Pathogenic Exploitation of Lymphatic Vessels
Abstract
:1. Introduction
2. Lymphatic Vessels as Escape Routes
2.1. Escape from the Skin
2.2. Lymphatic Vessels as Escape Routes from the Gut via Peyer’s Patches
2.3. Lymphatic Vessels as Survival and Replicative Niches
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, L.A.; Banerji, S.; Lawrance, W.; Gileadi, U.; Prota, G.; Holder, K.A.; Roshorm, Y.M.; Hanke, T.; Cerundolo, V.; Gale, N.W.; et al. Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1. Nat. Immunol. 2017, 18, 762–770. [Google Scholar] [CrossRef]
- Card, C.M.; Yu, S.S.; Swartz, M.A. Emerging roles of lymphatic endothelium in regulating adaptive immunity. J. Clin. Investig. 2014, 124, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Broggi, M.A.S.; Maillat, L.; Clement, C.C.; Bordry, N.; Corthésy, P.; Auger, A.; Matter, M.; Hamelin, R.; Potin, L.; Demurtas, D.; et al. Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J. Exp. Med. 2019, 216, 1091–1107. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Vannberg, F.O.; Dixon, J.B. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, R.J.; Hong, Y.J.; Wu, Y.; Kim, P.M.; Hong, Y.K. Exosomes as a communication tool between the lymphatic system and bladder cancer. Int. Neurol. J. 2018, 22, 220. [Google Scholar] [CrossRef] [PubMed]
- Maisel, K.; Sasso, M.S.; Potin, L.; Swartz, M.A. Exploiting lymphatic vessels for immunomodulation: Rationale, opportunities, and challenges. Adv. Drug Deliv. Rev. 2017, 114, 43–59. [Google Scholar] [CrossRef]
- Ji, R.C. Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. Cancer Lett. 2014, 346, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Schwoch, S.; Zelent, C.; Sitte, M.; Salinas, G.; Wilting, J. Transcriptome analysis of hypoxic lymphatic endothelial cells indicates their potential to contribute to extracellular matrix rearrangement. Cells 2021, 10, 1008. [Google Scholar] [CrossRef]
- Upadhyay, S.; Mittal, E.; Philips, J.A. Tuberculosis and the art of macrophage manipulation. Pathog. Dis. 2018, 76, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef]
- Boulanger, N. Chapter 7—Skin and other pathogens: Malaria and plague. In Skin and Arthropod Vectors; Academic Press: Cambridge, MA, USA, 2018; pp. 239–274. ISBN 012-811-436-3. [Google Scholar]
- Kilarski, W.W.; Martin, C.; Pisano, M.; Bain, O.; Babayan, S.A.; Swartz, M.A. Inherent biomechanical traits enable infective filariae to disseminate through collecting lymphatic vessels. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Gurusamy, M.; Zawieja, D.C.; Muthuchamy, M. Lymphatic filariasis: Perspectives on lymphatic remodeling and contractile dysfunction in filarial disease pathogenesis. Microcirculation 2013, 20, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.; Blauvelt, C.P.; Kumaraswami, V.; Nutman, T.B. Chemokine receptors of T cells and of B Cells in lymphatic filarial infection: A role for CCR9 in pathogenesis. J. Infect. Dis. 2005, 191, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
- Belkaid, Y.; Hoffmann, K.F.; Mendez, S.; Kamhawi, S.; Udey, M.C.; Wynn, T.A.; Sacks, D.L. The role of interleukin (IL)-10 in the persistence of Leishmania Major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J. Exp. Med. 2001, 194, 1497–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, J.K.; Xu, J.L.; Tapping, R.I. Substrains of 129 mice are resistant to Yersinia pestis KIM5: Implications for interleukin-10-deficient mice. Infect. Immun. 2009, 77, 367–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tauseef, A.; Ijaz, F.; Chaudhary, F.A.; Ali, Z.; Akram, T.; Aftab, R.K.; Ahmad, G. Role of interleukin-10 and abdominopelvic ultrasound as a potential predictor of disease severity in Dengue hemorrhagic fever. Cureus 2019, 11, e5249. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.J.; Lane, M.C.; Wagner, N.J.; Weening, E.H.; Miller, V.L. Dissemination of a highly virulent pathogen: Tracking the early events that define infection. PLoS Pathog. 2015, 11, e1004587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siggins, M.K.; Lynskey, N.N.; Lamb, L.E.; Johnson, L.A.; Huse, K.K.; Pearson, M.; Banerji, S.; Turner, C.E.; Woollard, K.; Jackson, D.G.; et al. Extracellular bacterial lymphatic metastasis drives Streptococcus pyogenes systemic infection. Nat. Commun. 2020, 11, 4697. [Google Scholar] [CrossRef]
- Bravo-Blas, A.; Utriainen, L.; Clay, S.L.; Kästele, V.; Cerovic, V.; Cunningham, A.F.; Henderson, I.R.; Wall, D.M.; Milling, S.W.F. Salmonella enterica serovar typhimurium travels to mesenteric lymph nodes both with host cells and autonomously. J. Immunol. 2019, 202, 260–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leak, L.V. Studies on the permeability of lymphatic capillaries. J. Cell Biol. 1971, 50, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casley-Smith, J.R.; Florey, H.W. The structure of normal small lymphatics. Q. J. Exp. Physiol. Cogn. Med. Sci. 1961, 46, 101–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trzewik, J.; Mallipattu, S.K.; Artmann, G.M.; Delano, F.A.; Schmid-Schönbein, G.W. Evidence for a second valve system in lymphatics: Endothelial microvalves. FASEB J. 2001, 15, 1711–1717. [Google Scholar] [CrossRef] [Green Version]
- Miteva, D.O.; Rutkowski, J.M.; Dixon, J.B.; Kilarski, W.; Shields, J.D.; Swartz, M.A. Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ. Res. 2010, 106, 920–931. [Google Scholar] [CrossRef] [PubMed]
- St John, A.L.; Ang, W.X.G.; Huang, M.N.; Kunder, C.A.; Chan, E.W.; Gunn, M.D.; Abraham, S.N. S1P-dependent trafficking of intracellular Yersinia pestis through lymph nodes establishes buboes and systemic infection. Immunity 2014, 41, 440–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pidwill, G.R.; Gibson, J.F.; Cole, J.; Renshaw, S.A.; Foster, S.J. The role of macrophages in Staphylococcus aureus infection. Front. Immunol. 2021, 11, 3506. [Google Scholar] [CrossRef] [PubMed]
- Laskay, T.; van Zandbergen, G.; Solbach, W. Neutrophil granulocytes—Trojan horses for Leishmania major and other intracellular microbes? Trends Microbiol. 2003, 11, 210–214. [Google Scholar] [CrossRef]
- Bogdan, C. Macrophages as host, effector and immunoregulatory cells in leishmaniasis: Impact of tissue microenvironment and metabolism. Cytokine 2020, 2, 100041. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Ang, W.X.G.; Choi, H.W.; Nilles, M.L.; St John, A.L.; Abraham, S.N. Necroptosis of infiltrated macrophages drives Yersinia pestis dispersal within buboes. JCI Insight 2018, 3, e122188. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Fernandez, T.; Volpedo, G.; Verma, C.; Satoskar, A.R. Understanding the immune responses involved in mediating protection or immunopathology during leishmaniasis. Biochem. Soc. Trans. 2021, 49, 297–311. [Google Scholar] [CrossRef]
- Guimaraes-Costa, A.B.; Shannon, J.P.; Waclawiak, I.; Oliveira, J.; Meneses, C.; de Castro, W.; Wen, X.; Brzostowski, J.; Serafim, T.D.; Andersen, J.F.; et al. A sand fly salivary protein acts as a neutrophil chemoattractant. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- D’alessandro, S.; Parapini, S.; Corbett, Y.; Frigerio, R.; Delbue, S.; Modenese, A.; Gramiccia, M.; Ferrante, P.; Taramelli, D.; Basilico, N. Leishmania promastigotes enhance neutrophil recruitment through the production of CXCL8 by endothelial cells. Pathogens 2021, 10, 1380. [Google Scholar] [CrossRef]
- Feijó, D.; Tibúrcio, R.; Ampuero, M.; Brodskyn, C.; Tavares, N. Dendritic cells and Leishmania infection: Adding layers of complexity to a complex disease. J. Immunol. Res. 2016, 2016, 3967436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carneiro, M.B.; Lopes, M.E.; Hohman, L.S.; Romano, A.; David, B.A.; Kratofil, R.; Kubes, P.; Workentine, M.L.; Campos, A.C.; Vieira, L.Q.; et al. Th1-Th2 cross-regulation controls early Leishmania infection in the skin by modulating the size of the permissive monocytic host cell reservoir. Cell Host Microbe 2020, 27, 752–768.e7. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, B.P.; Regli, I.B.; Tacchini-Cottier, F. Different Leishmania species drive distinct neutrophil functions. Trends Parasitol. 2016, 32, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Fasel, N. How to master the host immune system? Leishmania parasites have the solutions! Intl. Immunol. 2018, 30, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowlin, A.; Roys, H.; Wanjala, H.; Bettadapura, M.; Venugopal, G.; Surma, J.; Simon, M.C.; Weinkopff, T. Hypoxia-inducible factor signaling in macrophages promotes lymphangiogenesis in Leishmania major infection. Infect. Immun. 2021, 89, e0012421. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.J.; Miller, V.L. A Deadly path: Bacterial spread during bubonic plague. Trends Microbiol. 2016, 24, 239–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goncalvez, A.P.; Engle, R.E.; St Claire, M.; Purcell, R.H.; Lai, C.J. Monoclonal antibody-mediated enhancement of Dengue virus infection in vitro and in vivo and strategies for prevention. Proc. Natl. Acad. Sci. USA 2007, 104, 9422–9427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.J.L.; Grouard-Vogel, G.; Sun, W.; Mascola, J.R.; Brachtel, E.; Putvatana, R.; Louder, M.K.; Filgueira, L.; Marovich, M.A.; Wong, H.K.; et al. Human skin Langerhans cells are targets of Dengue virus infection. Nat. Med. 2000, 6, 816–820. [Google Scholar] [CrossRef] [PubMed]
- Opasawatchai, A.; Amornsupawat, P.; Jiravejchakul, N.; Chan-in, W.; Spoerk, N.J.; Manopwisedjaroen, K.; Singhasivanon, P.; Yingtaweesak, T.; Suraamornkul, S.; Mongkolsapaya, J.; et al. Neutrophil activation and early features of NET formation are associated with Dengue virus infection in human. Front. Immunol. 2019, 9, 3007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcial-Juárez, E.; Yam-Puc, J.C.; Cedillo-Barrón, L.; García-Cordero, J.; Calderón-Amador, J.; Maqueda-Alfaro, R.A.; Ruiz-Tovar, K.; Covarrubias, N.B.; Orozco-Uribe, M.; Escobar-Gutiérrez, A.; et al. Travelling with Dengue: From the skin to the nodes. In Dengue—Immunopathology and Control Strategies; IntechOpen: London, UK, 2017; ISBN 953-513-435-3. [Google Scholar]
- Yam-Puc, J.C.; García-Cordero, J.; Calderón-Amador, J.; Donis-Maturano, L.; Cedillo-Barrón, L.; Flores-Romo, L. Germinal center reaction following cutaneous Dengue virus infection in immune-competent mice. Front. Immunol. 2015, 6, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siggins, M.K.; Sriskandan, S. Bacterial lymphatic metastasis in infection and immunity. Cells 2021, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; He, Y.; Park, C.G.; Kang, Y.S.; Zhang, P.; Han, Y.; Cui, Y.; Bulgheresi, S.; Anisimov, A.P.; Dentovskaya, S.V.; et al. Yersinia pestis interacts with SIGNR1 (CD209b) for promoting host dissemination and infection. Front. Immunol. 2019, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Martinsen, T.C.; Bergh, K.; Waldum, H.L. Gastric juice: A barrier against infectious diseases. Basic Clin. Pharmacol. Toxicol. 2005, 96, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Wershil, B.K.; Furuta, G.T. 4. Gastrointestinal mucosal immunity. J. Allergy Clin. Immunol. 2008, 121, S380–S383. [Google Scholar] [CrossRef] [PubMed]
- Ribet, D.; Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015, 17, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grutzkau, A.; Hanski, C.; Hahn, H.; Riecken, E.O. Involvement of M cells in the bacterial invasion of Peyer’s patches: A common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria. Gut 1990, 31, 1011–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handley, S.A.; Newberry, R.D.; Miller, V.L. Yersinia enterocolitica invasin-dependent and invasin-independent mechanisms of systemic dissemination. Infect. Immun. 2005, 73, 8453–8455. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, D.S.; Sehgal, A.; Rios, D.; Williams, I.R.; Mabbott, N.A. Increased abundance of M cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog. 2016, 12, e1006075. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, D.S.; Kobayashi, A.; Ohno, H.; Yagita, H.; Williams, I.R.; Mabbott, N.A. M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunol. 2012, 5, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, T.; Aguzzi, A. Prions and lymphoid organs: Solved and remaining mysteries. Prion 2013, 7, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguzzi, A.; Nuvolone, M.; Zhu, C. The immunobiology of prion diseases. Nat. Rev. Immunol. 2013, 13, 888–902. [Google Scholar] [CrossRef] [PubMed]
- Ouzilou, L.; Caliot, E.; Pelletier, I.; Prévost, M.C.; Pringault, E.; Colbère-Garapin, F. Poliovirus transcytosis through M-like cells. J. Gen. Virol. 2002, 83 Pt 9, 2177–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrows, M.T. Is poliomyelitis a disease of the lymphatic system? Archiv. Intern. Med. 1931, 48, 33–50. [Google Scholar] [CrossRef]
- Roginsky, G.; Mazulis, A.; Ecanow, J.S.; Ehrenpreis, E.D. Mesenteric panniculitis associated with Vibrio cholerae infection. ACG Case Rep. J. 2015, 3, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.L.; Pierce, N.F.; Apple, R.T.; Cray, W.C. M cell transport of Vibrio cholerae from the intestinal lumen into Peyer’s patches: A mechanism for antigen sampling and for microbial transepithelial migration. J. Infect. Dis. 1986, 153, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.E.; Mayordomo, A.C.; Dave, M.N.; Aguilera Merlo, C.; Eliçabe, R.J.; di Genaro, M.S. Dendritic cells of mesenteric and regional lymph nodes contribute to Yersinia enterocolitica O: 3—Induced reactive arthritis in TNFRp55−/− mice. J. Immunol. 2020, 204, 1859–1868. [Google Scholar] [CrossRef]
- Huang, F.P.; Farquhar, C.F.; Mabbott, N.A.; Bruce, M.E.; MacPherson, G.G. Migrating intestinal dendritic cells transport PrP(Sc) from the gut. J. Gen. Virol. 2002, 83 Pt 1, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Martinet, L.; Smyth, M.J. Regulation of immune cell functions through nectin and nectin-like receptors. In Encyclopedia of Immunobiology; Ratcliffe, M.J.H., Ed.; Academic Press: Oxford, UK, 2016; ISBN 978-0-08-092152-5. [Google Scholar]
- Kobayashi, N.; Takahashi, D.; Takano, S.; Kimura, S.; Hase, K. The roles of Peyer’s patches and microfold cells in the gut immune system: Relevance to autoimmune diseases. Front. Immunol. 2019, 10, 2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, Y.; Mimuro, H.; Kunisawa, J.; Furusawa, Y.; Takahashi, D.; Fujimura, Y.; Kaisho, T.; Kiyono, H.; Hase, K. Microfold cell-dependent antigen transport alleviates infectious colitis by inducing antigen-specific cellular immunity. Mucosal Immunol. 2020, 13, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Lai, N.Y.; Musser, M.A.; Pinho-Ribeiro, F.A.; Baral, P.; Jacobson, A.; Ma, P.; Potts, D.E.; Chen, Z.; Paik, D.; Soualhi, S.; et al. Gut-innervating nociceptor neurons regulate Peyer’s patch microfold cells and SFB levels to mediate Salmonella host defense. Cell 2020, 180, 33–49.e22. [Google Scholar] [CrossRef] [PubMed]
- Dillon, A.; Lo, D.D. M Cells: Intelligent Engineering of Mucosal Immune Surveillance. Front. Immunol. 2019, 10, 1499. [Google Scholar] [CrossRef] [PubMed]
- Kiyono, H.; Fukuyama, S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat. Rev. Immunol. 2004, 4, 699–710. [Google Scholar] [CrossRef]
- Ragnarsson, E.G.; Schoultz, I.; Gullberg, E.; Carlsson, A.H.; Tafazoli, F.; Lerm, M.; Magnusson, K.-E.; Söderholm, J.D.; Artursson, P. Yersinia Pseudotuberculosis induces transcytosis of nanoparticles across human intestinal villus epithelium via invasin-dependent macropinocytosis. Lab. Investig. 2008, 88, 1215–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishikawa, S.; Sato, S.; Kaneto, S.; Uchino, S.; Kohsaka, S.; Nakamura, S.; Kiyono, H. Allograft inflammatory factor 1 is a regulator of transcytosis in M cells. Nat. Commun. 2017, 8, 14509. [Google Scholar] [CrossRef] [Green Version]
- Greig, E.D.W. The invasion of the tissues by the Cholera Vibrio and further observations on pneumonia in cases of cholera. Indian J. Med. Res. 1914, 2, 1. [Google Scholar]
- Nakato, G.; Hase, K.; Suzuki, M.; Kimura, M.; Ato, M.; Hanazato, M.; Tobiume, M.; Horiuchi, M.; Atarashi, R.; Nishida, N.; et al. Cutting edge: Brucella abortus exploits a cellular prion protein on intestinal M cells as an invasive receptor. J. Immunol. Res. 2012, 189, 1540–1544. [Google Scholar]
- Kuss, S.K. Gastrointestinal Influences on Poliovirus Replication, Dissemination and Pathogenesis in Mice. Ph.D. Thesis, The University of Texas Southwestern Medical Center, Dallas, TX, USA, 2011. [Google Scholar]
- Gopinath, A.; Allen, T.A.; Bridgwater, C.J.; Young, C.M.; Worley, M.J. The Salmonella type III effector SpvC triggers the reverse transmigration of infected cells into the bloodstream. PLoS ONE 2019, 14, e0226126. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Terres, A.; Jones-Carson, J.; Bäumler, A.J.; Falkow, S.; Valdivia, R.; Brown, W.; Lo, M.; Berggren, R.; Parks, W.T.; Fang, F.C. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 1999, 401, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, S.; Luganini, A.; Dell’Oste, V.; Lorusso, B.; Cervi, E.; Caccuri, F.; Bonardelli, S.; Landolfo, S.; Caruso, A.; Gribaudo, G. Human cytomegalovirus productively infects lymphatic endothelial cells and induces a secretome that promotes angiogenesis and lymphangiogenesis through interleukin-6 and granulocyte-macrophage colony-stimulating factor. J. Gen. Virol. 2011, 92, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Loo, C.P.; Nelson, N.A.; Lane, R.S.; Booth, J.L.; Loprinzi Hardin, S.C.; Thomas, A.; Slifka, M.K.; Nolz, J.C.; Lund, A.W. Lymphatic vessels balance viral dissemination and immune activation following cutaneous viral infection. Cell Rep. 2017, 20, 3176–3187. [Google Scholar] [CrossRef] [PubMed]
- Bentz, G.L.; Jarquin-Pardo, M.; Chan, G.; Smith, M.S.; Sinzger, C.; Yurochko, A.D. Human cytomegalovirus (HCMV) infection of endothelial cells promotes naïve monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J. Virol. 2006, 80, 11539–11555. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Meijer, E.F.J.; Blatter, C.; Liao, S.; Pereira, E.R.; Bouta, E.M.; Jung, K.; Chin, S.M.; Huang, P.; Munn, L.L.; et al. Methicillin-resistant Staphylococcus aureus causes sustained collecting lymphatic vessel dysfunction. Sci. Transl. Med. 2018, 10, eaam7964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scollard, D.M.; McCormick, G.; Allen, J.L. Localization of Mycobacterium leprae to endothelial cells of epineurial and perineurial blood vessels and lymphatics. Am. J. Pathol. 1999, 154, 1611–1620. [Google Scholar] [CrossRef] [Green Version]
- Treu, C.; das Graças Coelho De Souza, M.; Lupi, O.; Sicuro, F.L.; Maranhão, P.A.; Kraemer-Aguiar, L.G.; Bouskela, E. Structural and functional changes in the microcirculation of lepromatous leprosy patients—Observation using orthogonal polarization spectral imaging and laser Doppler flowmetry iontophoresis. PLoS ONE 2017, 12, e0175743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pino, L.; das Graças Coelho de Souza, M.; Lupi, O.; Bouskela, E. Tuberculoid leprosy: An in vivo microvascular evaluation of cutaneous lesions. PLoS ONE 2020, 15, e0227654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerji, S.; Ni, J.; Wang, S.X.; Clasper, S.; Su, J.; Tammi, R.; Jackson, D.G. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 1999, 144, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Lynskey, N.N.; Banerji, S.; Johnson, L.A.; Holder, K.A.; Reglinski, M.; Wing, P.A.C.; Rigby, D.; Jackson, D.G.; Sriskandan, S. Rapid lymphatic dissemination of encapsulated Group A Streptococci via lymphatic vessel endothelial receptor-1 interaction. PLoS Pathog. 2015, 11, e1005137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gugliesi, F.; Coscia, A.; Griffante, G.; Galitska, G.; Pasquero, S.; Albano, C.; Biolatti, M. Where do we Stand after Decades of Studying Human Cytomegalovirus? Microorganisms 2020, 8, 685. [Google Scholar] [CrossRef] [PubMed]
- Farrell, H.E.; Lawler, C.; Tan, C.S.E.; MacDonald, K.; Bruce, K.; Mach, M.; Davis-Poynter, N.; Stevenson, P.G. Murine Cytomegalovirus exploits olfaction to enter new hosts. mBio 2016, 7, e00251-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milho, R.; Frederico, B.; Efstathiou, S.; Stevenson, P.G. A heparan-dependent herpesvirus targets the olfactory neuroepithelium for host entry. PLoS Pathog. 2012, 8, e1002986. [Google Scholar] [CrossRef]
- Shivkumar, M.; Milho, R.; May, J.S.; Nicoll, M.P.; Efstathiou, S.; Stevenson, P.G. Herpes Simplex Virus 1 targets the Murine olfactory neuroepithelium for host entry. J. Virol. 2013, 87, 10477–10488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, H.E.; Stevenson, P.G. Cytomegalovirus host entry and spread. J. Gen. Virol. 2019, 100, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Compton, T.; Nowlin, D.M.; Cooper, N.R. Initiation of Human Cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology 1993, 193, 834–841. [Google Scholar] [CrossRef]
- Martinez-Martin, N.; Marcandalli, J.; Huang, C.S.; Arthur, C.P.; Perotti, M.; Foglierini, M.; Ho, H.; Dosey, A.M.; Shriver, S.; Payandeh, J.; et al. An unbiased screen for Human Cytomegalovirus identifies neuropilin-2 as a central viral receptor. Cell 2018, 174, 1158–1171.e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, H.E.; Bruce, K.; Lawler, C.; Oliveira, M.T.; Cardin, R.; Davis-Poynter, N.; Stevenson, P.G. Murine Cytomegalovirus Spreads by Dendritic Cell Recirculation. mBio 2017, 8, e01264-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, G.; Jores, R.; Mocarski, E.S. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc. Natl. Acad. Sci. USA 1998, 95, 3937–3942. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Shenk, T. Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc. Natl. Acad. Sci. USA 2005, 102, 18153–18158. [Google Scholar] [CrossRef] [Green Version]
- Daley-Bauer, L.P.; Roback, L.J.; Wynn, G.M.; Mocarski, E.S. Cytomegalovirus hijacks CX3CR1(hi) patrolling monocytes as immune-privileged vehicles for dissemination in mice. Cell Host Microbe 2014, 15, 351–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Springer, L.E.; Rao, H.-Z.; Trethewy, R.G.E.; Bishop, L.M.; Hancock, M.H.; Grey, F.; Snyder, C.M. Hematopoietic cell-mediated dissemination of murine cytomegalovirus is regulated by NK cells and immune evasion. PLoS Pathog. 2021, 17, e1009255. [Google Scholar] [CrossRef] [PubMed]
- Hahn, G.; Revello, M.G.; Patrone, M.; Percivalle, E.; Campanini, G.; Sarasini, A.; Wagner, M.; Gallina, A.; Milanesi, G.; Koszinowski, U.; et al. Human cytomegalovirus UL131-128 genes are indispensable for virus growth in endothelial cells and virus transfer to leukocytes. J. Virol. 2004, 78, 10023–10033. [Google Scholar] [CrossRef] [Green Version]
- Ryckman, B.J.; Jarvis, M.A.; Drummond, D.D.; Nelson, J.A.; Johnson, D.C. Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J. Virol. 2006, 80, 710–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, B.W.; Woo, J.K.; Liew, C.T. Cytomegalovirus infection of the nasopharynx. J. Clin. Pathol. 2002, 55, 970–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, J.W.; Sparer, T. There is always another way! Cytomegalovirus’ multifaceted dissemination schemes. Viruses 2018, 10, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Lee, Y.; Almazyad, A.; Birsner, A.; Li, D.; Wong, S.; Wen, A.; D’Amato, R.; Adam, R.M.; Dixon, J.B.; et al. Loss of neuropilin 2 in adult lymphatic endothelium promotes lymphedema. FASEB J. 2020, 34, 1. [Google Scholar]
- Johns, S.C.; Yin, X.; Jeltsch, M.; Bishop, J.R.; Schuksz, M.; El Ghazal, R.; Wilcox-Adelman, S.A.; Alitalo, K.; Fuster, M.M. Functional importance of a proteoglycan coreceptor in pathologic lymphangiogenesis. Circ. Res. 2016, 119, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, S.; Allen, E.A. History and importance of scrofula. Lancet 1995, 346, 1472–1474. [Google Scholar] [CrossRef]
- Ganchua, S.K.C.; Cadena, A.M.; Maiello, P.; Gideon, H.P.; Myers, A.J.; Junecko, B.F.; Klein, E.C.; Lin, P.L.; Mattila, J.T.; Flynn, J.A.L. Lymph nodes are sites of prolonged bacterial persistence during Mycobacterium Tuberculosis infection in macaques. PLoS Pathog. 2018, 14, e1007337. [Google Scholar] [CrossRef]
- Blacklock, J.W. The primary lung focus of tuberculosis in children. Proc. R. Soc. Med. 1932, 25, 725–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, J.A. The natural history of tuberculosis in the human body: Forty-five years of observation. JAMA 1965, 194, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Lerner, T.R.; Carvalho-Wodarz, C.D.S.; Repnik, U.; Russell, M.R.G.; Borel, S.; Diedrich, C.R.; Rohde, M.; Wainwright, H.; Collinson, L.M.; Wilkinson, R.J.; et al. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis. J. Clin. Investig. 2016, 126, 1093–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerner, T.R.; Queval, C.J.; Lai, R.P.; Russell, M.R.G.; Fearns, A.; Greenwood, D.J.; Collinson, L.; Wilkinson, R.J.; Gutierrez, M.G. Mycobacterium tuberculosis cords within lymphatic endothelial cells to evade host immunity. JCI Insight 2020, 5, e136937. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magold, A.I.; Swartz, M.A. Pathogenic Exploitation of Lymphatic Vessels. Cells 2022, 11, 979. https://doi.org/10.3390/cells11060979
Magold AI, Swartz MA. Pathogenic Exploitation of Lymphatic Vessels. Cells. 2022; 11(6):979. https://doi.org/10.3390/cells11060979
Chicago/Turabian StyleMagold, Alexandra I., and Melody A. Swartz. 2022. "Pathogenic Exploitation of Lymphatic Vessels" Cells 11, no. 6: 979. https://doi.org/10.3390/cells11060979
APA StyleMagold, A. I., & Swartz, M. A. (2022). Pathogenic Exploitation of Lymphatic Vessels. Cells, 11(6), 979. https://doi.org/10.3390/cells11060979