of cancer cells. | [60] |
KDM Inhibitor | Target | Experimental Model | Effects | Reference |
---|---|---|---|---|
Tranylcypromine | LSD1 | In vitro: HN6 and CAL27 cell lines In vivo: DMBA- and 4NQO-induced OSCC and xenograft animal models | Impaired cell proliferation, migration, invasion, as well as induced apoptosis and chemosensitivity. Reduced xenograft tumor growth. | [22] |
Pargyline | LSD1 | In vitro: HN6 and CAL27 cell lines In vivo: DMBA- and 4NQO-induced OSCC and xenograft animal model | Impaired cell proliferation, migration, invasion, as well as induced apoptosis and chemosensitivity. Reduced xenograft tumor growth. | [22] |
In vitro: SAS, SCC25, SCC4, and OEC-M1 cell lines | Reduced cell proliferation and viability. | [52] | ||
GSK-LSD1 | LSD1 | In vitro: HSC-3 and CAL-27 cell lines In vivo: patient-derived tumor xenografts | Impaired cell proliferation by attenuating EGFR, c-Myc, Wnt/β-catenin, and YAP/TAZ signaling pathways. Reduced expression of EMT-related genes. Promoted p53 expression and induced apoptosis. Reduced tumor size in patient-derived tumor xenografts. | [23] |
Melatonin | LSD1 | In vitro: SAS, SCC25, SCC4, and OEC-M1 cell lines In vivo: xenograft animal models | Impaired cell proliferation and induced cell cycle arrest in the G0/G1 phase. Reduced xenograft tumor growth. | [52] |
IOX-1 | KDM3 (dominant target), KDM4, KDM6 | In vitro: Kyse-30, Kyse-410, and OE21 cell lines In vitro/in vivo: CAM assay | Increased radiosensitivity. Decreased tumor size in vivo. | [29] |
ML324 | KDM4 | In vitro: CAL27 and FaDu cell lines | Reduced cell viability and increased activity of EGFR and PI3K signaling inhibitors (erlotinib, HS-173). | [17,75] |
CPI-455 | KDM5B | In vitro: SCC9, OCTT2, CAL33, and VU147T cell lines In vivo: xenograft animal models | Reduced expression of stemness-related genes and attenuated tumorsphere formation without effects on cell viability or apoptosis. Impaired formation of xenograft tumors. | [68] |
Combination of GSK-J1 and Tranylcypromine | KDM6B LSD1 | In vitro: CAL27, FaDu, and HN6 cell lines In vivo: 4NQO-induced HNSCC and xenograft animal models | Impaired cell proliferation and induced senescence and apoptosis. The effects were linked to increased expression of Bax, p16, and p21, as well as a decrease in cyclin D levels. Suppressed tumor growth and the appearance of less invasive tumors. | [59] |
GSK-J4 | KDM6 | In vitro: CAL27 and FaDu cell lines | Reduced cell viability and increased activity of EGFR and PI3K signaling inhibitors (erlotinib, HS-173). | [17,75] |
In vitro: CAL27 and SAS cell lines | Diminished cell proliferation by downregulating cyclin D1. Reduced cell migration and invasion capacity, which can be linked to elevated E-cadherin and decreased N-cadherin levels. | [57] | ||
In vitro: K510 and K30 cell lines In vivo: xenograft animal models | Suppressed cell growth and migration. Reduced xenograft tumor growth. | [46] | ||
In vitro: Kyse-150 cell line | Reduced cell viability, proliferation, migration, and invasion as well as induced cell cycle arrest and apoptosis. | [58] | ||
Silibinin | KDM8 | In vitro: SAS, SCC25, and HSC3 cell lines In vivo: xenograft animal models | Suppressed cell proliferation and reduced xenograft tumor growth at least partly through downregulation of KDM8. | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorna, D.; Paluszczak, J. The Emerging Significance of Histone Lysine Demethylases as Prognostic Markers and Therapeutic Targets in Head and Neck Cancers. Cells 2022, 11, 1023. https://doi.org/10.3390/cells11061023
Dorna D, Paluszczak J. The Emerging Significance of Histone Lysine Demethylases as Prognostic Markers and Therapeutic Targets in Head and Neck Cancers. Cells. 2022; 11(6):1023. https://doi.org/10.3390/cells11061023
Chicago/Turabian StyleDorna, Dawid, and Jarosław Paluszczak. 2022. "The Emerging Significance of Histone Lysine Demethylases as Prognostic Markers and Therapeutic Targets in Head and Neck Cancers" Cells 11, no. 6: 1023. https://doi.org/10.3390/cells11061023
APA StyleDorna, D., & Paluszczak, J. (2022). The Emerging Significance of Histone Lysine Demethylases as Prognostic Markers and Therapeutic Targets in Head and Neck Cancers. Cells, 11(6), 1023. https://doi.org/10.3390/cells11061023