Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Mouse Plasma Samples
2.3. Human Serum Samples
2.4. The Coronary Assessment in Virginia Cohort (CAVA)
2.5. Quantification of Soluble RCN2 Protein
2.6. Immunohistochemical Analysis
2.7. Endothelial Cell Culture and Treatment
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association|Circulation. Available online: https://www.ahajournals.org/doi/full/10.1161/CIR.0000000000000757 (accessed on 14 January 2021).
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; Rb, S.D.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2935–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Friera, L.; Penalvo, J.L.; Fernandez-Ortiz, A.; Ibanez, B.; Lopez-Melgar, B.; Laclaustra, M.; Oliva, B.; Mocoroa, A.; Mendiguren, J.; de Vega, V.M.; et al. Prevalence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort: The PESA (Progression of Early Subclinical Atherosclerosis) Study. Circulation 2015, 131, 2104–2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baber, U.; Mehran, R.; Sartori, S.; Schoos, M.M.; Sillesen, H.; Muntendam, P.; Garcia, M.J.; Gregson, J.; Pocock, S.; Falk, E.; et al. Prevalence, Impact, and Predictive Value of Detecting Subclinical Coronary and Carotid Atherosclerosis in Asymptomatic Adults: The BioImage Study. J. Am. Coll. Cardiol. 2015, 65, 1065–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rippe, J.M. Lifestyle Strategies for Risk Factor Reduction, Prevention, and Treatment of Cardiovascular Disease. Am. J. Lifestyle Med. 2018, 13, 204–212. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2045–2051. [Google Scholar] [CrossRef] [Green Version]
- Linton, M.R.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The Role of Lipids and Lipoproteins in Atherosclerosis. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Kaltsas, G., Koch, C., Kopp, P., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Shi, W.; Haberland, M.E.; Jien, M.L.; Shih, D.M.; Lusis, A.J. Endothelial Responses to Oxidized Lipoproteins Determine Genetic Susceptibility to Atherosclerosis in Mice. Circulation 2000, 102, 75–81. [Google Scholar] [CrossRef]
- Brown, M.D.; Jin, L.; Jien, M.L.; Matsumoto, A.H.; Helm, G.A.; Lusis, A.J.; Frank, J.S.; Shi, W. Lipid Retention in the Arterial Wall of Two Mouse Strains with Different Atherosclerosis Susceptibility. J. Lipid Res. 2004, 45, 1155–1161. [Google Scholar] [CrossRef] [Green Version]
- Virmani, R.; Burke, A.P.; Farb, A.; Kolodgie, F.D. Pathology of the Vulnerable Plaque. J. Am. Coll. Cardiol. 2006, 47, C13–C18. [Google Scholar] [CrossRef] [Green Version]
- Honore, B. The Rapidly Expanding CREC Protein Family: Members, Localization, Function, and Role in Disease. BioEssays News Rev. Mol. Cell. Dev. Biol. 2009, 31, 262–277. [Google Scholar] [CrossRef]
- Manichaikul, A.; Wang, Q.; Shi, Y.L.; Zhang, Z.; Leitinger, N.; Shi, W. Characterization of Ath29, a Major Mouse Atherosclerosis Susceptibility Locus, and Identification of Rcn2 as a Novel Regulator of Cytokine Expression. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1056–H1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Cechova, S.; Wang, L.; Isakson, B.E.; Le, T.H.; Shi, W. Loss of Reticulocalbin 2 Lowers Blood Pressure and Restrains ANG II-Induced Hypertension in Vivo. Am. J. Physiol. Renal Physiol. 2019, 316, F1141–F1150. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Huangfu, C.; Chang, Z.; Grainger, A.T.; Liu, Z.; Shi, W. Atherogenesis in the Carotid Artery with and without Interrupted Blood Flow of Two Hyperlipidemic Mouse Strains. J. Vasc. Res. 2019, 56, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, N.J.; Shih, D.M.; Sun, V.Z.; Wang, X.; Lusis, A.J. Determinants of Atherosclerosis Susceptibility in the C3H and C57BL/6 Mouse Model: Evidence for Involvement of Endothelial Cells but Not Blood Cells or Cholesterol Metabolism. Circ. Res. 2000, 86, 1078–1084. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and Challenges in Translating the Biology of Atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. C-Reactive Protein and the Prediction of Cardiovascular Events among Those at Intermediate Risk: Moving an Inflammatory Hypothesis toward Consensus. J. Am. Coll. Cardiol. 2007, 49, 2129–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nissen, S.E.; Tuzcu, E.M.; Schoenhagen, P.; Crowe, T.; Sasiela, W.J.; Tsai, J.; Orazem, J.; Magorien, R.D.; O’Shaughnessy, C.; Ganz, P.; et al. Statin Therapy, LDL Cholesterol, C-Reactive Protein, and Coronary Artery Disease. N. Engl. J. Med. 2005, 352, 29–38. [Google Scholar] [CrossRef]
- Watterson, C.; Lanevschi, A.; Horner, J.; Louden, C. A Comparative Analysis of Acute-Phase Proteins as Inflammatory Biomarkers in Preclinical Toxicology Studies: Implications for Preclinical to Clinical Translation. Toxicol. Pathol. 2009, 37, 28–33. [Google Scholar] [CrossRef]
- Dalager, S.; Falk, E.; Kristensen, I.B.; Paaske, W.P. Plaque in Superficial Femoral Arteries Indicates Generalized Atherosclerosis and Vulnerability to Coronary Death: An Autopsy Study. J. Vasc. Surg. 2008, 47, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, E.; Sato, Y.; Iwakiri, T.; Yamashita, A.; Moriguchi-Goto, S.; Maekawa, K.; Gi, T.; Asada, Y. Asymptomatic Plaques of Lower Peripheral Arteries and Their Association with Cardiovascular Disease: An Autopsy Study. J. Atheroscler. Thromb. 2017, 24, 921–927. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, Y.; Plump, A.S.; Raines, E.W.; Breslow, J.L.; Ross, R. Apoe-Deficient Mice Develop Lesions of All Phases of Atherosclerosis throughout the Arterial Tree. Arterioscler. Thromb. A J. Vasc. Biol. Am. Heart Assoc. 1994, 14, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Pei, H.; Fischer, J.J.; James, J.C.; Angle, J.F.; Matsumoto, A.H.; Helm, G.A.; Sarembock, I.J. Neointimal Formation in Two Apolipoprotein E-Deficient Mouse Strains with Different Atherosclerosis Susceptibility. J. Lipid Res. 2004, 45, 2008–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tall, A.R. Plasma High Density Lipoproteins: Therapeutic Targeting and Links to Atherogenic Inflammation. Atherosclerosis 2018, 276, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, R.; Brancati, F.L.; Shafi, T.; Edelman, D.; Pankow, J.S.; Mosley, T.H.; Selvin, E.; Yeh, H.C. Non-Traditional Risk Factors Are Important Contributors to the Racial Disparity in Diabetes Risk: The Atherosclerosis Risk in Communities Study. J. Gen. Intern. Med. 2014, 29, 290–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, D.; Joh, H.K.; Kim, K.H.; Park, S.M. Benefits of Potassium Intake on Metabolic Syndrome: The Fourth Korean National Health and Nutrition Examination Survey (KNHANES IV). Atherosclerosis 2013, 230, 80–85. [Google Scholar] [CrossRef]
- Petersen, K.S.; Clifton, P.M.; Keogh, J.B. The Association between Carotid Intima Media Thickness and Individual Dietary Components and Patterns. Nutr. Metab. Cardiovasc. Dis. NMCD 2014, 24, 495–502. [Google Scholar] [CrossRef]
- Gu, Q.; Yang, X.; Lv, J.; Zhang, J.; Xia, B.; Kim, J.-D.; Wang, R.; Xiong, F.; Meng, S.; Clements, T.P.; et al. AIBP-Mediated Cholesterol Efflux Instructs Hematopoietic Stem and Progenitor Cell Fate. Science 2019, 363, 1085–1088. [Google Scholar] [CrossRef]
- Riley, L.K.; Rupert, J. Evaluation of Patients with Leukocytosis. AFP 2015, 92, 1004–1011. [Google Scholar]
- Zacho, J.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. C-Reactive Protein, Genetically Elevated Levels and Risk of Ischemic Heart and Cerebrovascular Disease. Scand. J. Clin. Lab. Investig. 2009, 69, 442–446. [Google Scholar] [CrossRef]
- Blum, A.; Shamburek, R. The Pleiotropic Effects of Statins on Endothelial Function, Vascular Inflammation, Immunomodulation and Thrombogenesis. Atherosclerosis 2009, 203, 325–330. [Google Scholar] [CrossRef]
- Böhm, F.; Pernow, J. The Importance of Endothelin-1 for Vascular Dysfunction in Cardiovascular Disease. Cardiovasc. Res. 2007, 76, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Bubb, K.J.; Khambata, R.S.; Ahluwalia, A. Sexual dimorphism in rodent models of hypertension and atherosclerosis. Br. J. Pharmacol. 2012, 167, 298–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lab or Clinical Measure | N | Beta Estimate a | SE b | p Value |
---|---|---|---|---|
BP Systolic mmHG | 92 | 0.00969245 | 0.01030022 | 0.349313076 |
BP Diastolic mmHG | 92 | 0.01765266 | 0.01419677 | 0.217050465 |
Height (inches) | 92 | 0.11660038 | 0.07012828 | 0.099976831 |
Weight (lbs) | 92 | −0.0011682 | 0.00440845 | 0.791642773 |
BMI | 92 | −0.0216007 | 0.02779423 | 0.439169159 |
Diabetes | 92 | 0.03297067 | 0.41993906 | 0.937600302 |
Hypertension | 92 | −0.542929 | 0.50886634 | 0.288951539 |
Statin | 92 | −0.7332029 | 0.49621175 | 0.143125728 |
Na+ (mmol/L) | 90 | −0.1386291 | 0.07066807 | 0.053070947 |
K+ (mmol/L) | 89 | −1.2575188 | 0.4733591 | 0.00944517 |
BUN (mg/dL) | 90 | −0.0075988 | 0.03604409 | 0.833533559 |
Creatinine (mg/dL) | 90 | 0.06394834 | 1.04243609 | 0.951228397 |
Glucose (mg/dL) | 91 | 0.0044541 | 0.00404779 | 0.274236856 |
A1c (%) | 66 | 0.08715481 | 0.16033648 | 0.588715504 |
eGFR using CKD-EPI mL/min per 1.73 m2 | 90 | −0.0029378 | 0.01386449 | 0.832699896 |
eGFR using MDRD mL/min per 1.73 m2 | 90 | −0.0005513 | 0.01323238 | 0.96686373 |
WBC (k/uL) | 92 | −0.1457938 | 0.07714427 | 0.062103295 |
Hgb (k/uL) | 92 | 0.02462452 | 0.0927292 | 0.791211679 |
HCT (%) | 92 | 0.0094704 | 0.042752 | 0.825207044 |
Platelets (k/uL) | 92 | −0.0042103 | 0.00369879 | 0.258127884 |
Neutrophils Percent | 74 | −0.0140214 | 0.01932898 | 0.470655622 |
Neutrophils Absolute Count (k/uL) | 74 | −0.1894186 | 0.09953278 | 0.061203044 |
Lymphocytes Percent | 74 | 0.0288674 | 0.02335576 | 0.220654752 |
Lymphocytes Absolute Count (k/uL) | 74 | −0.353782 | 0.29906492 | 0.240884786 |
Monocytes Percent | 74 | 0.02998299 | 0.06812356 | 0.661221099 |
Monocytes Absolute Count (k/uL) | 74 | −1.2669083 | 0.86871079 | 0.149273558 |
Eosinophils Percent | 74 | −0.0171623 | 0.12760792 | 0.89340498 |
Eosinophils Absolute Count (k/uL) | 74 | −1.9731085 | 1.63316999 | 0.231115393 |
Basophils Percent | 74 | 0.09109683 | 0.44496708 | 0.838388038 |
Basophils Absolute Count (k/uL) | 74 | −4.1208846 | 3.82795515 | 0.285442693 |
Total Cholesterol (mg/dL) | 88 | −0.0021 | 0.00578931 | 0.717727569 |
Triglycerides (mg/dL) | 92 | 0.0035148 | 0.00232033 | 0.133450441 |
HDL Cholesterol (mg/dL) | 92 | −0.0556568 | 0.02265705 | 0.016016942 |
LDL Cholesterol (mg/dL) | 92 | −0.0008449 | 0.00629427 | 0.893532828 |
hsCRP (mg/L) | 42 | −0.0174402 | 0.03398638 | 0.610895114 |
Insulin (ulU/mL) | 42 | −0.0080212 | 0.02384196 | 0.738445545 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Taylor, A.M.; Manichaikul, A.; Angle, J.F.; Shi, W. Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis. Cells 2022, 11, 1107. https://doi.org/10.3390/cells11071107
Li J, Taylor AM, Manichaikul A, Angle JF, Shi W. Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis. Cells. 2022; 11(7):1107. https://doi.org/10.3390/cells11071107
Chicago/Turabian StyleLi, Jing, Angela M. Taylor, Ani Manichaikul, John F. Angle, and Weibin Shi. 2022. "Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis" Cells 11, no. 7: 1107. https://doi.org/10.3390/cells11071107
APA StyleLi, J., Taylor, A. M., Manichaikul, A., Angle, J. F., & Shi, W. (2022). Reticulocalbin 2 as a Potential Biomarker and Therapeutic Target for Atherosclerosis. Cells, 11(7), 1107. https://doi.org/10.3390/cells11071107